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Abstract: Since China announced its goal of becoming carbon-neutral by 2060, carbon neutrality has become a major target in the de-
velopment of China’s urban agglomerations. This study applied the Future Land Use Simulation (FLUS) model to predict the land use
pattern of the ecological space of the Beibu Gulf urban agglomeration, in 2060 under ecological priority, agricultural priority and urban-
ized priority scenarios. The Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was employed to analyse the
spatial changes in ecological space carbon storage in each scenario from 2020 to 2060. Then, this study used a Geographically Weighted
Regression (GWR) model to determine the main driving factors that influence the changes in land carbon sinking capacity. The results
of the study can be summarised as follows: firstly, the agricultural and ecological priority scenarios will achieve balanced urban expan-
sion and environmental protection of resources in an ecological space. The urbanized priority scenario will reduce the carbon sinking ca-
pacity. Among the simulation scenarios for 2060, carbon storage in the urbanized priority scenario will decrease by 112.26 × 106 t com-
pared with that for 2020 and the average carbon density will decrease by 0.96 kg/m2 compared with that for 2020. Carbon storage in the
agricultural priority scenario will increase by 84.11 × 106 t, and the average carbon density will decrease by 0.72 kg/m2. Carbon storage
in the ecological priority scenario will increase by 3.03 × 106 t, and the average carbon density will increase by 0.03 kg/m2. Under the
premise that the population of the town will increases continuously, the ecological priority development approach may be a wise choice.
Secondly, slope, distance to river and elevation are the most important factors that influence the carbon sink pattern of the ecological
space in the Beibu Gulf urban agglomeration, followed by GDP, population density, slope direction and distance to traffic infrastructure.
At the same time, urban space expansion is the main cause of the changes of this natural factors. Thirdly, the decreasing trend of ecolo-
gical space is difficult to reverse, so reasonable land use policy to curb the spatial expansion of cities need to be made.
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1　Introduction

With  rapid  urbanisation,  large-scale  socio-economic
activities  has  increased  the  greenhouse  gases  release,

and  enhancing  the  pressure  of  the  carbon  emission  in
developing  countries  (Jin  and  Zhang,  2015; Yu  et  al.,
2022). China is the most populous country in the world,
and  its  economy  is  developing  rapidly.  However,  the
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impacts of  large-scale  human  activities  exceeds  carry-
ing capacity of the natural system. The carbon cycle of
the  earth’s surface  becomes  unbalanced,  and  the  ter-
restrial  and  marine  ecosystems  are  damaged.  Resource
shortage becomes  prevalent  and  the  carbon  sinking  ca-
pacity  and  overall  risk  resistance  capacity  are  reduced,
which  has  aggravated  the  global  warming  (Syvitski  et
al.,  2009; Carter,  2018; Chu  et  al.,  2018; Czech  et  al.,
2020; Geng et al., 2020). The deterioration of the ecolo-
gical environment and global warming has become one
of  the  most  serious  environmental  problems.  As  the
country  with  the  largest  total  carbon  dioxide  emissions
in  the  world  (https://edgar.jrc.ec.europa.eu/),  China  has
pledged to ‘strive to achieve a carbon peak by 2030 and
achieve  carbon  neutrality  by 2060 (hereafter  ‘Dual-
carbon’ goal)’ (https://www.un.org/zh/ga/75/resolutions.
shtml). It is an inevitable choice for China to reduce and
control global  carbon  emission.  It  is  also  an  urgent  re-
quirement  to  promote  low-carbon  economic  and  social
transformation,  achieve  environmental  protection  and
regional  development  simultaneously.  Land  forms  the
basis  for  human  life  and  industrial,  which  is  the  main
carrier  of  carbon  emissions  and  also  carbon  sinks.  Our
study incorporated  the  ‘Dual-carbon’ goal into  the  Na-
tional Spatial planning system and established an ecolo-
gical  space  pattern,  as  well  as  a  production  and  living
style.  It  is  of  great  significance  to  create  a  social  and
economic system with significant effective emission re-
duction.

Urban agglomeration  is  a  form of  cluster  in  the  ma-
ture stage of urban expansion. It puts the built-up envir-
onment of  individual  cities  and  regional  ecological  en-
vironment into  a  larger  picture.  It  also  provides  a  vari-
ety  of  ecological  services  and  ecological  products  in  a
new balanced carbon dimension (Qin et al.,  2022). The
‘economy-society-ecological’ system  shapes  different
land use and cover changes (Ding et al., 2022), determ-
ines  the  carbon  emission/sinking  capacity  of  different
land use  types  and  deduces  the  carbon  budget  of  ter-
restrial and marine ecosystems. In recent years, the rap-
id economic  and  social  development  and  various  hu-
man  activities  increased  pressure  on  transportation  and
living  consumption  and  the  construction  land  is  rapid
growing. Urbanized space has expanded rapidly,  which
leads  to  aggravated  changes  on  the  ecological  spatial
land use pattern. Carbon emissions and ecological pres-
sure also increase substantially. The expansion of urban-

ized  space,  industrial  production  and  massive  resource
development are identified as the main causes of carbon
emissions from construction land. Meanwhile, maintain-
ing the scale of the ecological space, reconstructing non-
agricultural land and ‘Grain for Green’ can increase the
amount  of  cropland,  forest  land  and  ecological  space
carbon  sink  capacities  (Wang  et  al.,  2022).  Therefore,
ecological  space  can  be  a  conveyor  to  promote  carbon
sinks in the ecosystem and restore ecological areas. The
Beibu Gulf  urban  agglomeration  should  keep  the  bal-
ance of the long-term coordinated and sustainable devel-
opment of regional urban economic and social develop-
ment and ecological environment. While the multi-scen-
ario  simulation  of  the  ecological  space,  the  land  cover
changes under various development orientations can be
predicted. It is also a scientific and reasonable reference
for future ecological space land use management.

Land  use  simulation  based  on  mathematical  models
and experiments have developed rapidly in the past two
decades.  The  topics  of  the  simulation  models  become
hot, the predict simulation has experience several devel-
opments. Researchers have constructed land use simula-
tion models based on different disciplinary theories (Dai
and  Ma,  2018),  including  statistical  models,  cellular
automata (CA) models that emphasise spatial layout and
multi-subject models  that  emphasise  developing  pro-
cesses (Feng et al., 2012; Hossein et al., 2017; Bai et al.,
2018; Chen et  al.,  2018; Feng et  al.,  2018; Yang et  al.,
2018; Eduardo  et  al.,  2019). With  the  significant  pro-
gress of neural network models, their advantages are the
approach concerns two pairs relationships (land use pat-
terns-driving  forces  and  natural  ecological  effects-hu-
man  activities).  Liu  et  al.  (2017) digested  the  advant-
ages of Artificial Neural Network (ANN), Cellular Au-
tomaton (CA) model and Markov chain (or Markov mo-
del)  and  constructed  the  Future  Land  Use  Simulation
(FLUS)  model,  with  an  adaptive  inertia  competition
mechanism. The FLUS model can deal with the compet-
ition among  different  land  use  types,  which  could  dis-
play  the  uncertainty  of  land  change  and  eliminate  the
disadvantage that the original CA model cannot directly
calculate the  number  of  cellular  growths  in  future  dec-
ades.  Liu  et  al.  (2017)  put  the  model  into  practise  and
showed  that  the  FLUS  model  had  a  higher  simulation
accuracy  than  the  traditional  Conversion  of  Land  Use
and its Effects at Small Region Extent Model (CLUE-S)
and ANN-CA models. Currently, the FLUS model mainly
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focuses  on  the  delineation  of  urban  growth  boundaries
(Liang et al., 2018) and scenario-based urban-scale flood
risk assessment (Lin et al., 2020). Rare simulation stud-
ies of land use patterns at the scale of urban agglomera-
tions have been conducted.

Given that  the  ecological  space  of  urban  agglomera-
tion provides the ecosystem functions, the urban expan-
sion will inevitably lead to a series of changes in ecolo-
gical balance. Moreover, the carbon sinking capacity in
the  ecological  space  can  accurately  reflect  the  climate
change caused by ecological imbalance, which is one of
the most important indicators of ecological and environ-
mental benefits.  Previous studies on carbon sinks focus
on carbon balance (Lin et al., 2016) and the analysis of
the  relationship  between  carbon  sinks  and  land  use
(Zhang et al., 2016; Du, 2020). Few studies on the ana-
lysis  of  the  drivers  of  carbon  sink  change  have  been
conducted.  To  estimate  the  influence  of  the  ecological
spatial patterns and their driving mechanisms, this study
adopted the Integrated Valuation of Ecosystem Services
and Trade-offs  (InVEST) model  to  measure  the  carbon
sinks of different land use type.

The  InVEST model  is  a  relatively  mature  model  for
ecosystem  service.  The  research  on  this  model  can  be
abundant in the fields of habitat quality assessment, soil
conservation and water supply (Miguel et al., 2018; Ab-
reham et al., 2020; Hu et al., 2020; Li et al., 2021). The
carbon storage and terrestrial ecosystem modules can be
used to calculate the change in carbon storage, i.e., car-
bon sequestration. The carbon storage in different scen-
arios  from  2020  to 2060 can be  a  reference  to  under-
stand  the  changes  on  carbon  sinking  capacity  in  the
Beibu Gulf  urban  agglomeration  and  identify  the  driv-
ing factors for the changes in carbon sinking capacity.

The Beibu Gulf urban agglomeration is a coastal met-
ropolitan area, located in the southern China. It is one of
the  highly  developing  urban  agglomerations.  Satellite
data in recent  decades showed that  the rapid expansion
of urbanized  space  had  drastically  changed  the  land-
scape patterns, eroded agricultural space and ecological
space. As a part of regional unit with drastic ecological
spatial  expansion,  the  Beibu  Gulf  urban  agglomeration
is an ideal area for analysing the land use types and car-
bon  sink  development.  Both  the  FLUS  and  InVEST
models have  been  widely  used  in  their  fields  individu-
ally and have got  good results.  However,  there are few
results  related  to  the  combination  of  these  two.  They

rare discuss the spetial distribution of land use types and
the development  of  carbon  sink  in  the  future.  The  re-
searches on driving forces of carbon sinking capacity in
a  scale  of  urban  agglomerations  is  relatively  lacking
(Qin et  al.,  2022).  Therefore,  this  study focused on the
Beibu  Gulf  urban  agglomeration,  analysed  land  use
types in 2000, 2010 and 2020. Our study simulated and
predicted the  spatiotemporal  distribution  of  the  land-
scape patterns in the urban agglomeration in 2060. The
study focused on the changes of carbon sink, and found
the main driving factors affecting the carbon sinking ca-
pacity.  It  could  be  a  reference for  the  future  ecological
spatial and  a  possible  pathway  to  the  regional  sustain-
able development. 

2　Materials and Methods
 

2.1　Study area
The  Beibu  Gulf  urban  agglomeration  is  located  in  the
southern  China  (Fig.  1);  its  land  area  is  divided  into
three parts  by the Beibu Gulf,  including six prefecture-
level  cities  in  Guangxi  Zhuang  Autonomous  Region
(i.e.,  Nanning,  Beihai,  Qinzhou,  Fangchenggang,  Yulin
and Chongzuo),  three  prefecture-level  cities  in  Guang-
dong Province  (i.e.,  Zhanjiang,  Maoming  and  Yangji-
ang)  and  six  prefecture  (county)-level  cities  in  Hainan
Province (i.e.,  Haikou, Danzhou, Dongfang, Chengmai,
Lingao  and  Changjiang).  The  study  area  is  adjacent  to
the  Guangdong-Hong  Kong-Macao  Greater  Bay  Area
and  Association  of  Southeast  Asian  Nations  and  has
subtropical and tropical monsoon climates. With a land
area of approximately 116 600 km2, the Beibu Gulf urb-
an  agglomeration  is  one  of  the  rapidly  emerging  urban
agglomerations in the central and western regions and a
strategic sea  outlet  for  the  new  western  land-sea  cor-
ridor. The rapid economic development in the region in
recent years  has  caused  dramatic  changes  in  the  land-
scape  pattern  and  urban  expansion,  which  has  brought
unprecedented  pressure  on  the  ecological  environment.
To cope with the possible risk of carbon imbalance, the
expansion  of  ecological  space  in  urban  agglomerations
needs scientific prediction and conservation studies. 

2.2　Data
The data sets were divided into five categories, i.e., land
use, policy constraints, roads, topography and statistics.
The current  land  use  data  of  the  Beibu  Gulf  urban  ag-
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glomeration for the years 2000, 2010 and 2020 were ob-
tained from the  GlobeLand30  data  product.  The  evalu-
ation of the data accuracy of GlobeLand30 for the years
2000  and  2010  was  conducted  at  Tongji  University.  A
total  of  80  maps  were  extracted  from  853  global  data,
and more than 150 000 test samples were obtained. The
Overall Accuracy (OA) of the data was 83.50%, and the
kappa  coefficient  was  0.78.  The  evaluation  of  the  data
accuracy of  GlobeLand30  for  the  year  2020  was  con-
ducted at the Academy of Aerospace Information Innov-
ation, Chinese Academy of Sciences. Based on the land-
scape shape index sampling model,  more than 230 000
samples were distributed. The OA of the data is 85.72%,
and  the  kappa  coefficient  is  0.82.  The  land  use  types
were divided into six categories, i.e.,  construction land,
cropland, forest  land,  grassland,  water  area  and  unutil-
ised  land.  According  to  the  national  standards  and  the
scientific  nature  of  research,  ecological  space  includes
forest  land,  grassland,  water  area  and  unutilised  land,
which focuses on ecological services.

Indicators that are related to land use pattern changes
were selected  for  analysis  according  to  the  current  de-
velopment status  of  the  Beibu  Gulf  urban  agglomera-
tion. The driving factors were selected from both natur-
al  conditions  and  socio-economic  aspects.  For  natural
conditions, a  total  of  seven  factors  (i.e.,  digital  eleva-
tion model, slope, slope direction, distance to river, dis-

tance to  the  railroad,  distance  to  the  highway  and  dis-
tance  to  the  general  road)  were  selected.  Among them,
elevation and slope are topographic factors that determ-
ine the changes in land use patterns, and traffic access-
ibility  is  necessary to  attract  urban land expansion.  For
socio-economic  aspects,  gross  domestic  product  (GDP)
data and population density were selected. Moreover, to
constrain  the  simulated  expansion,  the  limiting  factors
in terms of environmental protection are needed, and six
factors (i.e., nature reserves, rivers, important wetlands,
mangroves, tropical rainforests and natural forests) were
selected. All data sources are listed in Table 1. 

2.3　Methods
This study was divided into three parts  (Fig.  2), as fol-
lows:  1)  The  Markov  model  was  used  to  forecast  the
land demand in 2060, and the FLUS model was used to
simulate the development direction of land use patterns
under  three  scenarios,  namely,  ecological,  agricultural
and urbanized priority scenarios, in the Beibu Gulf urb-
an  agglomeration  in  2060.  2)  The  InVEST  model  was
used  to  analyse  the  land  carbon  storage  in  the  three
scenarios  from  2020  to  2060.  3)  The  Geographically
Weighted Regression  (GWR)  model  was  used  to  ana-
lyse the weight of the driving factors of land use pattern
changes and determine the main factors influencing the
change in the regional carbon sink pattern. 
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2.3.1　Ecological space simulation
The  FLUS  model  is  a  scenario  simulation  prediction
model that is used to analyse land use under the effects
of  natural  and  human  activities.  The  FLUS  model  is
based on the CA model and introduces a multilayer feed-
forward ANN algorithm (i.e.,  BP-ANN) to enhance the
accuracy of the simulation.

The model used Markov chains to forecast the multi-
scenario land demand in 2060 based on the current land
use  data,  BP-ANN to  deal  with  the  nonlinear  problem,
and  land  use  data  and  driving  factors  to  calculate  the
conversion  probability  of  each  land  use  type  combined
with the neighbourhood influence factor,  adaptive iner-
tia coefficient and conversion cost to obtain the overall
conversion probability of the raster. The simulation res-
ults were obtained after applying the roulette-based ad-
aptive inertia  competition  mechanism  to  solve  the  un-
certainty  of  different  land  use  types  competing  with
each other.

The  BP-ANN  algorithm  consists  of  an  input  layer,
several hidden layers and an output layer. In the output
layer each neuron represents a certain land use type and
its formula is expressed as follows (Liu et al., 2017):

sp(p,k, t) =
∑

j

wj,k × sigmoid
(
netj (p, t)

)
=

∑
j

wj,k ×
1

1+ e−netj(p,t)

(1)

where sp(p,k,t)  is  the  suitability  probability  of  the kth
site  type  at  raster p and  time t;  Σj represents  the  total
number  of  the  values  which  converted  from  the  signal
received  by  neuron j,  ranging  from  0  to  1; wj,k is  the
weight  of  the  hidden  and  output  layers;  the  sigmoid
function is the excitation function from the hidden layer
to the output layer which can effectively building a con-
nection  between  neural  networks; netj(p,t)  is  the  signal
received by neuron j raster p at time t in the hidden lay-
er. At iteration time t and raster p, the sum of the suitab-
ility probabilities sp(p,k,t) for each type of site output by
BP-ANN is 1, derived as follows (Liu et al., 2017):∑

k

sp(p,k, t) = 1 (2)

The neural  network  method used  to  obtain  the  train-
ing samples  in  this  study was  random sampling,  which
was characterised by the number of sampling points for
each  type  of  land  use  varying  with  the  proportion  of
each category.  The number  of  hidden layers  was  set  to

 
Table 1    Data source information
 

Data types Data content Data source Data description
Land use data 2000 GlobeLand30

(http://www.globallandcover.com/)
The spatial resolution is 1 km, and the coordinate
system is WGS-84, inputted as the initial
condition to verify model accuracy

2010

2020

Restricted conversion
data and policy
constraint data

Important wetlands distribution
map

ArcGIS Online
(https://www.geosceneonline.cn/geoscene/webap
ps/gallery)

Vector data set, constraints

Nature reserve distribution map

Mangrove distribution map

Tropical rainforest distribution
map

Natural forest distribution map

Water area Open Street Map
(https://www.openstreetmap.org/)

Road data Road network data in 2020 Open Street Map
(https://www.openstreetmap.org/)

Vector data set, reflecting traffic drivers

Terrain data Digital elevation model NASA ASTER GDEM v2
(https://asterweb.jpl.nasa.gov/)

Raster data set, restricting terrain conditions

Statistical data National population density
data in 2010

World Pop (https://www.worldpop.org/) Spatial resolution is 1 km, the coordinate system
is WGS-84, and the unit is people/km2

2010 GDP data of Beibu Gulf
cities (counties)

1 km GDP raster data set
(http://www.geog.com.cn/EN/Y2014/V69/Is1/41)

Raster data set, reflecting economic drivers
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13 layers. The raster data of land use drivers were norm-
alised  and  inputted  into  the  BP-ANN  model  to  obtain
the  suitability  probability  of  each  land  use  category  in
the study area.

Inertiat
k

The adaptive inertia coefficient is the core of the ad-
aptive  inertia  competition  mechanism.  It  is  determined
by  using  the  current  number  and  demand  of  each  land
class  and  adaptively  adjusted  in  iterations  to  move  the
number  of  land classes  toward the  target.  The adaptive
inertia coefficient  of the kth land class at time t
is expressed as follows (Liu et al., 2017):

Inertitt
k =



Inertitat−1
k

∣∣∣Dt−2
k

∣∣∣ ≤ ∣∣∣Dt−1
k

∣∣∣
Inertiat−1

k ×
Dt−2

k

Dt−1
k

0 > Dt−2
k > Dt−1

k

Inertiat−1
k ×

Dt−1
k

Dt−2
k

Dt−1
k > Dt−2

k > 0

(3)

Dt−1
k Dt−2

kwhere  and  are  the  differences  between  the
number of grids and demands for the kth site type at mo-
ments t – 1 and t – 2, respectively.
Ωt

p,k  is the neighbourhood influence factor of raster p
at  time t that  reflects  the  interaction  between  different
land use types and different land units within the neigh-

bourhood;  its  equation  is  expressed  as  follows  (Liu  et
al., 2017):

Ωt
p,k =

∑
N×N

con(ct−1
p = k)

N ×N−1
×wk

(4)

∑
N×N con(ct−1

p = k)where  is the raster number of the kth
land use type at the end of the previous iteration in the
Moore  neighbourhood window of N × N and wk is  the
weight  of  neighbourhood  effect  of  each  land  use  type,
ranging from 0 to 1. In this study, N = 3, and the num-
ber of CA iterations was 300. Based on previous studies
and  the  land  characteristics,  the  strongest  expansion
capability of  construction  land  and  the  weakest  expan-
sion capability of forest land were set to 1 and 0.01, re-
spectively.  Because  of  the  activities  from  both  human
and nature, the expansion capability of unutilised land is
moderate; thus, its weight was set to 0.5. After the com-
parison,  the wk parameters  were  ranked from largest  to
smallest,  i.e.,  construction  land,  unutilised  land,  water
area, grassland, cropland and forest land. The details are
listed in Table 2.

The conversion  cost  indicates  the  difficulty  of  con-
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Fig. 2    The study workflow

90 Chinese Geographical Science 2023 Vol. 33 No. 1



verting  the  current  land  use  type  to  the  target  land  use
type. Conversion costs reflect the inherent nature of land
use without considering the variable effects of technolo-
gical  progress,  policies  and  human  activities  (https://
geosimulation.cn/FLUS.html). For three different devel-
opment scenarios, three conversion costs need to be set,
the details of which are shown in Table 3. The principle
of the conversion is as follows: except for some land use
types,  high-grade  land  can  not  be  converted  into  low-
grade land. The ranking results based on the ecological
benefits of each land use type in the ecological priority
scenario are  forest  land,  water  area,  grassland,  unutil-
ised  land,  cropland  and  construction  land.  Meanwhile,
the ranking results based on the urban expansion needs
in the urbanized priority scenario are construction land,
cropland, forest  land,  grassland,  water  area  and  unutil-
ised  land.  In  the  agricultural  priority  scenario,  all  land
use types,  except  for  construction  land,  can  be  conver-
ted into cropland, and the others are similar to the urb-
anized priority scenario.

Tpt
p,k

The  probability  of  conversion  of  each  raster p to k
was calculated using the BP-ANN model, and iterations
were performed using the CA model to assign each land
use type to the raster. The equation for the overall con-
version probability  of raster p to land use type k at
moment t is expressed as follows (Liu et al., 2017):

Tpt
p,k = sp(p,k, t)×Ωt

p,k × Inertiat
p,k × (1− scc→k) (5)

where scc→k is the conversion cost of land use types c to
k and (1 − scc→k) is the ease of converting occurrence.

To  ensure  the  validity  of  the  model,  this  study  used
the kappa coefficient, OA and FoM index to test the ac-
curacy, which is verified by collecting historical data for
simulation. The  model  simulation  accuracy  is  accept-
able when kappa ≥ 0.7 (Kaviari et al., 2019). The closer
the OA is to 1, the higher the simulation accuracy. The
FoM index is  affected  by the  simulation duration,  with
the  increase  in  the  FoM  index  of  less  than  0.01  each
year as the standard level. 

2.3.2　Driving factor analysis
The  GWR  model  is  a  regression  analysis  model  with
spatial dimension, which can be used in the field of land
use  change  scenario  prediction.  GWR  analysis  can  be
used to  determine  the  influence  weights  of  each  inde-
pendent variable,  understand  which  independent  vari-
ables mainly affect the dependent variable and judge the
degree  of  influence  of  the  independent  variable  on  the
dependent variable according to the weight of the inde-
pendent  variable.  In  this  study,  because  carbon  sink
change is related to land use type change, the model se-
lected the  driver  data  with  the  probability  of  suitability
of  each  land  use  type  for  the  study  of  land  use  change
drivers, the analysis of the relationship between drivers
and land pattern and the discovery of the main drivers of
carbon  sink  change.  The  GWR  model  is  expressed  as
follows (Zhang et al., 2021):

yi = β0(ui,vi)+
k∑

i=1

βi(ui,vi)xik +εi (6)

where ui and vi are  the  location  coordinates  of  point i,

 
Table 2    Neighbourhood effect weight of the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model
 

Land use type Construction land Unutilised land Water area Grassland Cropland Forest land

Neighbourhood effect weight 1.00 0.50 0.40 0.30 0.20 0.01

 
Table 3    Conversion cost matrix of the InVEST model
 

Land use types
Urbanized priority Agricultural priority Ecological priority

A B C D E F A B C D E F A B C D E F

A 1 0 0 1 0 0 1 0 0 0 0 0 1 1 1 1 1 1

B 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0

C 1 0 1 1 0 0 1 1 1 1 1 1 0 1 1 0 1 0

D 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

E 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Notes: A, B, C, D, E and F denote cropland, forest land, grassland, construction land, water area and unutilised land, respectively, 1 means convertible, 0 means non-
convertible.  The  determination  of  1  and  0  refers  to  the  relevant  experience  of  the  existing  research  (Li,  2018)  and  FLUS  website  user  manual
(https://geosimulation.cn/FLUS.html), and the conversion cost of each land use is determined according to the local expert experience and urban planners. The rows
in the table represent future land use types, and the columns represent current land use types
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β0(ui,vi) is the regression coefficient, ε is the residual, x
is the independent variable and y is the dependent vari-
able.  The  results  show  that  the  goodness-of-fit R2 of
factors is  a  parameter  that  reflects  the  degree  of  influ-
ence of factors, which can be used to explain the influ-
ence of the drivers of carbon sink pattern changes. 

2.3.3　Carbon storage change analysis
The  InVEST  model  was  developed  by  the  US  Natural
Capital Project to enable the quantitative assessment and
spatial  visualisation  of  ecosystem  services.  The  model
consists of marine, freshwater and terrestrial ecosystem
modules.  Users  can  input  data  and  parameters  into  the
modules  to  obtain  the  results  according  to  their  needs.
As land managers need to make choices about where to
protect  or  develop,  these  assessment  modules  are  ideal
for supporting decisions about ecosystem services.

The module  used  is  the  carbon  storage  section  loc-
ated in the terrestrial ecosystem module, and the carbon
storage module  is  based  on  carbon  density.  The  prin-
ciple is that the InVEST model uses land use or cover-
age categories, timber harvest, harvest product degrada-
tion rate and carbon storages of four carbon pools to es-
timate the carbon storages and carbon sequestration in a
period.  The  four  carbon  pools  include  above-ground
biomass, below-ground biomass, soil organic matter and
dead organic  matter.  The  formula  is  expressed  as  fol-
lows (Yang et al., 2021):
Ci =Cabove+Cbelow+Csoil+Cdead (7)

where Ci is  the  carbon  density  of  land  use  type i and
Cabove, Cbelow, Csoil and Cdead are the above-ground bio-
logical  carbon density,  below-ground biological  carbon
density, carbon density  of  soil  organic  matter,  and  car-
bon density of dead organic matter, respectively. In this
study,  the  sum of  the  carbon  storages  of  different  land
use types was calculated according to the research needs
of  ecological  space  and  the  carbon  density  values  of
land  use  type Tc. The  equations  are  expressed  as  fol-
lows (Wu et al., 2020):
Ti =Ci×Ai (8)

Tc =

n∑
i=1

Ti (9)

where Tc is  the  total  carbon  storage, Ti is  the  carbon
storage of land use type i (there are n land use types in
the  region), Ci refers  to  the  carbon  density  of  land  use
type i and Ai is the acreage of land use type i. The total
carbon storage and the  carbon storage of  different  land
use types in 30 years can be obtained by subtracting the
carbon storage calculation results from different scenari-
os in 2020 and 2060, through which the change in car-
bon sink distribution can be understood. 

2.3.4　Methods for obtaining carbon density
Because of  the  difficulty  of  carbon  density  measure-
ment,  carbon  storage  was  analysed  using  the  carbon
density  table  for  land  use  types  derived  from  existing
studies (Table 4). The soil carbon density table of China
refers to the carbon density data from the National Eco-
logical Science Data Center (https://www.cnern.org.cn/)
and some results of other studies (Chen et al.,  2002; Li
et  al.,  2004; Xie et  al.,  2004; Chuai et  al.,  2013; Liu et
al., 2019).

Given  that  this  study  needed  to  obtain  the  carbon
density  data  for  the  Beibu  Gulf  urban  agglomeration,
which  was  affected  by  climate  and  soil,  more  accurate
carbon density needed to be calculated (Fu et al., 2019).
Related  studies  have  shown  that  both  biomass  carbon
density and soil carbon density in China were positively
correlated with  annual  precipitation  and  weakly  correl-
ated  with  annual  mean  temperature  (Raich and  Nadel-
hoffer,  1989; Chen  et  al.,  2007)  (Table  5).  Therefore,
the  relationship  between  annual  precipitation  and  soil
organic  matter  carbon  density  was  corrected  using  the
existing equation (Alam et al., 2013):
CPS = 3.3968P+3996.1 (10)

where CPS is the  soil  carbon density  obtained from an-
nual precipitation in g/cm2 and P is the annual precipita-
tion  in  mm.  The  annual  precipitation  of  Zhanjiang,  a
city in the central part of the Beibu Gulf urban agglom-
eration, was 1999.4 mm in 2018, and the national aver-
age  annual  precipitation  was  671.1  mm  in  2018.  The
soil carbon density of the Beibu Gulf urban agglomera-
tion and the entire country was obtained by substituting
the values into the equation. The ratio of carbon density

 
Table 4    Soil carbon density of different land use types in the Beibu Gulf urban agglomeration, China
 

Land use type Cropland Forest land Grassland Construction land Water area unutilised land

Density / (t/ha) 108.4 158.8 99.9 0 0 21.6
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between them is the correction factor, and the product of
the  national  carbon  density  data  and  the  correction
factor is the carbon density data of the Beibu Gulf urb-
an agglomeration.

KPS =
C
′
PS

C′′PS

(11)

C′PS CPS
′′

where KPS is  the  soil  carbon  density  correction  factor
and  and  are  the  soil  carbon  density  obtained
based  on  the  annual  precipitation  at  the  scale  of  the
Beibu Gulf urban agglomeration and the nation, respect-
ively.  According to existing studies,  the carbon density
between different land use types can be converted by the
following equations (Xi et al., 2013; Ke and Tang, 2019):

(1) Construction  land:  100%  of  total  =  21%  of  bio-
mass + 79% of soil organic matter,

(2)  Cropland/forest  land/grassland/unutilised  land:
100% of total = 26% of biomass + 72% of soil organic
matter + 2% of dead organic matter.

Then, the carbon density of the Beibu Gulf urban ag-
glomeration was calculated (Table 6). 

3　Results
 

3.1　Simulation of  the  development  trend  of  ecolo-
gical spatial patterns 

3.1.1　Model operation and results
The  FLUS  model  was  used  to  simulate  the  land  use
changes under different scenarios of the Beibu Gulf urb-
an agglomeration in 2060 to observe the changes in eco-

logical space. Restricted areas were added to all scenari-
os because of the need to restrict development in policy-
protected areas, such as nature reserves, ecological wet-
lands,  natural  forests,  mangroves,  tropical  rainforests
and watersheds.  The results  of  the  simulation based on
the development priority of land use types under differ-
ent scenarios are shown in Fig. 3. Results show that the
ecological space of the Beibu Gulf urban agglomeration
is  widely  distributed,  covering  more  than  half  of  the
total  land  area.  In  general,  the  expansion  of  ecological
space  in  the  Beibu  Gulf  urban  agglomeration  in 2060
tends to  expand  under  the  ecological  priority  and  agri-
cultural  priority  scenario;  in  contrast,  it  tends  to  shrink
under  the  urbanized  priority  scenario.  The  areas  with
high variability in each scenario are mainly in the urban
fringe. The detailed changes are shown in Table 7. 

3.1.2　Urbanized priority scenario
In  the  urbanized  priority  scenario,  construction  land  is
the dominant land use type to develop. In the 2060 pro-
jection,  the  proportion  of  urbanized  space  represented
by construction land will increase from 4.84% to 8.31%,
whereas the  proportion  of  agricultural  space  represen-
ted  by  cropland  will  decrease  from  38.54%  to  37.48%
and  the  proportion  of  ecological  space  represented  by
the other  five  types  of  land will  decrease  from 56.62%
to 54.20%. The aforementioned changes reflect that the
expansion of construction land under the priority orient-
ation of urbanized areas will squeez the agricultural and
ecological spaces, and the ecological quality will be re-
duced as a result.

 
Table 5    Ratio of below-ground to above-ground biomass carbon density for different land use types in the Beibu Gulf urban agglom-
eration
 

Land use type Cropland Forest land Grassland Construction land Unutilised land

Ratio 0.66 0.20 1.20 0.20 0.20

 
Table 6    Carbon density of different land use types in the Beibu Gulf urban agglomeration, China / (t/ha)
 

Land use type Above-ground biomass Underground biomass Soil organic matter Dead organic matter

Cropland 40.5 26.8 186.3 5.2

Forest land 82.2 16.4 273.0 7.6

Grassland 28.2 33.8 171.7 4.8

Construction land 5.6 1.1 25.3* 0

Water area 0 0 0 0

Unutilised land 11.2 2.2 37.1 1.0

Note: * means data from Xi et al. (2013)
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The  most  affected  areas  are  the  urban  fringe,  where
the agricultural and ecological spaces around towns are
eroded;  the  coastal  cities  of  Guangdong  and  Hainan
provinces  have  the  most  obvious  changes  in  urbanized
space. In the simulation, the urbanized space expansion
of  Nanning,  the  provincial  capital  city  of  Guangxi,  is
small, whereas the large cities of Guangdong and Hain-
an expand more.  Therefore,  the  over-expansion of  urb-
anized space in most cities under the urbanized priority
scenario requires  construction control  to  prevent  ecolo-
gical imbalance. 

3.1.3　Agricultural priority scenario
In the  agricultural  priority  scenario,  urban  agglomera-
tion development  is  oriented  to  the  expansion  of  crop-
land. This  scenario  increases  the  probability  of  conver-

sion of  land use types (other  than construction land)  to
cropland  and  the  cost  of  converting  cropland  to  other
land use types. In the scenario projections for 2060, the
percentage of  agricultural  space  represented  by  crop-
land will increase from 38.54% to 40.64%, while urban-
ized space will decrease from 4.84% to 2.38% and eco-
logical space will increase from 56.62% to 56.98%. The
agricultural space and ecological space are well protec-
ted. However,  urbanized  space  is  encroached  upon  un-
der the  agricultural  priority  scenario,  and  urban  expan-
sion is limited. The land use types in urban fringe areas
are  more  variable,  with  cropland  encroaching  on  the
dominant urbanized space. 

3.1.4　Ecological priority scenario
In the ecological priority scenario, ecological conserva-
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Fig. 3    Simulation results of the urbanized, agricultural and ecological priority scenarios in 2060 in the Beibu Gulf urban agglomera-
tion, China

 
Table 7    Proportion of ecological space composition type status in 2020 and simulation in 2060 in the Beibu Gulf urban agglomeration,
China
 

Forest land / km2 Grassland /km2 Water area / km2 Unutilised land / km2 Total ecological space / km2 Proportion / %

Status in 2020 60667 2162 3401 11 66241 56.62

Urbanized priority in 2060 58260 2080 3061 7 63408 54.20

Agricultural priority in 2060 61576 1968 3119 7 66670 56.98

Ecological priority in 2060 62010 2241 3373 7 67631 57.81

94 Chinese Geographical Science 2023 Vol. 33 No. 1



tion becomes the development objective and everything
is done  with  ecological  protection  in  mind,  which  in-
creases the conversion cost of ecological space land use
type to other land use types. In the scenario projections
for 2060, the  proportion  of  ecological  space  will  in-
crease  from  56.62%  to  57.81%  and  that  of  urbanized
space will  increase from 4.84% to 5.36%, whereas that
of  agricultural  space  will  decrease  from  38.54%  to
36.83%.  Ecological  space  is  protected  in  this  scenario,
and the expanding urbanized space mainly decreases the
agricultural  space.  The  main  areas  in  which  these
changes  occurred  are  the  Beibu  Gulf  coast  and  Yulin.
However, ecological  space  still  does  not  increase  sub-
stantially, indicating  that  ecological  space  shows  irre-
versible characteristics after destruction under urbanisa-
tion.  Thus,  sustainable  development  can  be  achieved
based on  urban  agglomeration  only  by  limiting  en-
croachment on ecological spaces. 

3.2　Analysis of carbon storage in ecological space 

3.2.1　Simulation of future carbon storage changes
In  the  multi-scenario  projections  for 2060,  the  carbon
storage under different scenarios changs with the change
in  land  use  patterns.  As  shown  in Table  8,  the  carbon
storages  in 2060 under  the  urbanized  priority  scenario
are significantly lower than those in the agricultural and
ecological  priority  scenarios,  and  carbon  storage  in  the
urbanized priority  scenario  will  decrease  more  com-
pared  with  the  two  other  scenarios  between  2020  and
2060.  Moreover,  only  the  urbanized  priority  scenario
shows  a  decrease  in  carbon  density  in 2060 compared
with 2020 for the three scenarios in the Beibu Gulf urb-
an  agglomeration,  whereas  all  other  scenarios  show an
increase from 2020.

As  shown  in Fig.  4 and Table  9,  the  distribution  of

carbon storage in 2060 in the Beibu Gulf urban agglom-
eration is generally similar under each simulation scen-
ario in  terms  of  spatial  distribution,  with  the  high  car-
bon  storage  areas  distributed  widely.  In  the  urbanized
priority scenario, Lingao, Chengmai and Haikou are the
cities where the average carbon density decreased more
severely,  whereas  all  other  cities,  except  for  Dongfang
and Nanning, experience a decline because of the rapid
spatial expansion of towns, which leads to a decrease in
carbon  sinking  capacity.  In  the  agricultural  priority
scenario, the  carbon  density  of  all  cities  increases  be-
cause  the  carbon  sinking  capacity  of  agricultural  space
is  maintained,  exhibiting  only  a  slight  decrease.  In  the
ecological priority  scenario,  the  carbon  density  of  Bei-
hai,  Fangchenggang,  Chongzuo,  Maoming,  Zhanjiang
and Yangjiang decreases slightly, the carbon density of
other  cities  increases  slightly  and  the  preservation  of
ecological  space  stabilizes  the  regional  carbon  sinking
capacity. 

3.2.2　Analysis on the drivers of carbon sink develop-
ment
Because the changes in land use patterns determine the
spatial patterns of carbon sink changes in urban agglom-
erations, the advancement of urbanisation would reduce
the regional  carbon  sinking  capacity.  Thus,  the  regres-
sion  analysis  of  the  drivers  of  the  change  in  land  use
pattern  using  the  GWR  model  can  help  determine  the
driving mechanism  of  the  changes  in  carbon  sink  pat-
tern  and  the  degree  of  influence  of  each  driver  on  the
changes in  carbon  sink  pattern.  The  influence  coeffi-
cients of driving factors of land use types change fitted
by  GWR  model  are  shown  in Table  10.  The  driving
factors  that  have  the  most  significant  influence  on  the
changes  in  forest  land  are  the  elevation  and  slope
factors. Secondly, in the GWR of each subdivision, the

 
Table 8    Carbon storage, average density and changes in the urbanized, agricultural, and ecological priority scenarios in the Beibu Gulf
urban agglomeration, China
 

Carbon storage /

109 t

Carbon storage

in 2020–2060 / 106 t

Average carbon density /

(kg/m2)

Change in average carbon density

in 2020–2060 / (kg/m2)

Status in 2020 3.54         – 30.23        –

Urbanized priority 3.43 −112.26 29.27 −0.96

Agricultural priority 3.62 84.11 30.95 0.72

Ecological priority 3.54 3.03 30.26 0.03
Notes: ‘–’ in the first row represents the carbon storage in 2020 alone which is no change value, so it is no data. Except the first one, the other three values in the
second column represent carbon storage in 2060 for urbanized priority, agricultural priority and ecological priority
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Fig. 4    Carbon storage distribution in the Beibu Gulf urban agglomeration of China in 2060 under the urbanized, agricultural, and eco-
logical priority scenarios

 
Table 9    Average carbon density of cities under three scenarios and changes in the Beibu Gulf urban agglomeration, China / (kg/m2)
 

Priority scenario Nanning Fangchenggang Qinzhou Beihai Chongzuo Yulin Maoming Zhanjiang Yangjiang Haikou Danzhou Dongfang Chengmai Lingao Changjiang
Urbanized

priority

Density 29.45 33.08 31.41 24.79 31.29 31.67 29.18 24.78 28.55 22.68 27.70 30.56 26.09 19.23 31.32

Difference 0.04 −0.89 −0.75 −1.95 −0.15 −0.40 −1.19 −1.65 −2.17 −4.22 −2.23 0.85 −5.12 −10.23 −0.57

Agricultural

priority

Density 30.24 34.08 32.62 26.84 31.57 32.82 31.01 27.12 31.21 29.83 30.93 33.24 32.70 30.78 34.24

Difference 0.83 0.11 0.46 0.10 0.13 0.75 0.64 0.69 0.49 2.93 1.00 3.53 1.49 1.32 2.35

Ecological

priority

Density 29.75 33.94 32.35 25.55 31.44 32.19 29.88 25.77 30.01 28.71 30.44 32.56 31.45 26.86 34.17

Difference 0.34 −0.03 0.19 −1.19 0.00 0.12 −0.49 −0.66 −0.71 1.81 0.51 2.85 0.24 −2.60 2.28

Density in 2020 29.41 33.97 32.16 26.74 31.44 32.07 30.37 26.43 30.72 26.90 29.93 29.71 31.21 29.46 31.89

 
Table 10    The influence coefficients of driving factors of land use changes fitted by GWR model in the Beibu Gulf urban agglomera-
tion, China
 

Land use type Elevation GDP Population density Slope direction Slope Distance to
the highway

Distance to
the railroad

Distance to
river

Distance to
the general road

Cropland 0.33 0.29 0.29 0.27 0.31 0.27 0.26 0.29 0.33

Forest land 0.34 0.32 0.32 0.30 0.34 0.28 0.28 0.30 0.33

Grassland 0.15 0.13 0.13 0.13 0.14 0.14 0.13 0.16 0.15

Water area 0.10 0.11 0.12 0.10 0.08 0.09 0.09 0.11 0.11

Construction area 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.10 0.08

Unutilised land 0.12 0.09 0.10 0.09 0.09 0.10 0.10 0.12 0.11
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elevation  and  distance  to  the  general  road  factors  are
more influential on the change in cropland, and the dis-
tance  to  river  factor  is  more  influential  on  grassland.
The population density factor is more influential on the
change in the water area, and the distance to river factor
is more influential on construction land. For the unutil-
ised  land,  elevation  and  distance  to  river  factors  are
more  important  factors.  Therefore,  the  main  drivers  of
the change in ecological spatial carbon sink patterns are
elevation, slope and distance to river. 

4　Discussion
 

4.1　 Performances  of  FLUS  model  and  InVEST
model
According  to  the  above  numerical  results  of  Kappa
coefficient, OA and FoM indicators, it is shown that the
FLUS model has high accuracy and estimation value in
the  simulation  of  the  development  trend  of  land  use
change  according  to  its  adaptive  inertia  competition
mechanism.  Previous  studies  have  shown that  different
land use conversion costs can be constructed from land
range,  land  transferring  degree  and  land  transferring
speed. Then  put  forward  countermeasures  and  sugges-
tions  according  to  the  natural  development,  ecological
protection and economic priority efficiency goals (Lin et
al.,  2019; Liu  et  al.,  2019; Chen,  2020; Song,  2020).
Compared  with  ANN,  CA  model  and  Markov  chain,
FLUS model  can  connect  the  driving  factors  with  land
use  change  and  reduce  the  impact  of  the  errors  in  land
use conversion under long time series (Liu et al., 2017).
This enables more precise consideration of the paramet-
ers of different development possibilities.  In this study,
land use multi-scenario simulations of a long term and a
large scale is carried out, to serve as a baseline for sub-
sequent carbon storage development simulations.

There are many factors affecting land carbon sinking
capacity, so the measurement of driving factors and re-
lated studies are also various. Compared to Varying Per-
meability model (Wang, 2019), Carbon Fix model (Han,
2017),  Remote  Sensing  and  Geographic  Information
System  technology  (Pan,  2017),  InVEST  model  based
on the distributed algorithm which provides a new tech-
nical way to access quantification and value of  ecosys-
tem  services  under  various  land  use  conditions.  In  this
study, the carbon density of different land use types and
the average density of each city in the Beibu Gulf urban

agglomeration during 2020−2060 are obtained by using
the carbon storage calculation module of InVEST mod-
el. In  this  way,  the  change  of  large-scale  regional  car-
bon storage simulations is analysed. 

4.2　Future  feasibility  of  combining  FLUS-InVEST
model with computer simulation technology
The change  of  land  use  types  under  different  develop-
ment directions can be predicted by multi-scenario sim-
ulations  of  carbon  sink  changes.  The  FLUS-InVEST
model can  handle  all  parameters  accurately  and  effect-
ively  deal  with  the  dynamics  and  complexity  of  this
study.  However,  the  methods  of  this  study  have  some
limitations,  which  comes  from  the  accuracy  of  FLUS-
InVEST. The accuracy problem caused by the empiric-
al value problem and the simplification of the result by
InVEST algorithm  (the  carbon  storage  module  con-
siders the  static  transformation  while  ignoring  the  car-
bon cycle  and  dynamic  transformation  between  differ-
ent carbon pools. Simplification of the carbon cycle al-
gorithm leads to the assumption that the carbon sink de-
velopment linearly in a certain period of time, and is not
close enough to the actual situation). But the overall er-
ror is acceptable (Liu et al., 2017).

With  the  continuous  development  and  improvement
of computer simulation technology, the computer simu-
lation prediction  model  has  gone  through  several  itera-
tions. At present, except the limitation of improving ac-
curacy of simulation, FLUS space simulation model has
relative stability.  At  present,  the  PLUS model  support-
ing the  contribution rate  analysis  of  driving factors  has
been  available,  which  can  support  the  high  precision
simulation of large high-performance computers (Liang
et al., 2021). But its disadvantage is that the compatibil-
ity with the computer system is not good enough. If the
compatibility  problem  is  solved  after  version  iteration,
the relevant  simulation  research  can  be  further  im-
proved  and  then  the  sensitivity  of  large-scale  model
simulation prediction can be improved. 

4.3　The necessity of multi-scale spatial planning re-
sponses under multi-scenario simulations 

4.3.1　Countermeasures to the carbon sink problem of
the Beibu Gulf urban agglomeration
For the cities in Guangxi, due to the rapid economic de-
velopment  in  Nanning,  urban  construction  land  is  easy
to expand, and the carbon sinking capacity is weak. Ac-
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cording to the study results,  the average carbon density
of Nanning from 2000 to 2020 decreased by 1.23 kg/m2.
According to Table 5, the acceleration of carbon loss is
more reflected in urbanized space expansion. Therefore,
Nanning should strictly adhere to the ecological protec-
tion red line, so as to ensure there is enough ecological
space provides enough capacity to neutralize the carbon
emission  generated  by  the  city.  Strictly  restricting  and
guiding the balanced industrial  and ecological  develop-
ment  of  the  city,  and  consciously  grouping  urbanized
areas can reduce the environmental deterioration caused
by  the  expansion  of  construction  land.  In  the  coastal
zone,  Qinzhou  and  Fangchenggang  have  strong  carbon
sinking capacity, with carbon storage of 3.42 × 108 t and
2.01 × 108 t in 2020. Therefore, these two cities should
ensure a  reasonable  population  density  to  prevent  ex-
cessive development of coastal zones from affecting the
normal  operation  of  land-sea  interface  carbon  sinking
capacity.  The  carbon  sink  capacity  of  Beihai  is  weak,
and the carbon storage in 2020 was 8.81 × 107 t. In urb-
an construction, the overall carbon sink capacity will be
improved by means of returning farmland to forest. The
results show that the carbon sinking capacity of Chong-
zuo  and  Yulin  are  greatly  affected  by  the  slope  due  to
the  mountainous  terrain.  Therefore,  it  is  necessary  to
prevent the soil  erosion and rocky desertification resul-
ted from deforestation. The above two cities have relat-
ively high  total  carbon storage  and strong carbon sink-
ing capacity, so they should play more roles in ecologic-
al conservation.

For cities in Guangdong Province, Zhanjiang, Maom-
ing and Yangjiang have similar geographical conditions.
Among  them,  Leizhou  Peninsula  in  Zhanjiang  has
gentle land and relatively more cropland, which is easi-
er to form the spreading trend of cropland. According to
the  analysis  results,  the  carbon  density  of  Zhanjiang  is
lower  than  the  average  carbon  density  of  Beibu  Gulf
urban agglomeration. While Maoming tends to form an
oblique  urban  sponge  belt  along  the  terrain.  Both  of
Zhanjiang and Maoming need scientific guidance in the
initial  stage,  so  that  they  can  prevent  the  expansion  of
towns  and  farmland  from  forming  impervious  water
areas and agricultural belts, resulting in the imbalance of
carbon sinking capacity.

For the cities in Hainan Province, the carbon storage
of Haikou decreased by 6.92 × 106 t during 2010–2020,
and the trend of urban spatial  diffusion with Haikou as

the center will have a negative impact on the ecological
space of the coastline and surrounding areas.  In the fu-
ture  development,  scientific  zoning  is  needed  to  form
clusters to achieve regional carbon balance. Some cities
in the  west  of  Hainan  have  gentle  terrain  and  are  suit-
able  for  farming.  Therefore,  it  is  necessary  to  prevent
the loss of carbon sinking capacity caused by the shrink-
ing ecological space.

The study shows that  in the future urban agglomera-
tion  planning  and  construction,  the  influencing  factors
of elevation, slope, population density and distance from
the water system should be mainly considered. In order
to prevent soil erosion and dynamic adjustment of river
water volume, the future planning should control urban
population density and the number of settlements. 

4.3.2　 Changing  trends  of  enhance  carbon  sink
strategies in urban agglomeration
At  the  same  time  that  the  ecological  restoration  of  the
territorial  space  is  in  full  swing,  the  ‘Dual-carbon’
policy  emerges  at  the  historic  moment,  elevating  the
carbon  sink  to  a  whole  concept  of  the  territorial  space
(Chen et al.,  2022). Enhancing carbon sinks has the ef-
fect of reversing ecosystem degradation and needs to be
widely  integrated  into  natural  resource  management
frameworks  and  sustainable  development  strategies
(Ding et al., 2022). In 2022, the Implementation Plan for
the  14th  Five-Year  Plan  for  the  Construction  of  the
Beibu  Gulf  urban  agglomeration  (http://www.gov.cn/
zhengce/zhengceku/2022-04/08/content_5684015.htm)
was  issued.  Certain  measures  have  been  taken  to
strengthen the zoning of  the terrestrial  and marine eco-
logical environment,  improve  the  carbon  sinking  capa-
city of natural ecosystems, and construct a benign mode
of urban construction and operation, as well as produc-
tion and life style. Forming a green and low-carbon so-
ciety has  become  the  focus  of  national  sustainable  de-
velopment.  Therefore,  it  is  more  necessary  to  build  a
complete  monitoring,  evaluation  system  and  dynamic
governance system of urban agglomeration carbon sink-
ing capacity in the future.

In terms  of  technology  control,  it  is  necessary  to  in-
crease  the  planting  density  of  plants  with  high  carbon
sinking  capacity.  By  increasing  vegetation  with  high
carbon sinking capacity per unit area as the target to en-
hance  the  carbon  sink  absorption  intensity,  combined
with  ecological  restoration  technology,  restore  carbon
function in some areas,  a high-density and high-quality
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forest carbon pool could be built (Xu and Jiang, 2015).
In  terms  of  planning  and  development,  this  paper

combines the development situation of carbon sink land
as  a  base  map,  and  based  on  the  three  types  of  spatial
carbon  sink  development  principle  of  ‘production,  life
and  ecology’ of  urban  agglomeration,  brings  together
the land  and  sea  elements  and  carbon  circulation  effi-
ciency of urban agglomeration,  and orderly adjusts  and
optimizes the land use type and structure.

In terms of social distribution, a redistribution system
of  carbon  source  and  carbon  sink  resources  should  be
created.  It  is  necessary  to  implement  human  activity
control, positive  and  negative  distribution  list,  corres-
ponding  reward  and  punishment  mechanism within  the
carbon  sinking  capacity  monitoring  system.  This  will
help resolve  the  structural  contradiction  between  eco-
nomic  development  and  environmental  protection  in
urban agglomerations  and  ensure  the  rational  imple-
mentation of regional low-carbon development. 

5　Conclusions

Under the situation that the processes of carbon peaking
and carbon  neutrality  are  accelerating  and  the  import-
ance  of  carbon  neutrality  is  becoming  increasingly
prominent, many cities within the Beibu Gulf urban ag-
glomerations  have  successively  carried  out  carbon sink
enhancement work. The study made a detailed quantitat-
ive  analysis  of  the  development  characteristics  of  land
and  carbon  sink  in  Beibu  Gulf  urban  agglomeration,
identified the main driving factors that affect the devel-
opment of carbon sink in urban agglomeration, and con-
structed the spatial  planning response system of carbon
sink security pattern and ecological restoration in urban
agglomeration. It  is  an  important  task  to  ensure  the  in-
tegrity  of  ecosystem  and  protect  the  safety  of  carbon
sink land in each individual city. In this study, the FLUS
model,  InVEST  model,  GWR  model,  spatial  statistical
analysis  and  other  methods  were  used  to  simulate  and
predict the spatial distribution of carbon storage in 2060
under three different pre-set  scenarios:  urbanized prior-
ity, agricultural priority and ecological priority. And the
main driving  factors  affecting  the  development  of  car-
bon  sinks  were  identified,  so  they  provide  a  reference
for the future ‘urbanized-agricultural-ecological’ spatial
expansion path of Beibu Gulf urban agglomeration. Our
study lays the foundation for future policy development

and implementation in the region.
The carbon sinking capacity of urban agglomerations,

which has a significant influence on regional climate, is
strongly affected by land use changes. Based on the land
use data for the years 2000, 2010 and 2020, the land use
changes and carbon sink patterns of the Beibu Gulf urb-
an agglomeration under the urban, agricultural and eco-
logical  priority  scenarios  for 2060 were  simulated,  and
the  factors  driving  the  changes  in  carbon  sink  patterns
were  explored.  Among  the  simulation  scenarios  for
2060,  carbon  storage  in  the  urbanized  priority  scenario
will  decrease by 112.26 × 106 t  compared with that for
2020,  and  the  average  carbon  density  will  decrease  by
0.96 kg/m2. The urbanized priority  scenario  is  the  fast-
est  declining  carbon  density  scenario  for  cities  and
counties  in  the  Beibu  Gulf  urban  agglomeration.  If  the
expansion of  urban  construction  land  is  not  strictly  re-
stricted,  the  ecological  environment  and  carbon  sink
function  of  urban  agglomerations  will  be  significantly
damaged.  Carbon  storage  in  the  agricultural  priority
scenario  will  increase  by  84.11  ×  106 t  compared  with
that for  2020,  and  the  average  carbon  density  will  de-
crease by 0.72 kg/m2. The ecological priority scenario is
similar to the agricultural priority scenario, with carbon
storage will increase by 3.03 × 106 t compared with that
for  2020,  and  the  average  carbon  density  will  increase
by 0.03 kg/m2. According to the carbon neutrality target
in the report on the work of the government and the urb-
anisation  requirements  of  agglomeration,  adopting  an
approach that pay attention to agricultural and ecologic-
al  development  can  balance  the  urban  expansion  with
the  need  for  resource  and  environmental  protection  of
the ecological space. Under the premise that the popula-
tion continues to go into the town, the ecological prior-
ity development  approach  may  be  a  wise  choice.  Be-
sides, the driving factors of carbon sink pattern develop-
ment in  the  Beibu  Gulf  urban  agglomeration  were  ex-
plored from a spatial perspective using the GWR model,
and  the  relationships  and  mechanisms  among  carbon
sink,  land  and  driving  factors  were  understood.  Slope,
distance  to  river  and  elevation  are  the  most  influential
variables  and  most  important  drivers  of  the  changes  in
land use patterns and carbon sink patterns in the region.
While  elevation,  slope,  population density  and distance
to river are the main drivers of ecological space, carbon
sink  patterns.  Moreover,  the  expansion  of  urbanized
space  crowding  out  ecological  space  is  the  main  cause
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of changes in the ecological  space carbon sink.  Studies
have  shown that  ecological  spaces  experience  different
degrees and scales of shrinkage,  and that  damage is  al-
most irreversible. According to the spatiotemporal situ-
ation of land use change and carbon sink under the ex-
pected three types of scenarios,  the spatial  planning re-
sponse and habitat  restoration logic  in  line with the re-
gional characteristics of the Beibu Bay urban agglomer-
ation  are  proposed.  From  the  technical  control,  our
study needs  to  build  a  monitoring  and  evaluation  sys-
tem  and  dynamic  governance  system  for  the  carbon
sinking capacity of urban agglomerations. From the per-
spective of planning and development and social distri-
bution, our study needs to guide ecological spatial plan-
ning,  create  practical  solutions  for  increasing  sinks,
provide considerable contributions to the exploration of
regional  land  and  spatial  planning  to  enhance  carbon
sink, and connect the spatial  planning system to effect-
ively  implement  the  requirements  of  carbon  peak  and
carbon neutrality.
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