
An  Investigation  of  Landslide  Susceptibility  Using  Logistic  Regression
and Statistical Index Methods in Dailekh District, Nepal

Dil Kumar RAI1, 2, XIONG Donghong1, 3, ZHAO Wei1, 3, ZHAO Dongmei1, 2, ZHANG Baojun1, Nirmal Mani DAHAL1, 2,
WU Yanhong1, 3, Muhammad Aslam BAIG1, 2

(1. Institute  of  Mountain Hazards and Environment (IMHE), Chinese Academy of  Sciences, Chengdu 610041, China;  2. University  of
Chinese Academy of Sciences, Beijing 100049, China; 3. Kathmandu Center for Research and Education, Chinese Academy of Sciences-
Tribhuvan University, Kathmandu 44613, Nepal)

Abstract: Landslide  distribution  and  susceptibility  mapping  are  the  fundamental  steps  for  landslide-related  hazard  and  disaster  risk
management activities, especially in the Himalaya region which has resulted in a great deal of death and damage to property. To better
understand the landslide condition in the Nepal Himalaya, we carried out an investigation on the landslide distribution and susceptibility
using the landslide inventory data and 12 different contributing factors in the Dailekh district, Western Nepal. Based on the evaluation of
the frequency distribution of the landslide, the relationship between the landslide and the various contributing factors was determined.
Then, the landslide susceptibility was calculated using logistic regression and statistical index methods along with different topographic
(slope, aspect, relative relief, plan curvature, altitude, topographic wetness index) and non-topographic factors (distance from river, nor-
malized difference vegetation index (NDVI), distance from road, precipitation, land use and land cover, and geology), and 470 (70%) of
total 658 landslides. The receiver operating characteristic (ROC) curve analysis using 198 (30%) of total landslides showed that the pre-
diction curve rates (area under the curve, AUC) values for two methods (logistic regression and statistical index) were 0.826, and 0.823
with success rates of 0.793, and 0.811, respectively. The values of R-Index for the logistic regression and statistical index methods were
83.66 and 88.54, respectively, consisting of high susceptible hazard classes. In general, this research concluded that the cohesive and co-
herent natural interplay of topographic and non-topographic factors strongly affects landslide occurrence, distribution, and susceptibility
condition in the Nepal Himalaya region. Furthermore, the reliability of these two methods is verified for landslide susceptibility map-
ping in Nepal’s central mountain region.
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1　Introduction

The Himalayan  Mountain  range  is  the  most  prone  area
to landslide, with about 75% of global landslides occur-
ring in Southwestern China,  Nepal,  India,  Laos,  Myan-

mar,  Bangladesh,  Philippines,  and  Indonesia  (Froude
and Petley, 2018). Due to seasonal variations in precip-
itation  affected  by  the  EI  Nino-Southern  Oscillation
(ENSO)  (Emberson  et  al.,  2021), more  and  more  land-
slides  occurred  in  this  region,  combined  with  frequent
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catastrophic  floods  (Kale,  2012; Wei  et  al.,  2020).  The
weakened relationship between ENSO and Indian sum-
mer  monsoon  rainfall  (ISMR)  has  been  restored  in  the
last decades of 2000−2018 compared to earlier decades
of 1979−1997 (Yang and Huang, 2021), and it is reflec-
ted  by  the  mutual  interaction  of  landslides,  ENSO-in-
duced  intensity  of  rainfall,  and  cascading  catastrophic
flooding  in  southern  Asia.  Besides  the  external  factors
caused by the climate change, the steep topography, the
great variations in topographic relief, the active tectonic
movement with persistent fault motion, the tectonic up-
lift, and the fractured lithology are also the main influ-
encing factors for the landslide in the Himalaya Moun-
tain and its adjacent regions (Mandal and Mandal, 2018;
Xue et al., 2021).

As an  important  part  of  the  Himalaya  Mountain  re-
gions, Nepal  Himalaya  contributes  10%  of  all  land-
slides induced by monsoon rainfall in the global dataset
(Froude  and  Petley,  2018).  The  geomorphologic,  and
geological conditions,  bedrock  hydrology,  clay  miner-
als,  soil  characteristics,  earthen  road  construction,  land
use and  land  cover  change,  and  prolonged  intense  pre-
cipitation have been defined as the most proxy intrinsic
and extrinsic contributing factors for landslide activities
(Hasegawa et al., 2009; Ghimire, 2011, 2017; Regmi et
al.,  2013b; Dahal,  2009, 2014; Adhikari  et  al.,  2022).
Therefore, these  contributing  factors  have  been  identi-
fied  by  previous  landslide  susceptibility  analyses
(Ghimire,  2011; Devkota  et  al.,  2013; Regmi  et  al.,
2014c; Meena et al., 2019; Dhakal et al., 2020b). For in-
stance, the rock toppling falls are more proactive in the
Maure Khola landslides caused by Nourpoul geological
formations  consisting  of  amphibolite,  quartzite,
slate/phyllite  at  Mugling-Narayanghat  road  section
(Regmi et al., 2014b). A reduction of rock strength due
to the  clay  minerals,  rainfall,  wide  fault  zone,  and  ex-
treme weather predominately initiated the large Dumre-
besi landslide in the Lesser Himalaya, Nepal (Regmi et
al.,  2013a).  Different  geological  attributes  such  as
weathered  rocks,  joint  infillings,  and  shear  zones  with
rich  clay  minerals,  including  hydrologic,  climatic,  and
anthropogenic  factors  accelerated  the  development  of
the large Taprang landslide in west Nepal (Regmi et al.,
2017). Extensive hydrothermal alteration during the ad-
vancement of  Main Central  Thrust  (MCT),  clay miner-
als  in  the  sliding  zones  of  large-scale  landslides,  slope
failure during the monsoon rainfall are the major causes

of  large-scale  landslides  in  the  Lesser  Himalaya  of
Nepal (Hasegawa et  al.,  2009).  The Gorkha earthquake
with  Mw  7.8  in  2015  and  aftershock  characteristics,
slope  distributions,  the  effect  of  precipitation  on  rock
strength via weathering, and change in vegetation cover
mutually  triggered  about  25  000  landslides  in  Nepal
(Roback et al., 2018).

To  better  understand  the  landslide  characteristics  in
Nepal Himalaya, many studies have been conducted re-
garding landslide  characteristics  covering  different  re-
gions  (Zhang  et  al.,  2016; Guo  et  al.,  2017; Martha  et
al.,  2017; Tiwari  et  al.,  2017; Roback  et  al.,  2018;
Thapa,  2018; Dhakal  et  al.,  2020a).  These  studies  are
crucial for  the evaluation for  landslide hazards and im-
plementation  of  disaster  reduction  strategies  (Kub-
wimana et  al.,  2021). Additionally,  landslide susceptib-
ility,  referring to  the  likelihood of  landslide occurrence
in a given area based on local terrain and environmental
conditions (Guzzetti et al., 1999), has attracted much at-
tention  in  recent  years.  Different  statistical  methods
have been evaluated to generate the landslide susceptib-
ility maps, such as the weight of evidence (Dahal et al.,
2008),  artificial  neural  networks  and  frequency  ratio
(Poudyal  et  al.,  2010),  and  bivariate  statistical  index
(Ghimire, 2011; Pradhan et al., 2012; Bijukchhen et al.,
2013).  Similarly,  logistic  regression  (Devkota  et  al.,
2013; Zhang et al., 2019), heuristic and bivariate statist-
ical index (Bijukchhen et al., 2013), frequency ratio and
conditional  probability  (Regmi  et  al.,  2014c),  hybrid
spatial multicriteria evaluation (HSMCE) (Meena et al.,
2019),  and  certainty  factor  (Dhakal  et  al.,  2020b)  have
been  evaluated.  Among  these  methods,  quantitative
multivariate  logistic  regression  and  bivariate  statistical
index methods  exhibited  good  performance  in  predict-
ing landslide susceptibility in the context of Nepal Him-
alaya (Ghimire, 2011; Pradhan et al., 2012; Bijukchhen
et  al.,  2013; Devkota  et  al.,  2013; Linkha  et  al.,  2019;
Ghimire and Timalsina, 2020).

In this  respect,  aiming to  better  understand the  land-
slide condition in the Nepal Himalaya, the Dailekh Dis-
trict in the Western Nepal, which has experienced many
types of landslides for several years causing remarkable
loss  of  lives  and  damages  to  physical  infrastructures,
was selected  as  the  study  area  due  to  its  unclear  land-
slide characteristics  including  distribution  and  its  sus-
ceptibility  condition.  Based  on  the  logistic  regression
and  statistical  index  methods,  the  major  objectives  of
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this  study  are  as  follows:  1)  analyzing  distribution  of
landslide frequency  in  relation  to  12  different  topo-
graphic  and  non-topographic  factors,  and 2)  landslide
susceptibility mapping using the logistic regression and
bivariate  statistical  index  methods.  This  research  is  a
representative and  specific  study  of  the  middle  moun-
tain areas  of  the  Nepal  Himalaya  and  provides  import-
ant knowledge information about the landslide distribu-
tion and susceptibility conditions. 

2　Study Area and Data
 

2.1　Study area
Administratively,  the  Dailekh  District  is  located  in  the
Karnali Province of Nepal. The district covers an area of
1482.98 km2, and positioned at 81°24′36″E to 81°55′36″E
and 28°38′00″N to 29°08′10″N (Fig. 1). The altitude of
the district  ranges from 554 m (Tallo Dungeshower)  to
4017 m (Mahabu  Lek).  The  general  geographical  fea-
tures of  the district  are southward-facing slopes associ-
ated  with  two  distinct  physiographic  regions,  namely,
the middle hills or lesser Himalaya, and the high moun-
tain region (Dhital, 2015).

The physiographic  characteristics  of  the  high  moun-
tain region are a southward-facing slope and rugged to-
pographic  features,  where  there  is  no  anthropogenic
activity,  acting  as  the  sources  of  water  towers  for  the
lowland  areas,  and  the  surface  is  covered  with  diverse
vegetation species of the temperate evergreen forest and
open  grassland.  The  middle  hill  region  of  the  Dailekh
District is  characterized  by  different  topographical  as-
pects associated with gentle steep hillslopes, dense pres-

ences of  streams  accumulated  into  the  nearby  main-
stream  flow.  A  wide  range  of  alluvial-deposited  flood
plains along the rivers originated at the first-order catch-
ment  of  the  south-facing  upland  of  the  high  mountain
regions  such  as  Chhamgad,  Lohore,  Ramgad,  Parajul,
and Paduka,  including the  transboundary Karnali  River
of China,  India,  and  Nepal.  The  cultural  landscape  ex-
hibits dense population, terracing the slopes for cultiva-
tion  and  vertical  upward  and  downward  movement  of
local  inhabitants  for  the  upland (hillslope)  and lowland
(alluvial-deposited flat land) based cultivation activities.
The major vegetation species are tropical and subtropic-
al  forest  types  as  present  along  the  steep  side  of  the
rivers, whereas the upland areas have evergreen temper-
ate forest  coverage  including  alpine  species.  The  cli-
mate condition  and  its  variability  of  the  study  area  de-
pend on the physiographic characteristics and monsoon
rainfall,  which  are  tropical,  temperate,  and  subalpine.
The major land-use and land-cover features are agricul-
ture, forest, shrub, and grassland. This region is charac-
terized by four types of climate zones based on the alti-
tude,  namely,  tropical  (below 1000 m),  subtropical
(1000−2000  m),  temperate  (2000−3000 m), and  sub-
alpine climate zone (3000−4000 m). 

2.2　Landslide inventory data
Determination of  actual  landslide  information,  includ-
ing the  location,  size,  and  spatial  distribution,  is  a  pre-
requisite  and  fundamental  step  in  landslide  studies
(Guzzetti  et  al.,  2005).  In  this  study,  the  landslide  data
of the study area were generated via direct visual image
interpretation  of  Google  Earth  based  satellite  images
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and  topographical  maps  obtained  from  the  Department
of Survey, Nepal Government. The Google Earth inter-
face is one of the most dependable sources for generat-
ing actual landslide data from satellite images via direct
visual image interpretation (Schmid et al., 2015; Linkha
et al., 2019). Then, the observed landslide data were cat-
egorized and standardized based on the classification of
Varnes  (1978)  including  landslide  forms,  size,  material
content, and mechanism. 

2.3　Landslide triggering factors
Generally, the major landslide triggering factors can be
categorized  into  topographic  and  non-topographic
groups  (Robinson  et  al.,  2017). In  this  study,  the  topo-
graphic factors include slope, aspect, curvature, relative
relief,  altitude,  topographic  wetness  index  (TWI),
whereas  the  non-topographic  factors  are  distance  from
road, distance  from  river,  precipitation,  geology,  nor-

malized  difference  vegetation  index  (NDVI),  and  land
use and land cover (LULC). 

2.3.1　Topographic factors
In general, the topographical factors were obtained from
the topographical  maps  on  a  scale  of  1  :  25  000  de-
veloped by  the  Department  of  Survey,  Nepal  Govern-
ment. The slope was considered following the principle
that an increase in the degree of slope increases the like-
lihood of a landslide (Mandal and Mandal, 2018). It was
calculated  using  the  contour-derived  DEM  data  with
20 m  spatial  resolution.  The  slope  gradient  is  categor-
ized  into  five  categories  (Fig.  2a).  The  slope  aspect
indicates slope facing towards different directions asso-
ciated  with  different  characteristics  such  as  receiving
precipitation  pattern,  moisture  and  humidity  retention,
and the  presence  of  vegetation;  these  attributes  influ-
enced  the  occurrence  of  landslides.  The  aspect  can  be
grouped  into  nine  distinct  groups:  1)  Flat;  2)  North
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(337.5°−22.5°);  3)  Northeast  (22.5°−67.5°);  4)  East
(67.5°−112.5°);  5)  Southeast  (112.5°−157.5°;  6)  South
157.5°−202.5°); 7) Southwest (202.5°−247.5°); 8) West
(247.5°−292.5°); 9) Northwest (292.5°−337.5°) (Fig. 2b).
The relative  relief  represents  local  variations  in  eleva-
tion within a certain area. It is assumed that an increase
in the local height facilitates the formation of sufficient
energy for the landslide. It was also calculated using the
contour-derived DEM  data  and  divided  into  five  cat-
egories (Fig. 2c).

The curvature represents surface’s curve shape. High
convexity and concavity usually will lead to flow accu-
mulation on the surface, resulting in slope saturation and
instabilities.  It  was categorized into three types such as
convex,  concave,  and  flat  curve  shape  (Fig.  2d).
Moreover, altitude  is  also  an  important  factor  for  land-
slide, was divided into six categories (Fig. 2e). Then, the
TWI  concept  provided  by  Beven  and  Kirkby  (1979),
which  refers  to  the  location  and  size  of  saturated  areas
subjected to overflow, runoff generation, and long-term
moisture availability in the landscape (Wilson and Gal-
lant,  2000; Kopecký  and  Čížková,  2010).  Commonly,
TWI is used to quantify the topographic control on hy-
drological processes (Devkota et al., 2013).

TWI = Ln
α

tanβ
(1)

where, α represents the  cumulative  upslope  area  drain-
ing through a point (per unit contour length) and tanβ is
slope angle at  the point.  The TWI factor was classified
into  five  classes  according  to  the  natural  break  method
(Fig. 2f). 

2.3.2　Non-topographic factors
The  distance  from  river  generated  as  the  controlling
factor in terms of stream saturation determines the slope
stability and erodes of the toe slopes (Bijukchhen et al.,
2013). It  was  calculated  from  the  river  data  of  topo-
graphic data and classified into different types (Fig. 3a).
A close  distance  from river  indicates  a  high  possibility
of  hillslope  processes  that  result  in  slope  instabilities
such  as  landslide  and  slope  failures.  Similarly,  the
NDVI measures the density of surface vegetation cover,
which  influences  the  foundation  of  landslides  on  steep
slopes. The  NDVI  index  was  calculated  from  the  sur-
face reflectance of near-infrared (NIR) band and red (R)
band of the Landsat 8 OLI/TIRS observations:

NDVI =
NIR−R
NIR+R

(2)

The  NDVI  value  ranges  between  0  to  1  and  can  be
classified into five types (Fig. 3b).

Roads are one of the major human-induced contribut-
ing factors of landslides in Nepal, leading to substantial
land  degradation  (Linkha  et  al.,  2020). Therefore,  cur-
rent  road  data  were  generated  by  visually  interpreting
the Google Earth images, by considering all road types,
including earthen, graveled, and blacktopped roads. Dis-
tance  from  the  road  can  be  divided  into  seven  types
(Fig. 3c).

The precipitation pattern and intensity  directly  affect
the  occurrence  of  landslides  in  mountainous  areas.
Hence,  the  satellite-based  WorldClim  data  (https://
worldclim.org/data/monthlywth.html) from 1999 to 2018
were used as a precipitation factor for this analysis. The
maximum annual precipitation from 1999 to 2018 were
used  to  evaluate  the  landslide  distribution  pattern  and
susceptibility. It was assumed that the maximum intens-
ity  of  precipitation  produced  adequate  energy  to  cause
the  landslides  on  the  steep  hillslope.  Therefore,  this
factor was categorized into different types (Fig. 3d). The
LULC data was produced using a supervised classifica-
tion  method  with  Landsat  8  observations  and  there  are
seven  types  (Fig.  3e):  agricultural  land  (76.4%),  forest
(18.8%),  grassland  (2.27%),  shrubland  (2.27%),  barren
land  (0.15%),  and  river  or  water  body  (0).  The  spatial
extent of  the LULC features  was taken as  the key trig-
gering  factors  for  landslide  because  the  condition  of
LULC plays a crucial role in causing the environmental
hazards  in  Nepal  (Paudel  et  al.,  2016; Chidi  et  al.,
2021).

Geology also  plays  a  significant  role  on  the  occur-
rence  of  landslides  because  lithological  and  structural
differences  frequently  result  in  differences  in  soil  and
rock strength and permeability (Gerrard,  1994; Shroder
and Bishop, 1998; Hasegawa et al.,  2009; Regmi et al.,
2013a).  According to the geological  map (1 :  250 000)
of  study  area  developed  by  the  Department  of  Mines
and  Geology,  Nepal  Government,  different  lithological
formations  are  found  in  the  Dailekh  District  such  as:
1) the Ulleri formation (UF); 2) the Salyanigad formation
(SF); 3)  the  Ranimatta  formation  (RF);  4)  the  Palezoic
granite (PG); 5) the Kusma formation (KuF); 6) Kalikot
formations  GH  (KF(GH));  7)  Kalikot  formation  Bu
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(KF(Bu));  8)  Kalikot  formation  (KF);  9)  Basic  rock
(BR); 10) Proterozoic Crystallines (PC) (Fig. 3f). 

3　Susceptibility Assessment Method
 

3.1　Susceptibility assessment method 

3.1.1　Multivariate logistic regression
Multivariate logistic regression has been widely used for
landslide  susceptibility  concerning  triggering  factors
(Lin et al.,  2017; Reichenbach et al.,  2018). This meth-
od is useful when the result-dependent variables are bin-
ary or dichotomous. The presence or absence of a land-
slide  is  the  dependent  variable  in  this  analysis
(Bhandary  et  al.,  2013).  In  logistic  regression  analysis,
the independent variables, such as x1, x2, x3, … xn, trig-
gering landslide  occurrences  are  defined,  where  the  lo-
git model y is assumed as a linear combination of inde-

pendent variables, which can be expressed as follows:

y = b0+ b1x1+ b2x2+ b3x3+ · · ·+bnxn (3)

where y is the dependent variable represented by binary
variables  such as  0  or  1  showing the  landslide  absence
or presence, respectively; x1, x2, x3,… xn are the explan-
atory variables; b0 is  a  constant  of  the equation; b1, b2,
b3, … bn are regression coefficients for the explanatory
variables. The  relationship  between  landslide  occur-
rences and its dependency on explanatory variables can
be written as:

P = 1/1+ e−y (4)

where P represents the  estimated  conditional  probabil-
ity of landslide occurrences. Eqs. (3) and (4) show that
the natural logarithm of the odds, Ln(P/1−P) is linearly
related to independent variables (Dahal, 2014):
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Ln
(
P/1−P

)
= b0+ b1x1+ b2x2+ b3x3+ · · ·+bnxn (5)

For the  landslide  susceptibility  mapping,  various  to-
pographic and non-topographic based factors were used
as the explanatory variables.  The independent variables
in  the  form  of  the  geospatial  shape  layers,  as  well  as
their corresponding  coefficients  and  constants  were  fit-
ted into  the  logistic  regression equation to  generate  the
landslide susceptibility map under the GIS interface en-
vironment, which can be written as:

Logit(y) = constant+β1V1 + β2V2 + β3V3 + β4V4 + β5V5 +
β6V6 + β7V7 + β8V8 + β9V9 + β10V10 + β11V11 + β12V12

(6)

βiwhere  (i = 1, 2, 3, …12) represents the coefficient of
each variable in the model, and V1 to V12 correspond to
the  six  topographic  variables  (slope,  aspect,  curvature,
relative relief, altitude; TWI) and the six non-topograph-
ic  variables  (distance  from  road,  distance  from  river,
precipitation, geology, NDVI, and LULC). 

3.1.2　Bivariate statistical index
The bivariate statistical index model, developed by Van
Western (1997) has been commonly applied to generate
the  landslide  susceptibility.  In  this  method,  a  weight
value  of  each  parameter  class  is  defined  as  the  natural
logarithm of the landslide density in class divided by the
landslide density in the whole map:

wi = In
(

denseClass
denseMap

)
= In


(

Npix(si)
Npix(Ni)

)/
∑

Npix(si)∑
Npix(Ni)



(7)

where wi is the weight assigned to the parameter class i,
densClass is  the  landslide  density  within  the  parameter
class, and denseMap represents the landslide density for
the  entire  study  area. Npix (Si)  is  the  total  number  of
pixels that comprise landslide in a parameter class i, and
Npix (Ni) represents the total pixels in the same paramet-
er  class.  Then,  the  final  landslide  susceptibility  index
was  calculated  using  calculated  weight  values  of  all
thematic parameters, which can be expressed as:

LSI =
n∑

j=1

Wij (8)

where, LSI is the landslide susceptibility index, n is the
number of parameters and Wij is the sum weight of any
class i of j parameter.  The  bivariate  statistical  index
method is based on the statistical correlation of the land-

slide inventory  map  with  illustrative  attributes  of  para-
meter  maps.  i.e., wi is  only  calculated  for  landslide-oc-
curred classes (Kavzoglu et al., 2015). In the context of
the  Nepal  Himalaya,  some  earlier  studies  successfully
applied and proved the relevance of statistical-based in-
dex  methods  to  evaluate  landslide  susceptibility
(Ghimire, 2011; Bijukchhen et al., 2013). 

3.2　Evaluation method 

3.2.1　Receiver operating characteristic (ROC) curve
A ROC curve analysis was conducted to validate the ac-
curacy of the susceptibility assessment with the AUC in
this  study,  which  has  been  widely  used  to  validate  the
degree of prediction of landslide susceptibility mapping.
The  ROC  curve  was  prepared  with  a  combination  of
sensitivity:  false  positive  rate  and  true  positive  rate,
where  the x-axis  represents  specificity  and  the y-axis
represents sensitivity that represents the degree of accur-
acy  of  regression  between  landslide  occurrences  and
non-occurrences. The  ROC  curve  was  successfully  ap-
plied to previous landslide susceptibility mapping works
in Nepal (Devkota et al.,  2013). The formula for calcu-
lation of specificity and sensitivity can be written as:

X = 1−
[ TN
TN +FP

]
(9)

Y =
[ TP
TP+FN

]
(10)

where X is the true positive rate (1-specificity), Y is the
false positive rate (sensitivity ), TN is true negative, FP
is false positive, TP is true positive, and FN is false neg-
ative. 

3.2.2　Relative landslide density (R-Index)
The relative  landslide  density  (R-Index)  was  applied  to
evaluate the accuracy of landslide susceptibility predic-
tion, which is commonly used for landslide susceptibil-
ity  result  validation (Bijukchhen et  al.,  2013; Meena et
al.,  2019; Wubalem  and  Meten,  2020) and  can  be  ex-
pressed as:

R-Index =

ni

Ni∑ ni

Ni
×100

(11)

where ni denotes  the  number  of  observed  landslides
within a  susceptibility  index class  and Ni is  the  area  of
the cells of this class. 
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4　Results
 

4.1　Landslide inventory and mapping
A  detailed  description  of  the  observed  landslides  was
analyzed  based  on  the  distribution  pattern,  type,  and
area in this study. A total of 658 landslides occurred in
1988‒2020  were  identified  (Fig.  4),  including  both  old
and new patches,  with a  total  coverage area of  approx-
imately  908.18  ha.  The  average  area  is  1.37  ha;  the
largest area is 23.92 ha; and the smallest area is 0.02 ha.
The  standard  deviation  of  all  the  landslide  area  is  2.34
ha.  Shallow,  translational,  and  rotational  deep-seated
landslides were observed in the study area. The shallow
landslides are associated with a cohesive combination of
colluvium  rock,  soil  materials,  rich  permeability  soil,
leading to slope failure of water infiltration into the bot-
tom (Selby, 1982). The deep-seated landslides occurred
with the materials such as deep regolith, colluvium ma-
terials,  and  weathered  rock  (Chorley  et  al.,  1985).  The
diverse topographic  and  non-topographic  factors  influ-
enced the  spatial  distribution  of  landslides,  which  fur-
ther  demonstrated  a  dispersed  or  scattered  distribution
pattern in the study area. 

4.2　Spatial distribution of landslides 

4.2.1　Topographic distribution
Slope  gradients  are  strongly  associated  with  landslide
distribution,  in  terms  of  higher  landslide  occurrences
with  increased  slope  gradients  (Mandal  and  Mandal,
2018).  Most  of  the  observed  landslides  approximately
92.2% of total landslides occurred at slopes between 15°
and 45° in the study area. Fewer landslides (about 7.5%
of  total  landslides)  occurred  at  slopes  below  15°,  and
only 0.3% of total landslides occurred on the high steep
slopes above 45° (Fig. 5a). It revealed that the mechan-
isms involved in the formation of the landslides are sig-
nificantly activated on the moderately steep slopes. The
high steep  slopes  demonstrated  less  remarkable  pro-
cesses  to  landslide  occurrences  and  slope  instability.
The directional aspects of the slopes have a strong rela-
tionship with  the  landslide  incidents  and  their  morpho-
metric  characteristics.  The  analysis  showed  that  93.7%
of the landslides were dispersed in the different aspects
such as  the  east,  south,  and  west  slope  of  the  topo-
graphy, whereas  only  6.3%  of  the  landslides  were  dis-
tributed in the north side of the topography (Fig. 5b).

Similarly, the  relative  relief  shows  a  good  relation-
ship  with  landslide  occurrences:  the  high  presence  of
landslide distribution was associated with an increase in
the  relative  relief  threshold  (m/km2).  The  distribution
pattern  revealed  that  approximately  89.6%  of  the  total
landslides  occurred  in  the  local  relative  relief  ranges
between  300  and  600  m/km2, and  the  remaining  land-
slides  were  distributed  in  the  low relative  relief  of  less
than  300  m/km2.  The  increased  relative  relief  causes
slope instabilities, which promote avenue conditions for
landslide  occurrence  in  mountainous  areas  (Fig.  5c).
Moreover, the analysis also showed that most of the ob-
served landslides are distributed on the convex and con-
cave curvatures of the ground surfaces (Fig. 5d). Among
the total  observed  landslides,  about  of  94.3%  of  land-
slides  are  associated  with  convex  and  concave
curvatures, and a smaller number of landslides of about
5.7% of  landslides  existed  on  the  linear  curvature.  Re-
garding  the  elevation  distribution,  the  majority  of  the
observed landslides occurred between 500 m and 2500 m.
Among  them,  23%  of  landslides  existed  in  elevations
below 1000 m, and  61.5%  of  landslides  were  distrib-
uted in elevations between 1000−1500 m. An elevation
between 1500–2500 m occupies 15.5% of the total land-
slides  (Fig.  5e). No landslides  were observed in  the el-
evations above 2500 m in the study area.  The TWI be-
longs to  heterogeneous  topography indicating  the  land-
slide  occurrences.  The  very  high  (>12.110)  saturated
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areas represent such ‘areas’ mainstream flow line on the
flat surface.  Hence,  a  number  of  landslides  were  ob-
served. In  contrast,  more  than  two-thirds  (98%)  ob-
served  landslides  occurred  in  the  low  to  very  high
(  <  4.460  and  >  12.110)  wetness  index  areas  (Fig.  5f). 

4.2.2　Non-topographic distribution
The non-topographical factors also show a coherent re-
lationship  with  landslide  distribution  characteristics  in
the  study  area.  As  shown  in Fig.  6a, the  major  land-
slides occurred within a close distance from rivers in the
study  area.  More  than  98%  of  the  observed  landslides
were found within 300 m close distance of rivers. It re-
vealed that  the  hydrogeophysical  function  of  the  chan-
nel  stream  has  a  good  connection  to  the  evolution  of
slope dissection and failure, which resulted in a substan-
tial occurrence of landslides. Moreover, the positive and
negative  roles  of  NDVI  were  observed  in  terms  of  the
distribution of the observed landslides.  Most of the ob-
served  landslides  are  mainly  distributed  in  areas  with
low-to-moderate  NDVI  values  (Fig.  6b). In  this  condi-
tion, the vegetation, bush and grassland are low density,
and the  frequency of  landslide  is  very  high.  Comparat-
ively, the high NDVI values, representing good vegeta-
tion  cover,  prevented  landslide  occurrence  and  there
were few landslides in this region. The proximity to the
road is  strongly  correlated  to  the  distribution  of  land-
slide. Approximately 70% of all landslides were distrib-
uted within the 100 m distance from road (Fig. 6c). This

result  indicated  that  road  construction  by  dissecting  a
stable  slope  terrain  helps  to  increase  the  likelihood  of
landslides in Nepal (Petley et al., 2007). A condition re-
vealed that the occurrence of land degradation is associ-
ated with  the  opening  of  earthen  roads  in  steep  hill-
slopes (Linkha et al., 2020).

Regarding the  relationship  with  precipitation,  signi-
ficant influences  of  precipitation  on  landslide  occur-
rence  have  been  recognized  by  many  previous  studies
(Dhital  et  al.,  1993; Dahal  and  Hasegawa,  2008; Man-
chado et al., 2021). This impact was also apparently re-
vealed in  this  study:  approximately  95%  of  all  land-
slides occurred at the high precipitation regime of above
550 mm, and only a fewer landslides occurred at the low
regime of precipitation (Fig. 6d). The middle hill region
received  a  high  intensity  of  precipitation,  which
triggered substantial  occurrences  of  landslides.  In  con-
trast,  limited  number  of  landslides  occurred  in  high
mountain regions due to low precipitation.  In the study
area, the  topographic  attributes  and  local  wind  direc-
tions influenced the spatial pattern and intensity of pre-
cipitation (Zhang et al.,  2016). The observed landslides
occurred  in  various  types  of  geological  formations
(Fig.  6e). About  88.7%  of  the  observed  landslides  oc-
curred in the Ranimatta, Ulleri, and Kushma formations,
representing  66.7%,  11.55%,  and  10.48%  of  this  total,
respectively. Other formations such as the Kalikot form-
ation,  Palezoic  granite,  basic  rock,  and  salyani  Gad
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formation  occupied  11.24%  of  the  total  landslide.  The
land-use  and  land-cover  features  clearly  influenced  the
landslide  occurrence  and  distribution.  This  study
showed  that  more  than  two-thirds,  approximately
76.4%, of the observed landslides existed on agricultur-
al land. It is followed by forest, accounting for 18.8% of
all  the  observed  landslides  (Fig.  6f).  Moreover,  small-
scale landslides occurred especially in terracing agricul-
tural land,  and large-scale landslides occurred on aban-
doned  agriculture  terraces,  low  vegetation  coverage
areas,  and  transition  places  between  agricultural  land
forest or shrub land. 

4.3　Landslide susceptibility assessment
For  landslide  susceptibility  assessment,  two  different
models namely, the logistic regression and statistical in-
dex methods were applied with the addition of 12 differ-
ent  topographic  and  non-topographic  contributing
factors. In  the  logistic  regression,  the  derived  coeffi-
cients  (β)  of  each  independent  variable  are  shown  in
Table 1. The coefficients for the logistic regression and
the  weights  for  the  logistic  regression  were  enrolled  to
generate  the  landslide  susceptibility  mapping  coupling
with the GIS environment.

For the  logistic  regression  method,  a  positive  coeffi-

cient  indicates  a  significant  role,  whereas  a  negative
coefficient refers  to  a  less  significant  role  of  the  vari-
able.  As  shown in Table  1,  slope  aspect,  geology,  land
use and land cover, TWI, slope, relative relief, and pre-
cipitation appeared  as  the  significant  factors  for  land-
slide  susceptibility  conditions  because  of  their  positive
coefficients. The other remaining variables such as alti-
tude,  distance  from  road,  distance  from  rivers,  NDVI,
and plan  curvature  showed  less  contribution  on  land-
slide susceptibility.

Then, these 12 different contributing factors and their
coefficients were  fitted  to  Eq.  (1)  to  generate  a  land-
slide  susceptibility  map.  The  logistic  regression  based
susceptibility map  was  divided  into  five  different  haz-
ard classes based on landslide index (LSI) values. These
five  classes  showing  LSI  value  are  namely,  very  low
(less than 14%), low (14%–31%), moderate (31%–50%),
high  (50%–69%),  and  very  high  (69%–100%) accord-
ing to the quantile statistics. As shown in Fig. 7a, 30.4%
of regions belongs to very low hazard, with low hazard
regions accounting  for  21.42%,  moderate  hazard  ac-
counting for 17.33%, and high and very high hazard ac-
counting for 16.69% and 14.15%, respectively.

In the statistical  index,  the weight  of  each parameter
class was defined as the natural logarithm based on the
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landslide  density  class  divided  by  the  landslide  density
in the entire map (Table 2). A negative weight values in-
dicates  a  lower  probability  of  landslide  occurrence,
whereas a positive weight indicates a higher probability
than the average probability of landslide occurrence.

The slope gradients 15°–25°, and 25°–35° have a pos-
itive weight of 0.141 and 0.196, respectively. In the case
of altitude, classes of < 1000 m and 1000–1500 m rep-
resent  a  positive  weight  of  0.24  and 0.46,  respectively.

Regarding aspect,  different  aspects  such as  east,  south-
east, south, southwest, and west have a positive weight;
the south aspect has the highest weight of 0.41. The re-
maining other aspects have negative values showing less
probability of  landslide  occurrence.  Regarding  the  dis-
tance from the road, classes of <100 m and 100–500 m
have positive  values  of  0.41  and 0.27,  respectively,  in-
dicating  clear  impact  of  road  construction  on  landslide
occurrence.  Regarding the  distance from river,  <100 m
distance has clear impact on probability of landslide oc-
currence,  showing  a  positive  value  of  0.32.  The  lesser
Himalayan  sequences  namely,  Ranimatta  and  Kushma
formation have  positive  weights  of  0.42  and  0.26,  re-
spectively.  In  the  context  of  land  use  and  land  cover,
shrubland and agriculture land have the highest positive
weight  of  0.64  and  0.67.  In  the  case  of  NDVI,  the
highest weight was observed in the low vegetation cov-
er  class  of  0.047−0.543  with  value  of  0.62,  showing  a
significant  role  in  landslide  occurrence.  For  curvature,
weights  are  positive  in  convex  and  concave,  which  are
0.62  and  0.22;  the  linear  curvature  showed  a  negative
value of −0.30. Comparatively, the precipitation classes
of 600−650 mm and > 650 mm have positive weights of
0.34 and  0.36  respectively,  indicating  that  heavy  rain-
fall  plays  a  positive  impact  on  landslide  occurrence.  In
the case of relative relief, classes of 200–400 m/km2 and
400–600 m/km2 are associated with the positive weights

 
Table  1    Independent  variables  and  the  corresponding  values
used in the logistic regression for landslide susceptibility assess-
ment
 

Parameter Logistic coefficients

Altitude −0.551

Aspect 0.022

Distance from the road −0.395

Distance from the river −0.770

Geology 0.032

Land-use and land cover 0.565

Normalized difference vegetation index (NDVI) −0.371

Topographic wetness index (TWI) 0.230

Slope 0.249

Relative relief 0.302

Precipitation 0.025

Plan curvature −0.623

Constant 1.696
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Fig. 7    Landslide susceptibility maps of the Dailekh District in the Western Nepal derived through logistic regression (LR) method (a)
and statistical index (SI) method (b)
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of  0.22  and  0.12,  respectively.  The  TWI  index  classes
with  a  positive  weight  are  the  classes  of  4.460–6.206
(0.16)  and  6.206−8.368  (0.57),  whereas  negative
weights appeared to other classes.

The  final  landslide  susceptibility  map  was  generated
using  natural  logarithm  weights  of  each  parameter
classes in  the  statistical  index  method.  Finally,  the  de-
rived final landslide susceptibility map was divided into

 
Table 2    Weights of each class of the triggering factors derived with the natural logarithm in the statistical index method
 

Variable Class Wij Wij (Ln) Variable class Wij Wij (Ln)
Altitude / m < 1000 1.27 0.24 NDVI < 0.047 0.81 −0.22

1000−1500 1.59 0.46 0.047−0.543 1.87 0.62

1500−2000 0.62 −0.47 0.543−0.661 1.25 0.22

2000−2500 0.05 −2.92 0.661−0.788 0.48 −0.73

2500−3000 0.00 0.00 > 0.778 0.24 −1.41

3000−3500 0.00 0.00 Plan curvature Convex 1.57 0.45

> 3500 0.00 0.00 Concave 1.16 0.15

Aspect Flat 0.13 −2.06 Linear 0.74 −0.30

North 0.45 −0.79 Precipitation / mm < 400 0.36 −1.02

Northeast 0.81 −0.21 400−450 0.06 −2.77

East 1.11 0.11 450−500 0.29 −1.25

Southeast 1.18 0.16 500−550 0.58 −0.55

South 1.50 0.41 550−600 0.75 −0.29

Southwest 1.39 0.33 600−650 1.40 0.34

West 1.06 0.06 > 650 1.43 0.36

Northwest 0.66 −0.42 Relative relief /
(m/km2)

< 200 0.55 −0.60

Distance from
the road /m

< 100 1.50 0.41 200−400 1.24 0.22

100−500 1.31 0.27 400−600 1.13 0.12

500−1000 0.94 −0.07 600−800 0.48 −0.73

1000−2000 0.46 −0.78 > 800 0.20 −1.61

2000−4000 0.17 −1.78 Topographic
wetness index

1.716−4.460 0.907 −0.10

4000−6000 0.00 0.00 4.460−6.206 1.180 0.17

> 6000 0.00 0.00 6.206−8.368 1.774 0.57

Distance from
the river /m

< 100 1.37 0.32 8.368−12.110 0.344 −1.07

100−200 0.38 −0.98 12.110−22.920 0.000 0.000

200−300 0.18 −1.69 Slope / ° < 15 0.590 −0.53

300−400 0.12 −2.14 15−25 1.151 0.14

400−500 0.08 −2.54 25−35 1.216 0.20

500−600 1.05 0.05 35−45 0.850 −0.16

> 600 0.86 −0.16 > 45 0.328 −1.11

Geology Proterozoic Himalayan
Crystalline

0 0 LULC Forest 0.30 −1.20

Kalikot formation (Gh) 0.21 −1.57
Shrub land 1.90 0.64

Kalikot formation 0.28 −1.29
Grassland 1.16 0.15

Ulleri formation 0.74 −0.30
Agriculture area 1.95 0.67

Kalikot formation (Bu) 0.16 −1.85
Barren area 0.36 −1.02

Ranimatta formation 1.52 0.42
Water body 0.02 −3.84

Kushma Formation 1.30 0.26
Snow/glacier 0.00 0.00

Basic rocks 0.37 −1.00

Palezoic granite 0.25 −1.38

Sallyani gad formation 0.30 −1.22

Notes: Wij is the sum weight of any class i of j parameter; NDVI, Normalized difference vegetation index; LULC, land use and land cover
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five  different  classes  as  the  logistic  regression  method:
very  low  hazard,  low  hazard,  moderate  hazard,  high
hazard, and very high hazard. As shown in Fig. 7b, the
landslide hazard classes  such as  very low,  low,  moder-
ate,  high,  and  very  high  landslide  susceptibility  classes
covered 15.73%, 21.25%, 26.65%, 26.03%, and 10.34%
of  total  area.  The  analysis  revealed  that  the  landslide
susceptibility is the product of the mutual natural inter-
play of  different  topographic  and non-topographic  trig-
gering factors. 

4.4　Comparison and validation 

4.4.1　Evaluation with the ROC curve
With  the  help  of  the  ROC  curve,  the  AUC  shows  the
success  rate  and  prediction  rate  of  both  methods.  As
shown in Fig. 8, among the total 658 of observed land-
slides, 470 (70%) of all landslides were allocated as the
training  data,  whereas  the  rest  30%  (198  landslides)
were selected as the test data. The success rate was cal-
culated  with  the  test  data  when  comparing  with  the
training  data,  whereas  the  prediction  success  rate  was
derived when comparing the prediction results with the
test data.  According  to  the  AUC statistics,  both  the  lo-
gistic  regression  and  statistical  index  methods  have
equal  performance,  with  logistic  regression  method
(success rate, 0.793; prediction rate, 0.826), and statist-
ical  index  method  (success  rate,  0.811;  prediction  rate,
0.823) (Fig. 8). Both methods showed a good and simil-
ar  prediction  rate  in  landslide  susceptibility  maps.
Hence,  these methods can be used for  further  landslide
hazard related activities in the study area. 

4.4.2　Evaluation with the R-Index method
The R-Index was also applied to evaluate the prediction
rate  of  landslide  susceptibility  mapping.  658  landslides
were  utilized  to  analyze  the R-Index.  As  listed  in
Table  3,  the  analysis  showed  that  the R-Index  derived
through  the  logistic  regression  methods  are  1.41,  4.46,
10.47,  26.32,  and  57.34  for  very  low,  low,  moderate,
high,  and  very  high  hazard  classes,  respectively.  The
statistical  index  showed  the R-Index  values  0.74,  3.42,
7.30,  22.15,  and  66.39  for  all  hazard  susceptibility
classes.  Comparatively,  the  statistical  index  method
demonstrated  a  relatively  better  prediction  accuracy  in
terms  of R-Index  values  than  the  logistic  regression
method.  However,  the  highest R-Index  values  were
mainly  observed  to  high  and  very  high  susceptible
classes (Table 3), which also have a good positive cor-
relation with  the  dense  distribution  of  observed  land-
slides in high and very high susceptible classes. 

5　Discussion
 

5.1　Spatial distribution pattern of landslide
The  frequency  distribution  analysis  of  the  observed
landslides concerning different topographic and non-to-
pographic  factors  showed  the  degree  of  relationship
between  observed  landslides  and  triggering  factor
classes. Clearly,  the  majority  of  landslides  are  distrib-
uted  in  gentle  to  moderately  steep  slopes,  consistent
with the principle that the evolution of terrains with the
cohesion  of  slope  gradients,  colluvium  rock,  and  soil
materials  is  strongly  related  to  landslides  occurrences
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(Selby,  1982; Chorley  et  al.,  1985).  A  less  distribution
of landslides in the high steep slopes was influenced by
the stability of hard rock, less soil and colluvium materi-
als in the high steep slopes (Chorley et al., 1985). Topo-
graphical aspects such as south, east, and west have the
most  landslides  due  to  characteristics  such  as  retaining
of moisture humidity, receiving precipitation, solar radi-
ation, and local wind direction (Selby, 1982; Dai et al.,
2001; Zhang et  al.,  2016; Linkha et  al.,  2019).  A good
reciprocal  relationship  between  the  coherent  condition
of relative relief and in situ classes on landslide distribu-
tion aligns with the principle that increased local eleva-
tion contributes to sufficient potential energy for erosion
and  mass  movement  (Ghimire,  2011; Linkha  et  al.,
2019). The curvature types such as convex and concave
and their  characteristics  strongly  affect  landslide  distri-
bution  discussed  in  earlier  studies  in  the  Himalaya
Mountain  region (Mandal  and Mandal,  2018). The dis-
tribution of two-thirds of observed landslides in the area
of lower altitudes is consistent with the mutual interac-
tion  of  topographic  characteristics  and  human-induced
activities such as hillslope-based land-use practices and
earthen road construction (Ghimire, 2017; Linkha et al.,
2020).  The  TWI  showed  a  positive  relationship  with
landslide distribution as vertically existing streams have
a good saturation showing good signal  of  landslide oc-
currence in the study area.

In  the  case  of  non-topographic  factors,  a  clear  effect
of river to landslide occurrence aligns with the principle
that geomorphic  activities  such  surface  runoff  and  de-
gree of dissection mainly occur near a close distance to
river  channels  (Selby,  1982; Tucker  et  al.,  2001).  The

strong effect  of  vegetation  density  to  landslide  occur-
rence via NDVI has been discussed by previous empir-
ical  studies  (Xu  et  al.,  2012).  Moreover,  the  results
showing  a  clear  influence  of  the  road  on  the  landslide
occurrence  were  supported  by  some  earlier  empirical
studies (Petley et al., 2007; McAdoo et al., 2018; Linkha
et al., 2020). A substantial relationship between the ob-
served  landslides  and  spatial  presences  of  precipitation
is consistent with previous empirical studies on precipit-
ation and its role on landslide occurrence in Nepal Him-
alaya  (Dahal  and  Hasegawa,  2008; Manchado  et  al.,
2021). Different  geologic  formations  such  as  the  Rani-
matta, Kusma, and Ulleri formations consisting of phyl-
lites,  gneiss  (augen)  metasandstones,  quartzites  (white
and  micaceous),  and  schists  (biotite  and  feldspathic)
rocks  have  a  good  coincidence  with  dense  distribution
of  landslides,  as  discussed  by  (Gerrard,  1994). A  re-
markable association of land-use and land-cover, and its
dynamic characteristics  resulting  in  landslide  occur-
rence  are  consistent  with  the  studies  of  relationship
between landslide and land use and land cover in Nepal
(Gardner and Gerrard, 2002). In addition to this, the in-
tensity of long-term land use and land cover change res-
ulted  in  remarkable  environment  degradation  such  as
landslides  and  erosion  ( Paudel  et  al.,  2016; Ghimire,
2017; Chidi et al., 2021).

The analysis  has  shown  that  majority  of  the  land-
slides  have  the  following  characteristics:  reoccurrences
and repetitive  versions  of  previous  patches  during  pre-
cipitation season,  resulting  in  more  likely  to  be  en-
larged both  in  form  and  size,  and  they  have  demon-
strated  a  tendency  to  be  deep-seated  landslides.  These

 
Table 3    R-Indexes showing the accuracy of landslide susceptibility index based on multivariate logistic regression and bivariate stat-
istical index method
 

Method Landslide hazard index Total cell Area / km2 Area / % Total landslide Landslide / % R-Index
Statistical index method Very low 583167 233.27 15.73 5 0.76 0.74

Low 787887 315.16 21.25 31 4.71 3.42

Moderate 987863 395.15 26.65 83 12.61 7.30

High 965087 386.04 26.03 246 37.39 22.15

Very high 383422 153.37 10.34 293 44.53 66.39

Logistic regression method Very low 1127198 450.88 30.40 18 2.74 1.41

Low 794042 317.62 21.42 40 6.08 4.46

Moderate 642545 257.02 17.33 76 11.55 10.47

High 618855 247.54 16.69 184 27.96 26.32

Very high 524786 209.91 14.15 340 51.67 57.34
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findings  are  consistent  with  previous  studies  that  slope
failure events during the monsoon are more responsible
for  the  formation  of  large-scale  landslides  in  the  lesser
Himalayas  of  Nepal  (Hasegawa  et  al.,  2009).  The  new
shallow  landslides  remarkably  occurred  in  the  sloppy
agricultural land. This triggered the haphazard land-use
activities  in  the  steep  hillslopes,  which  was  previously
concluded  in  the  case  of  Nepal  (Gerrard  and  Gardner,
2002; Ghimire,  2017). Similarly,  the  observed  land-
slides and their physical processes have been more pro-
active during  the  precipitation  season,  remarkably  con-
tributing to the formation of landslides. Hence, the rain-
fall-triggered landslides  have  increased  causing  tre-
mendous  loss  of  life,  fatalities,  and  property  over  the
succeeding decades in Nepal (Petley et al., 2007). 

5.2　Comparison with similar studies in Nepal Him-
alaya
Landslides  are  the  most  common  and  frequent  natural
hazards in Nepal Himalaya,  causing remarkable loss of
lives and  damage.  Hence,  landslide  susceptibility  map-
ping is  important  and  a  prerequisite  activity  for  land-
slide  hazard-related  disaster  risk  reduction  activities  in
mountainous  areas  like  the  Dailekh  District.  The  blind
landslide  inventory  data  with  12  different  topographic
and  non-topographic  contributing  factors  were  used  to
generate a landslide susceptibility map of the study area
using the  logistic  regression and statistical  index meth-
ods.  The  assessment  results  show  a  significant  role  of
the topographic  factors  including slope,  aspect,  relative
relief, TWI for landslide susceptibility, which have been
discussed  by  previous  studies  in  Nepal  Himalaya
(Ghimire, 2011; Bijukchhen et al., 2013; Devkota et al.,
2013; Dahal, 2014; Dhakal et al., 2020b). In the case of
non-topographic  factors,  geology,  land  use  and  land
cover, distance from the road, distance from the stream,
and precipitation  have  clearly  triggered  landslide  sus-
ceptibility  in  the  study  area;  this  finding  is  consistent
with  earlier  studies  (Hasegawa  et  al.,  2009; Ghimire,
2017; McAdoo et al., 2018; Manchado et al., 2021). The
findings are  well  aligned  with  the  concept  that  trigger-
ing  and  conditioning  factors  can  vary  with  the  locally
existing surrounding situation, leading to dynamic land-
slide  susceptibility  mapping  results  (Dhakal  et  al.,
2020b) because some of the utilized factors appeared as
less  significant  to  landslide  susceptibility  in  the  study
area compared to other previous studies.

The  logistic  regression  and  statistical  index  methods
showed  a  less  spatial  coverage  consisting  of  dominant
observed  landslides  in  the  high  susceptibility  classes.
Such  a  result  is  consistent  with  the  principle  that  good
susceptibility  maps  have  minimum  spatial  area  and
maximum  number  of  landslides  (Fell  et  al.,  2008;
Dhakal et al., 2020b). The analysis showed a consistent
frequency distribution pattern of  observed landslides  in
different susceptibility classes. The AUC values of suc-
cess rate and prediction rate for logistic regression were
0.793  and  0.826,  respectively,  which  is  also  consistent
with  those reported in  previous  studies  (Devkota  et  al.,
2013; Dahal,  2014; Zhang et  al.,  2019; Amatya,  2020).
Likewise,  success  and  prediction  rate  for  the  statistical
index method is 0.811 and 0.823, respectively, which is
also  consistent  with  the  findings  derived  through  the
previously  applied  statistical  index  in  Nepal  (Bijukch-
hen et al., 2013; Regmi et al., 2014a). The AUC values
of  both  the  methods  have  a  small  difference  of  about
0.003 for the prediction rate. It can be concluded that a
mutual  interplay  of  topographic  and  non-topographic
factors including  their  coherent  characteristics  contrib-
utes  to  the  high  landslide  hazard  susceptibility  in  the
study  area.  Hence,  the  derived  landslide  susceptibility
maps using both the methods can be applicable for land-
slide  related  hazards  and  disaster  risk  management
activities. 

6　Conclusions

This study focused on analyzing the frequency distribu-
tion  of  landslides  and  its  susceptibility  in  the  Dailekh
District,  Western  Nepal.  The  logistic  regression  and
statistical index  methods  were  used  for  landslide  sus-
ceptibility mapping.  In  detail,  658  of  total  blind  land-
slide  inventory  data  and  12  different  topographic  and
non-topographic induced contributing factors were con-
sidered for analysis. Among the total of 658 landslides,
460 (about 70%) were allocated for training sample data
and the remaining 198 (about 30%) landslides were se-
lected  for  testing  or  validation  of  the  final  results  of
landslide  susceptibility  mapping.  The  topographic
factors  included  slope,  slope  aspect,  relative  relief,
curvature,  altitude,  and  TWI  while  non-topographic
factors included  distance  from  the  river,  NDVI,  dis-
tance from the road, precipitation, geology, and LULC.
The AUC values for success rate and prediction rate of

848 Chinese Geographical Science 2022 Vol. 32 No. 5



both the methods were calculated from the ROC curve.
The R-Index  was  also  applied  to  evaluate  the  landslide
susceptible  prediction  capability  of  both  the  methods.
For both  logistic  regression  and  statistical  index  meth-
ods,  the  ROC-derived  prediction  AUC  values  were
0.826 and 0.823,  respectively,  whereas the success rate
values were 0.811 and 0.793, respectively. In the logist-
ic regression, high hazard susceptibility classes have an
R-Index value of 83.66, whereas in the statistical index
approach,  high hazard susceptibility  classes  have an R-
Index of  88.54.  Both  methods  showed  a  similar  land-
slide susceptibility in this region. The landslide distribu-
tion and susceptibility are the result of a mutually com-
plex  natural  interplay  of  various  topographic  and  non-
topographic triggering factors.

Overall, this study provided crucial information about
landslide activity as well as hazard susceptibility charac-
teristics  in  the  Dailekh  District,  Western  Nepal.  More-
over, it confirmed the validity of the two approaches in
the Nepal Himalaya region. Both methods played a bet-
ter and precise role to generate the landslide susceptibil-
ity mapping. Therefore, these methods can be useful for
landslide  related  hazard  and  disaster  risk  management
activities.
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