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Abstract: Accurate estimates of precipitation are fundamental for hydrometeorological and ecohydrological studies, but are more diffi-
cult in high mountainous areas because of the high elevation and complex terrain. This study compares and evaluates two kinds of pre-
cipitation datasets, the reanalysis product downscaled by the Weather Research and Forecasting (WRF) output, and the satellite product,
the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) product, as well as their bias-corrected
datasets in the Middle Qilian Mountain in Northwest China. Results show that the WRF output with finer resolution performs well in
both estimating precipitation and hydrological simulation, while the TMPA product is unreliable in high mountainous areas. Moreover,
bias-corrected WRF output also performs better than bias-corrected TMPA product. Combined with the previous studies, atmospheric
reanalysis datasets are more suitable than the satellite products in high mountainous areas. Climate is more important than altitude for
the ‘falseAlarms’ events of the TRMM product. Designed to focus on the tropical areas, the TMPA product mistakes certain meteorolo-
gical situations for precipitation in subhumid and semiarid areas, thus causing significant ‘falseAlarms’ events and leading to significant
overestimations and unreliable performance. Simple linear bias correction method, only removing systematical errors, can significantly
improves the accuracy of both the WRF output and the TMPA product in arid high mountainous areas with data scarcity. Evaluated by
hydrological simulations, the bias-corrected WRF output is more reliable than the gauge dataset. Thus, data merging of the WRF output
and gauge observations would provide more reliable precipitation estimations in arid high mountainous areas.

Keywords: evaluation;  Weather  Research and Forecasting (WRF);  Tropical  Rainfall  Measuring Mission (TRMM); precipitation;  bias
correction; high mountainous areas

Citation: ZHANG Lanhui, HE Chansheng, TIAN Wei, ZHU Yi, 2021. Evaluation of Precipitation Datasets from TRMM Satellite and
Downscaled  Reanalysis  Products  with  Bias-correction  in  Middle  Qilian  Mountain,  China. Chinese  Geographical  Science,  31(3):
474−490. https://doi.org/10.1007/s11769-021-1205-9

  

1　Introduction

High  mountainous  regions  are  main  sources  of  water
supply to  downstream areas  (Viviroli  and Weingartner,

2004; Marques  et  al.,  2011), accurate  estimates  of  pre-
cipitation are  fundamental  for  hydrometeorological  and
ecohydrological  studies,  and  then  for  successful  water
resources  management  and  planning  in  these  areas
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(Tapiador et al., 2012; Beck et al., 2017; Worqlul et al.,
2017; Sun et al.,  2018). However,  in high mountainous
areas,  precipitation  varies  strongly  over  space  because
of  the  high  elevation  and  complex  terrain,  leading  to
more difficulties and uncertainties in areal precipitation
estimation (Meng et al., 2014; Tong et al., 2014; Essou
et al., 2016; Worqlul et al., 2017; Henn et al., 2018).

Generally, precipitation datasets  can be classified in-
to  three  groups:  gauge  observations,  satellite  products,
and reanalysis products (Bitew and Gebremichael, 2011;
Tapiador et al.,  2012; Ma et al.,  2018). Gauge observa-
tions are  typical  measurements  to  directly  observe  pre-
cipitation  at  the  Earth’s  surface,  but  difficult  to  derive
areal  precipitation  because  of  the  poor  weather  station
density  and  uneven  spatial  distribution  in  mountainous
areas  (Tapiador  et  al.,  2012; Zhang  et  al.,  2016; Wor-
qlul  et  al.,  2017; Sun  et  al.,  2018). Satellite-based  pre-
cipitation  products  can  provide  global,  homogeneous
precipitation  estimations  by  different  deriving  methods
corresponding  to  different  satellite  sensors  (Sun  et  al.,
2018),  but  they  would  lead  large  uncertainty  in  related
analysis because of their biases of precipitation amount
and  false  detections  of  precipitation  events  (Bitew  and
Gebremichael,  2011; Essou  et  al.,  2016; Ma  et  al.,
2018).  With  significant  improvements  in  numerical
models,  a  number  of  reanalysis  precipitation  products
have  provided  spatially  variant  precipitation  data  by
merging  model  outputs  and  gauge  observations  (Sim-
mons et al., 2007; Rienecker et al., 2008). However, the
coarse  resolutions  (250–600 km)  and  unneglectable  bi-
ases  of  reanalysis  products  limited  their  suitability  in
hydrometeorological  studies  (Tapiador  et  al.,  2012; Es-
sou et al., 2016; Nkiaka et al., 2017; Li et al., 2018; Sun
et  al.,  2018).  Dynamical  downscaling  of  reanalysis
products  through  Regional  Climate  Models  (RCMs)
would provide  finer  information  and  significantly  in-
crease  their  performance  in  precipitation  estimations
and hydrological simulations (Chen et al., 2013; Seyyedi
et al., 2014).

Differing  in  data  sources,  quality  control  schemes,
and estimation procedures, the above precipitation data-
sets  differ  in  precipitation  amount  and  spatial  pattern
(Henn  et  al.,  2018; Sun  et  al.,  2018). Numerous  re-
search  papers  have  evaluated  and  compared  different
precipitation datasets around the world to provide essen-
tial information for related studies (Nkiaka et al., 2017;

Worqlul et al., 2017; Henn et al., 2018; Sun et al., 2018;
Zhu  et  al.,  2018),  but  only  a  few  researches  compared
the  performance  of  satellite  products  and  reanalysis
products,  seldom  focusing  on  high  mountainous  area
(Thiemig et al., 2013; Seyyedi et al., 2014; Tong et al.,
2014; Beck et al., 2017; Li et al., 2018).

To  take  advantage  of  the  best  available  data,  the
primary trend  is  to  merge  different  precipitation  data-
sets  regardless  of  source  (Beck  et  al.,  2017),  and  bias
correction is the most popular way to merge estimations
and  gauge  observations  (Behrangi  et  al.,  2011; Bitew
and Gebremichael, 2011; Essou et al., 2016; Beck et al.,
2017; Chen et  al.,  2018). There  are  lots  of  bias  correc-
tion approaches  proposed by previous  studies  at  differ-
ent  tempo-spatial  scales,  however,  their  performance
would be limited by data scarcity caused by sparse and
uneven observations, and strong variability of precipita-
tion in arid high mountainous area (Maurer et al., 2013;
Nguyen et al., 2017). Meanwhile, all the bias correction
methods can robustly correct the mean and standard de-
viation of daily precipitation, but the correction of skew-
ness  and  kurtosis  of  daily  precipitation  are  much  more
sensitive  to  the  bias  correction  method  (Lafon  et  al.,
2013). Therefore, because of data scarcity in mountain-
ous  area,  the  simple  linear  bias  correction  method  has
been applied  to  remove  the  systematical  errors  of  pre-
cipitation estimates in this study, and its performance re-
quires to be evaluated. Moreover, there would be uncer-
tainty caused by data scarcity in the evaluations through
direct  comparison  with  the  ground  observation  station
network,  thus it  is  a  necessary to  evaluate  precipitation
datasets  through  hydrological  simulations  to  provide  a
more  robust  understanding  about  the  performance  of
precipitation  datasets  (Worqlul  et  al.,  2017; Zhu  et  al.,
2018).

In this study, the satellite precipitation product, Trop-
ical Rainfall  Measuring  Mission  (TRMM)  Multisatel-
lite  Precipitation  Analysis  (TMPA)  product,  has  been
selected  because  it  has  been  widely  used  around  the
world (Beck et al., 2017; Worqlul et al., 2017; Darand et
al.,  2017).  The  NCEP’s  Final  Analysis  (FNL)  data,
downscaled  by  the  Weather  Research  and  Forecasting
(WRF)  model  (hereafter  is  called  ‘the  WRF  output’),
has also  been  selected  because  of  its  reliable  perform-
ance in  high mountainous areas  (Pan et  al.,  2012).  The
study area is the upper reach of the Heihe River Water-
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shed, located in the middle Qilian Mountain, Northwest
China.  This  study  conducts  bias  correction  of  both  the
WRF output and the TMPA product, and evaluates and
compares both two raw datasets and two bias-corrected
datasets. This  study  discusses:  1)  comparing  the  satel-
lite  product  and  downscaled  reanalysis  product,  which
one  is  more  suitable  in  high  mountainous  areas?  and
2)  to  what  extent  would  simple  linear  bias-correction
method improve  the  performance  of  precipitation  data-
sets  in arid high mountainous areas? The results  would
provide fundamental to successful water resources man-
agement and planning in arid high mountainous areas. 

2　Study Area

The upper  reach  of  the  Heihe  River  Watershed  is  loc-
ated in the middle Qilian Mountain (Fig. 1), and has got
a  lot  of  attentions  because  of  its  representativeness  of
high mountainous area. It is with a length of 313 km and
a  drainage  area  of  10  009  km2,  producing  the  majority
of  runoff  for  the  entire  Heihe  River  Watershed  (Zhang
et  al.,  2019). In  the  upper  reach,  the  annual  mean tem-
perature  ranges  from –3.1℃ to  3.6℃ with the  minim-
um  temperature  of –28.0℃.  Mean  annual  precipitation
ranges  from  250  mm  below  1900  m  asl  (above  sea
level) to 700 mm above 3600 m asl, and most precipita-
tion (over 60%) falls between June and September (Li et
al.,  2009a).  The  elevation  in  the  region  ranges  from
1674 to 5584 m  asl  (Li  et  al.,  2009a),  and  the  annual
mean  temperature  decreases  with  increasing  elevation

(from 6.2℃ to −9.6℃), while the mean annual precipit-
ation increases with increasing elevation (from 250 mm
below  1900  m  asl  elevation  range  to  700  mm  above
3600 m asl range) (Zhao et al., 2005). 

3　Datasets and Methods
 

3.1　Precipitation datasets
The gauge precipitation data are obtained from the Na-
tional  Meteorological  Information  Center  of  China
(NMIC)  at  daily  step  around  the  upper  reach  of  the
Heihe River Watershed. As there are only four weather
stations located  within  the  study  area,  five  more  adja-
cent  weather stations within 50 km from the watershed
were  also  selected  in  this  study  (Fig.  1)  (Zhang  et  al.,
2016).

Forced by FNL data, the WRF simulations were car-
ried out  by WRF V3.1 system through two-way nested
computation (Pan et al., 2012). The WRF output is with
a  horizontal  resolution  of  0.05°  ×  0.05°  at  hourly  step.
Validated  by  daily  observed  data  of  temperature,  the
output has good agreement with the observed data with
coefficient of determination (r2) more than 0.93 and ab-
solute  of  mean  bias  error  less  than  2.0℃ (Detailed in-
formation  can  be  found  in Pan  et  al.,  2012).  However,
the precipitation dataset still requires validation.

The TMPA product is based on the calibration by the
TRMM Combined  Instrument  (TCI)  and  TRMM  Mi-
crowave Imager  (TMI)  precipitation  products,  respect-
ively  (Huffman  et  al.,  2007). The  post  real-time  re-
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search version (3B42) uses monthly rain gauge data for
bias  adjustment  in  the  research  product,  and  its  latest
version TMPA 3B42 V7 (hereafter is called ‘the TMPA
product’)  at  daily  temporal  and  0.25°  ×  0.25°  spatial
scales  over  the  latitude  band  50°  N–50°  S  is  applied
in  this  study  (http://trmm.gsfc.nasa.gov, Huffman  and
Bolvin, 2018).

In  this  study,  precipitation  from  gauge  observations,
the  WRF  output  and  the  TMPA  product  are  all  from
1  January,  2000  to  31  December,  2010.  To  be  fairly
compared, hourly precipitation values  of  the WRF out-
put were aggregated into daily values. 

3.2　Bias-correction method
Bias is determined as the differences between observed
precipitation  (PCPobs)  and  estimated  precipitation
(PCPest)  from  both  the  WRF  output  and  the  TMPA
product.  In  the  study  area,  the  correlation  coefficients
(r)  is  0.821  between bias and PCPest and  is –0.350
between bias and PCPobs for  the  WRF  output,  while
they are 0.977 and –0.217 for the TMPA product. All of
them are significant. The r between bias and PCPest are
more  significant  than  those  between bias and PCPobs,
indicating  that bias is  more  correlated  to PCPest.
Moreover,  the  linear  equations  were  applied  to  fit bias
and PCPest for  both  the  WRF  output  and  the  TMPA
product. As shown in Fig. 2, r2 are 0.642 and 0.954 for
the  linear  fitting  equations  of  the  WRF  output  and  the
TMPA product respectively, indicating higher goodness-
of-fit of both equations. The P-values of F-test (signific-
ance F values) are zero for both linear fitting equations
and pass  the  significance  test  (less  than  0.05),  indicat-
ing that both equations are significantly reliable and ef-

fective.  Thus,  it  is  convincing  that  the  relationships
between bias and PCPest are  linear  for  both  the  WRF
output and the TMPA product.

In this study, at each gauge station, the grid in which
the  station  is  located  was  selected  as  its  corresponding
grid. Bias was  obtained by data  at  each meteorological
station and its corresponding grid, then the linear equa-
tions of bias and PCPest were established through step-
wise  regression  method  by  using  the  data  series  with
non-zero PCPest values from 2000 to 2010. Finally, two
precipitation  datasets,  bias-corrected  WRF  output  and
bias-corrected TMPA product, were obtained by PCPest-
bias. 

3.3　Evaluation methods 

3.3.1　Indices of evaluation based on gauge observa-
tions
Against  the gauge dataset,  four  indicators  were used to
measure the performance of different precipitation data-
sets in fitting the observations at daily step (Behrangi et
al.,  2011; Meng  et  al.,  2014):  the  ratio  of  root-mean-
square  errors  to  the  observations’ standard  deviation
(RSR), mean absolute error (MAE), mean of error (ME)
and  percentage  bias  (PBIAS).  The  smaller RSR, MAE,
absolute ME and absolute PBIAS values, the better sim-
ulations in matching the observation.

To evaluate  the  correspondence  between  the  estim-
ated  and  observed  occurrence  of  precipitation  events,
three statistics were used in this study (Ghajarnia et al.,
2015; Tang  et  al.,  2016):  probability  of  detection
(POD),  false  alarm  ratio  (FAR)  and  critical  success
index  (CSI). POD measures  the  fraction  of  observed
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by each dataset . In which,

‘hits’ indicates the times that both the estimated dataset
and  gauge  observation  detect  precipitation  events,
‘falseAlarms’ refers to the number of times that the es-
timated dataset identifies precipitation but the gauge ob-
servation does not, and ‘misses’ refers to the number of
precipitation  events  during  the  study  period  that  the
gauge  observation  classifies  them  as  precipitation  but
the  estimated  dataset  does  not.  All  the  three  statistics
range from 0 to 1, with perfection represented by a POD
of 1, a FAR of 0 and a CSI of 1.

In this  study,  the  evaluations  against  gauge  observa-
tions have been carried on both at point scale and water-
shed  scale.  At  point  scale,  the  WRF  output  and  the
TMPA product are compared against the observations of
each gauge station located in the corresponding grid. At
watershed  scale,  both  the  WRF  output  and  the  TMPA
product,  as  well  as  gauge observations,  were processed
into daily watershed average values by arithmetic aver-
age method to avoid the impacts of different spatial res-
olutions. 

3.3.2　Indices of hydrological evaluation
SWAT  shows  reliable  performance  in  the  applications
in the upper reach of the Heihe River Watershed (Zhang
et  al.,  2016),  and  the  datasets  used  for  its  setup  in  this
study  are  listed  in Table  1.  To  be  fairly  compared,  in
different  simulations,  only  precipitation  datasets  differ
and the other meteorological inputs are the same in this
study.  For  all  the  precipitation  datasets,  the  warm  up
period  was  2000-01-01  to  2000-12-31,  the  calibration
period was  2001-01-01  to  2007-12-31  and  the  valida-
tion  period  was  2008-01-01 to  2010-12-31.  The  details
of model calibration can be found in Zhang et al. (2016).

As different objective functions would yield different
evaluation results,  four  most  popular  objective  func-
tions were  used  to  measure  the  model  performance  ac-
cording to Moriasi et al. (2007) and Zhang et al. (2016):
Nash-Sutcliffe  efficiency  (NSE), r2, RSR and PBIAS.
The  combination  of  larger NSE and r2 values,  smaller
RSR and absolute PBIAS values indicate that the simula-
tion  performance  is  better.  In  this  study,  the  ratings  in
evaluating the model performance are very good (NSE ≥
0.70),  good  (0.50  ≤ NSE <  0.70),  satisfactory  (0.30  ≤
NSE < 0.50), unsatisfactory (0 ≤ NSE < 0.30), and unre-
liable (NSE < 0) (Kalin et al., 2010).

P-factor and R-factor were applied to assess the mod-
el  uncertainty.  The P-factor is  the fraction of measured

 
Table 1    Major datasets used in the initial setup of the SWAT in the upper reach of the Heihe River Watershed
 

Data Resolution Period Source agency

Precipitation (gauge observations) Daily, nine stations 2000–2010 The National Meteorological Center of China (NMCC)

Precipitation (WRF output) Hourly, 0.05° × 0.05° 2000–2010 Environmental & Ecological Science Data Center for West China, National
Natural Science Foundation of China (http://westdc.westgis.ac.cn)

Precipitation (bias-corrected WRF output) Daily, 0.05° × 0.05° 2000–2010 This study

Precipitation (TMPA product) Daily, 0.25° × 0.25° 2000–2010 National Aeronautics and Space Administration
(https://pmm.nasa.gov/index.php?q=TRMM)

Precipitation (bias-corrected TMPA product) Daily, 0.25° × 0.25° 2000–2010 This study

Air temperature (maximum, minimum) Daily, nine stations

Solar radiation Daily, nine stations 2000–2010 The National Meteorological Center of China (NMCC)

Wind Daily, nine stations

Relative humidity Daily, nine stations

Flow data Daily runoff 2000–2010
DEM 30 m Environmental & Ecological Science Data Center for West China, National

Natural Science Foundation of China (http://westdc.westgis.ac.cn)

Soil data 1∶1 000 000 2000

Land use data 1∶100 000 2000
Notes: WRF: Weather Research and Forecasting; TMPA: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis; DEM is Digital
Elevation Model
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data (plus its  error)  bracketed by the 95PPU (95% pre-
diction uncertainty) band and varies from 0 to 1, where
1 indicates 100% bracketing of the measured data with-
in  model  prediction  uncertainty  (i.e.,  a  perfect  model
simulation  considering  the  uncertainty).  The  quantity
(1 – P-factor)  could  hence  be  referred  to  as  the  model
error (Abbaspour et al., 2015). The R-factor on the oth-
er hand is the ratio of the average width of the 95 PPU
band to the standard deviation of the measured variable,
the  smaller  value  of R-factor  indicates  less  uncertainty
(Abbaspour et al., 2015). 

4　Results
 

4.1　Evaluation of WRF output and TMPA product 

4.1.1　Statistical analysis
As shown in Table 2, at all the gauge stations, the WRF
output  fits  the  observations  better  than  the  TMPA
product  with  significantly  smaller RSR, MAE,  absolute
ME and PBIAS values.  The  WRF output  overestimates
precipitation  at  all  the  stations  with  positive ME and
PBIAS values  except  Tuole  and  Yeniugou,  while  the
TMPA product significantly overestimates precipitation
at all the nine stations with larger positive ME and PBI-

AS values.
At the watershed scale,  the WRF output  also fits  the

observations  better  than  the  TMPA  product  (Table  2).
Moreover, the average annual precipitation of the WRF
output  (604.5  mm/yr)  is  about  three  times  more  than
those  of  gauge  observations  (201.5  mm/yr),  while  the
TMPA product (1276.4 mm/yr) is about six times. With
larger  positive ME and PBIAS values,  both  datasets
overestimate  precipitation  at  the  watershed  scale  in  the
study area, while the TMPA product shows more signi-
ficant overestimations.

As  shown  in Fig.  3,  the  WRF  output  is  drier  in  the
northwest and wetter in the southeast of the study area,
while the TMPA product is wetter in the northwest and
drier  in  the  southeast.  As  the  precipitation  in  the  study
area shows  increasing  trends  from  northwest  to  south-
east  (Ding et  al.,  1999),  the WRF output  better  catches
the spatial pattern of precipitation in the study area than
the TMPA product. 

4.1.2　Contingency analysis
As shown in Fig.  4,  with  significantly  larger POD and
CSI values,  as  well  as  smaller FAR values,  the  WRF
output performs  significantly  better  in  detecting  ob-
served precipitation events than the TMPA product. The

 
Table 2    Comparison of the precipitation values from different datasets with the gauge observations at daily step in the middle Qilian
Mountain, China
 

Datasets Statistics Linze Tuole Sunan Yeniugou Zhangye Minle Qilian Shandan Yongchang

WRF output RSR 1.403 1.125 1.848 1.240 1.701 1.308 1.394 2.414 2.285

MAE / mm 0.452 1.118 1.148 1.546 0.917 1.485 1.713 2.413 2.063

ME / mm 0.140 –0.105 0.577 –0.155 0.485 0.474 0.133 1.783 1.433

PBIAS / % 57.4 –11.0 99.5 –11.7 111.8 52.3 10.7 268.4 209.8

TMPA product RSR 7.350 3.210 5.106 3.028 5.142 3.006 2.954 3.536 3.856

MAE / mm 3.635 3.981 4.096 4.313 3.616 3.707 4.110 3.498 3.425

ME / mm 3.259 2.525 3.211 2.325 2.960 2.241 2.102 2.410 2.323

PBIAS / % 1338.6 264.3 553.4 175.9 681.6 247.2 169.4 362.7 340.1

Bias-corrected WRF output RSR 0.934 0.911 0.915 0.910 0.917 0.934 0.953 0.971 0.965

MAE / mm 0.309 1.056 0.680 1.349 0.540 1.103 1.415 0.945 0.934

ME / mm –0.068 –0.224 –0.113 –0.338 –0.061 –0.119 –0.258 –0.072 –0.059

PBIAS / % –27.7 –23.4 –19.5 –25.5 –14.1 –13.1 –20.8 –10.9 –8.7

Bias-corrected TMPA product RSR 1.012 1.032 1.026 1.039 1.018 1.025 1.040 1.019 1.027

MAE / mm 0.307 1.162 0.705 1.580 0.536 1.111 1.446 0.823 0.824

ME / mm –0.164 –0.583 –0.378 –0.692 –0.287 –0.583 –0.770 –0.414 –0.452

PBIAS / % –67.3 –61.0 –65.1 –52.3 –66.1 –64.3 –62.1 –62.3 –66.2
Notes: RSR refers to the ratio of root-mean-square errors to the observations’ standard deviation, MAE refers to mean absolute error, ME refers to mean of error,
PBIAS refers to percentage bias
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larger FAR values of the TMPA product indicate that it
falsely  estimated  many  precipitation  events  that  the
gauge  observation  showed  as  no  precipitation,  leading
to the overestimations of  the TMPA product.  Eliminat-
ing  the  ‘ falseAlarms’ events,  the RSR, MAE, ME and
PBIAS values  are  3.314,  2.916  mm,  1.481  mm  and

132.5% for the TMPA product, which are notably smal-
ler than those values including ‘falseAlarms’ events.

At  seasonal  scale,  the FAR values  of  the  TMPA
product  are  0.754,  0.574,  0.760  and  0.898  in  spring,
summer, autumn and winter, respectively. It shows that
the  ‘ falseAlarms’ events  are  largest  in  winter,  then  in
autumn and spring, and finally in summer. The RSR val-
ues  are  5.718,  2.747,  4.504  and  34.464  including
‘ falseAlarms’ events,  and  are  3.029,  1.836,  2.164  and
9.750  eliminating  ‘ falseAlarms’ events in  spring,  sum-
mer, autumn  and  winter,  respectively.  Thus,  the  per-
formance  difference  caused  by  ‘ falseAlarms’ events  is
largest in winter,  then in spring and autumn, and smal-
lest in summer.

For the WRF output, the POD, FAR,  and CSI values
showed  different  variation  at  all  the  stations  (Fig.  4a).
However,  for  the  TMPA  product,  the CSI values
showed same variations with the POD values at  all  the
stations  (Fig.  4b).  As POD is  the  ratio  of  ‘ hits’ to  the
sum of ‘hits’ and ‘misses’, and CSI is the ratio of ‘hits’
to  the  sum  of  ‘ hits’,  ‘ misses’ and  ‘ falseAlarms’,  the
same  variation  trends  of POD and CSI values  indicate
that the ‘falseAlarms’ of the TMPA product is nearly an
areal constant in the study area. It means that there is a
systemic  error  of  ‘ falseAlarms’ events  of  the  TMPA
product in  the  upper  reach  of  the  Heihe  River  Water-
shed. 

4.1.3　 Categorical  analysis  based  on  both  estimated
datasets
To better understand the performance of both the WRF
output and the TMPA product in different precipitation
ranges respectively,  five percentile  points  of  each data-
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Fig. 4    Contingency analysis at gauge stations. (a) The WRF output, (b) The TMPA product. POD refers to probability of detection,
FAR refers to false alarm ratio, CSI refers to critical success index
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set (Q5, Q25, Q50, Q75, and Q95), were used to divide
the overall estimated precipitation range of each dataset
into six percentile series (Table 3, Gudmundsson et al.,
2012; Ghajarnia  et  al.,  2015; Zhang  et  al.,  2016).  As
shown in Figs. 5a, 5b, for both the WRF output and the
TMPA product, the RSR values increase with the estim-
ated  precipitation  values  increasing.  Nevertheless,  the
WRF  output  showed  better  performance  with  smaller
RSR range than the TMPA product.

hits
hits+ f alseAlarms

As  shown  in Figs.  5c,  5d,  for  both  the  WRF  output
and  the  TMPA  product,  the POD values  are  both  1  in
the ranges of ≥ Q5, respectively. It means that ‘misses’
events  never  occur  when estimated precipitation values
of the WRF output larger than 0.285 mm (≥ Q5), and es-
timated precipitation  values  of  the  TMPA  product  lar-
ger than 0.597 mm (≥ Q5). Thus, the formula of CSI can

be  simplified  as .  As  the  formula  of

f alseAlarms
hits+ f alseAlarms

FAR is , FAR/CSI equals  to falseAl-

arms/hits for  both  datasets  in  the  ranges  of  ≥  Q5, re-
spectively.  As  shown  in Fig.  5,  for  both  datasets,  the
FAR values are around 0.676–0.787 and the CSI values
are  around  0.213–0.324 in  the  ranges  of  ≥  Q5.  There-
fore,  ‘ falseAlarms’ events  are  over  three  times  more

 
Table 3    Five percentile points of three precipitation datasets
 

Percentile
points

Gauge dataset /
mm

The WRF output /
mm

The TMPA product /
mm

Q5 0.61 0.285 0.597

Q25 4.90 1.589 3.022

Q50 11.70 4.068 7.754

Q75 19.40 9.224 17.462

Q95 30.00 22.642 42.381
Notes: Q5 is 5 percentile, Q25 is 25 percentile, Q50 is 50 percentile, Q75 is
75 percentile, and Q95 is 95 percentile, respectively
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Fig.  5    Categorical  analysis  based  on  the  estimated  precipitation  datasets.  (a) RSR values  of  the  WRF output,  (b) RSR values  of  the
TMPA product, (c) POD values of the WRF output, (d) POD values of the TMPA product. Q5, Q25, Q50, Q75, and Q95 are listed in
Table 3 for each dataset. RSR refers to the ratio of root-mean-square errors to the observations’ standard deviation, POD refers to prob-
ability of detection, FAR refers to false alarm ratio, CSI refers to critical success index
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than  ‘ hits’ events  when  estimated  precipitation  values
larger  than  0.285 mm (≥  Q5)  for  the  WRF output,  and
estimated  precipitation  values  larger  than  0.597  mm
(≥ Q5) for the TMPA product. 

4.1.4　Hydrological evaluation
As TMPA-driven  simulations  tend  to  yield  an  unsatis-
factory  result  in  the  daily  discharge  simulations  (Meng
et  al.,  2014),  only  the  monthly  streamflow  simulations
were  compared  and  evaluated  in  this  study.  The  gauge
dataset performs very well with NSE and r2 of 0.87 and
0.86 in the calibration period,  and 0.68 and 0.76 in the
validation  period,  respectively.  It  indicates  that  the
SWAT model performs quite well in simulating the wa-
tershed hydrology in the study area.

Achieving their best performance through calibration,
the  WRF  output  performs  satisfactorily  with  the NSE
and r2 of  0.36  and  0.64  in  the  calibration  period,  and
0.42 and 0.74 in the validation period, respectively. The
TMPA  product  produces  unreliable  simulation  results
with negative NSE values in both calibration and valida-
tion periods.  Therefore,  the  WRF  output  is  more  cred-
ible than  the  TMPA  product  in  hydrological  simula-
tions in the study area. 

4.2　Improvement of the bias correction 

4.2.1　 Improvement of  the  WRF  output  by  bias  cor-
rection
As  shown  in Table  2,  the  bias-corrected  WRF  output
shows  significant  performance  improvements  than  the
raw WRF output with smaller RSR, MAE,  absolute ME
and PBIAS values  at  all  the  stations.  Evaluated  at  the
watershed scale,  the RSR, MAE, ME and PBIAS values
are 0.999, 0.804 mm, 0.011 mm and 13.6% for the bias-
corrected WRF output, respectively, which are also sig-
nificantly  smaller  than  those  of  the  raw  WRF  output
(1.497, 1.237 mm, 0.706 mm and 89.8%, respectively).
With an average annual value of 291.3 mm/yr, the bias-
corrected WRF output  is  much  closer  to  the  gauge  ob-
servations  (201.5  mm/yr)  than  the  raw  WRF  output
(604.5 mm/yr). Evaluated by the ME and PBIAS values,
the bias-corrected WRF output underestimates precipita-
tion at  the  gauge  stations  and  overestimates  precipita-
tion at the watershed scale in the study area.

As shown in Fig.  6a,  the  bias-corrected WRF output
is  drier  in  the  northwest  and  wetter  in  the  southeast  of
the  study  area.  Because  the  raw  WRF  output  shows
same spatial pattern with the gauge observations, the bi-

as-corrected WRF output and the raw WRF output show
consistent spatial distributions, both well catch the spa-
tial pattern of the precipitation in the study area.

By bias correction, the NSE value increases from 0.36
to 0.64 in the calibration period and from 0.42 to 0.73 in
the validation period,  while the r2 value increases from
0.64  to  0.72  in  the  calibration  period  and  from 0.74  to
0.83 in the validation period for the WRF output (Fig. 7).
According  to  the  performance  ratings  (Kalin  et  al.,
2010),  bias  correction  upgrades  one  rating  level  of  the
WRF output in hydrological simulations. 

4.2.2　Improvement of the TMPA product by bias cor-
rection
As shown in Table 2, the bias-corrected TMPA product
also  shows  significant  performance  improvements  than
the  raw  TMPA product  with  smaller RSR, MAE, abso-
lute ME and PBIAS values at each station. Evaluated at
the watershed scale, the RSR, MAE, ME and PBIAS val-
ues are 1.882, 1.470 mm, 0.125 mm and 15.8% for the
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bias-corrected  TMPA  product,  respectively,  which  are
also  significantly  smaller  than  those  of  the  TMPA
product (4.378,  3.723  mm,  2.712  mm  and  344.8%,  re-
spectively). With an average annual value of 332.9 mm/yr,
the bias-corrected TMPA product is much closer to the
gauge data  (201.5 mm/yr)  than the raw TMPA product
(1276.4 mm/yr).  Evaluated  by  the ME and PBIAS val-
ues,  the  bias-corrected  TMPA  product  underestimates
precipitation  at  the  gauge  stations  and  overestimates

precipitation at the watershed scale in the study area.
As  shown  in Fig.  6b,  the  bias-corrected  TMPA  pro-

duct is drier in northwest and southeast and wetter in the
middle. Because  the  raw  TMPA  product  shows  differ-
ent spatial pattern from the gauge observations, the bias-
corrected  TMPA  product  and  the  raw  TMPA  product
show  different  spatial  distributions,  and  both  of  them
did not reflect the precipitation pattern in the study area.

By bias correction, the NSE value increases from neg-
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ative  value  to  0.50  in  the  calibration  period  and  from
negative value to 0.51 in the validation period, while the
r2 value  increases  from  0.05  to  0.50  in  the  calibration
period and from 0.03 to 0.77 in the validation period for
the  TMPA product  (Fig.  7). According  to  the  perform-
ance  ratings  (Kalin  et  al.,  2010), bias  correction  up-
grades two rating levels of the TMPA product in hydro-
logical simulations. 

4.2.3　Comparison of bias-corrected WRF output and
bias-corrected TMPA product
As shown in Table 2, the RSR, absolute ME and PBIAS
values of the bias-corrected WRF output are all signific-
antly  smaller  than  those  of  the  bias-corrected  TMPA
product at all the stations. The MAE values of the bias-
corrected  WRF  output  are  slightly  larger  than  those  of
the  bias-corrected  TMPA  product  at  Linze,  Zhangye,
Shandan and Yongchang,  while  smaller  at  all  the other
stations. Thus, evaluated by the combination of four in-
dictors, the bias-corrected WRF output also fits the ob-
servations better than the bias-corrected TMPA product
at  each station.  At  the  watershed scale,  the RSR, MAE,
ME and PBIAS values are 0.999, 0.804 mm, 0.011 mm
and 13.6% for  the  bias-corrected WRF output,  respect-
ively,  and  are  1.882,  1.470  mm,  0.125  mm  and  15.8%
for  the  bias-corrected  TMPA  product,  respectively.
Therefore, the  bias-corrected  WRF  output  also  per-
forms  better  than  the  bias-corrected  TMPA  product  at
the watershed scale.

By  bias  correction,  the  improvement  of  the  TMPA
product in estimating precipitation values is notably lar-
ger than the WRF output at point scale and at watershed
scale. Furthermore, as shown in Fig. 7, with bias-correc-
tion, the performance improvements the TMPA product
is also  significantly  larger  than  the  WRF output  in  hy-
drological simulations. 

5　Discussion
 

5.1　Uncertainty analysis 

5.1.1　Uncertainty  in  evaluation  by  the  sparse  gauge
stations
The mismatch between continuously accumulating point-
scale  gauge  observations  and  snapshot  areal  satellite
precipitation has a marked impact on evaluation results
(Tang  et  al.,  2018).  Nevertheless,  all  the  datasets  were
evaluated by same methods in this study, thus the com-

parison results of different datasets are credible. Evalu-
ated against the sparse gauge observations at daily scale,
it could be difficult to judge whether precipitation data-
sets overestimate or underestimate precipitation in a do-
main by regular BIAS values (Tang et  al.,  2018).  How-
ever,  in  this  study,  the  extreme  large PBIAS values  of
the  WRF  output  and  the  TMPA  product  indicate  that
both  datasets  overestimate  precipitation  in  the  study
area. Both bias-corrected datasets underestimate precip-
itation at  the gauge stations and overestimate precipita-
tion at the watershed scale in the study area. According
to the value extents of PBIAS,  the reliable result is that
the bias-corrected WRF output underestimates precipita-
tion at the gauge stations and the bias-corrected TMPA
product  overestimates  precipitation  at  the  watershed
scale. Because of the differences in evaluations at gauge
stations and at  the watershed scale,  it  is  difficult  to de-
termine  the  overestimation  or  underestimations  of  both
bias-corrected datasets. 

5.1.2　Uncertainty in hydrological simulations
It is necessary to evaluate the hydrological applications
of different precipitation datasets by uncertainty analys-
is  (Zhu  et  al.,  2018). Generally,  the  simulation  uncer-
tainty includes  model  uncertainty,  parameter  uncer-
tainty  and  input  uncertainty  (Beven  and  Binley,  1992).
In  this  study,  for  each  dataset,  the  default  ranges  of
23  parameters  in  the  SWAT  model  were  divided  into
1800 parameter sets to simulate and then analyze the un-
certainty. As shown in Fig. 7, for the gauge dataset, the
P-factor  values  are  0.92  and  1.0  in  the  calibration  and
validation periods, respectively, indicating that the mod-
el  error  (1 – P-factor)  is  very  small  in  the  study  area.
Thus,  the  simulation  driven  by  the  gauge  dataset  was
used as the reference in this study.

As  shown  in Fig.  7,  compared  to  the  gauge  dataset,
the  WRF  output  shows  slightly  larger  uncertainty  with
similar P-factor values and larger R-factor values, while
the TMPA product is unreliable with extreme smaller P-
factor values and extreme larger R-factor values in both
the  calibration  and  validation  periods.  The  bias-correc-
ted WRF output is more reliable than the gauge dataset
with  slightly  smaller P-factor  values  and  smaller R-
factor  values  in  both  periods,  and  the  bias-corrected
TMPA product shows greater uncertainty than the gauge
dataset with smaller P-factor values and similar R-factor
values (Fig. 7). Thus, the better simulation performance
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of  a  dataset,  the  smaller  the  uncertainty  in  this  study.
Moreover,  by bias  correction,  the uncertainty reduction
of  the  TMPA  product  is  significantly  larger  than  the
WRF output (Fig. 7).

The  WRF  output  underestimates  precipitation  in
winter  (Fig.  7),  it  is  because  the  calibrated  parameters
are suitable  for  normal  conditions,  resulting  in  the  un-
derestimations  under  small  precipitation  amounts  in
winter  (Zhang  et  al.,  2016).  The  bias-corrected  TMPA
overestimates  in  summer  (Fig.  7),  this  is  also  because
the calibrated parameters are suitable for normal condi-
tions,  the  large  precipitation  amounts  in  summer  cause
overestimations. Thus, it should be cautious in the eval-
uation  of  within  annual  variations  of  different  datasets
by hydrological simulations. 

5.2　Suitability of WRF output and TMPA product
in high mountainous areas
The  WRF  output  performs  better  than  the  TMPA
product in both estimating precipitation amount and de-
tecting precipitation events in the study area. Moreover,
the  WRF  output  also  shows  satisfactory  performance
with slightly larger uncertainty than the gauge dataset in
hydrological simulations, while the TMPA product pro-
duces  unreliable  simulation  results.  This  is  consistent
with  most  previous  studies,  which  pointed  out  that  the
atmospheric  reanalysis  datasets  performed  better  than
the  satellite  products  (Ebert  et  al.,  2007; Mourre  et  al.,
2016; Beck  et  al.,  2017).  But Seyyedi  et  al.  (2014)
found that satellite product performed better than reana-
lysis  product  in  a  basin  with  latitudes  ranging  from
39°N to 43°N. It is because the study area in Seyyedi et
al. (2014) is very flat ranging from 22 m below sea level
to 949 m above sea level, but the other studies focus on
areas with  greatly  fluctuating  terrain,  such  as  three  up-
per  catchments  of  the  Volta  River  Basin  in  Central
Africa  (0–3600 m  asl)  (Thiemig  et  al.,  2013),  the
Tibetan plateau (Tong et al., 2014), Mainland China (Li
et  al.,  2018),  and  over  the  globe  (Beck  et  al.,  2017).
Therefore,  atmospheric  reanalysis  datasets  are  more
suitable than the satellite products in high mountainous
areas.

Impacted by complex topography and terrain in high
mountainous  areas,  the  simulation  resolution  is  a  more
important factor influencing the performance in estimat-
ing precipitation of  the  WRF output  than the  sub-mesh
parameterizations  (Mourre  et  al.,  2016).  With  a  finer

resolution of 0.05° × 0.05° at hourly step, the WRF out-
put performs  better  than  the  TMPA  product  in  the  up-
per  reach  of  the  Heihe  River  Watershed.  Also  because
of the finer simulation resolution, the WRF output over-
estimates  precipitation  at  the  watershed  scale  in  this
study (Mourre et al., 2016).

Based  on  this  study  and  previous  researches,  the
TMPA  product  is  unreliable  with  overestimations  in
high mountainous areas (Meng et al., 2014; Tang et al.,
2016). In the upper reach of the Heihe River Watershed,
‘ falseAlarms’ events are  a  main  reason  for  the  overes-
timations of the TMPA product, and there is a systemic
error of ‘falseAlarms’ events of the TMPA product. The
previous  studies  pointed  out  that  high  systematic FAR
value could be related to altitude effect in mountain re-
gions  (AghaKouchak  et  al.,  2012; Nasrollahi  et  al.,
2013; Qin  et  al.,  2014).  However,  the FAR values  are
0.2–0.4  in  Iran  with  high  elevation  of  0–5597 m  asl
(Darand  et  al.,  2017),  and  0.205–0.285  in  North  India
with  high  elevation  of  300–7000 m  asl  (Bharti  and
Singh,  2015),  while  0.540–0.990  in  the  Betwa  River
basin  in  central  India  with  low  elevation  of  91–706  m
asl (Kumar et al.,  2017). It  indicates that altitude effect
is not the main reason for high FAR values. As shown in
Table 4, the FAR values of the TRMM product are low
with  range  of  0.130–0.285  in  humid  areas,  while  high
with range of 0.380–0.990 in subhumid areas, and with
range  of  0.450–0.870  in  semiarid  areas,  respectively.
Therefore,  climate  is  more  important  than  altitude  for
the ‘falseAlarms’ of the TRMM product. Therefore, as a
mission  focusing  on  the  tropical  areas,  the  TMPA
product  mistakes  certain  meteorological  situations  for
precipitation  in  subhumid  and  semiarid  areas,  causing
significant ‘falseAlarms’ events and leading to signific-
ant  overestimations  and  unreliable  performance.  This
also causes  the  systematic  differences  in  detecting  pre-
cipitation  events  between  the  WRF  output  and  the
TMPA product,  partially  leading  to  better  performance
of the WRF output.

In the upper reach of the Heihe River Watershed, the
impacts  of  ‘ falseAlarms’ events show  significant  sea-
sonal  differences.  The  TMPA  product  performs  poorly
in snow-covered area and glaciers as ice on the ground
behaves in a  similar  way as rain or  ice drops in the at-
mosphere  in  terms  of  scattering  the  microwave  energy
(Yin  et  al.,  2004; Mourre  et  al.,  2016).  In  the  upper
reach of the Heihe River Watershed, the precipitation is
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snow and sleet in winter, and the snow-coverage reaches
its largest area in winter and smallest in summer during
the year  (Bourque and Mir,  2012).  Moreover,  there are
800  glaciers  with  an  area  of  361.69  km2 in  the  study
area (Huai et al., 2014). Thus, because of the impacts of
snow-covered areas and glaciers, the ‘falseAlarms’ events
show significant  seasonal  differences  and  lead  to  ex-
tremely  poor  performance  of  the  TMPA  product  in
winter in the upper reach of the Heihe River Watershed. 

5.3　Impacts of the bias correction method
Simple linear  bias  correction  method  significantly  im-
proves the  capabilities  in  estimating  precipitation  val-
ues  of  both  the  WRF output  and  the  TMPA product  at
the  point  scale  and  at  the  watershed  scale.  It  indicates
that removing  systematical  errors  can  significantly  im-
prove precipitation  estimations  in  arid  high  mountain-
ous areas with data scarcity.  Evaluated by hydrological
simulations, the bias-corrected WRF output is more reli-
able  than  the  gauge  dataset.  Thus,  data  merging  of  the
WRF  output  and  gauge  observations  would  provide
more  reliable  precipitation  estimations  in  arid  high
mountainous  areas.  The  improvement  of  the  TMPA
product  is  notably  larger  than  the  WRF output.  This  is
because the  larger  correlation  coefficients  between  bi-
ases  and  estimated  precipitation  of  the  TMPA  product
lead  to  better  improvements  by  linear  bias  correction
method (Fig. 2), and then resulting better improvements
and  larger  uncertainty  reduction  of  the  TMPA  product
in hydrological simulations. 

6　Conclusions

In this  study,  two  popular  kinds  of  precipitation  data-
sets,  the  reanalysis  product  downscaled  by  RCM  (the
WRF  output)  and  the  satellite  product  (the  TMPA
product)  were  evaluated  and  compared  in  the  upper
reach  of  the  Heihe  River  Watershed,  located  in  the
middle Qilian mountain, in Northwest China. Moreover,
both  datasets  were  bias-corrected  and  compared.  The
evaluations were carried out both against the ground ob-
servations  and  through  hydrological  simulations  by  the
SWAT model. The main conclusions are as follows.

(1) Although  evaluated  against  the  sparse  gauge  ob-
servations,  it  is  convincing  that  the  WRF  output  with
finer resolution performs well in both estimating precip-
itation  and  hydrological  simulation,  while  the  TMPA

product  is  unreliable  in  high  mountainous  areas.
Moreover,  bias-corrected  WRF  output  also  performs
better  than  bias-corrected  TMPA  product.  Combined
with the  previous  studies,  atmospheric  reanalysis  data-
sets  are  more  suitable  than  satellite  products  in  high
mountainous areas.

(2)  Climate  is  more  important  than  altitude  for  the
‘ falseAlarms’ events  of  the  TRMM  product.  Designed
to focus  on  the  tropical  areas,  the  TMPA product  mis-
takes  certain  meteorological  situations  for  precipitation
in subhumid  and  semiarid  areas,  thus  causing  signific-
ant ‘falseAlarms’ events and leading to significant over-
estimations  and  unreliable  performance.  This  also
causes the systemic difference in detecting precipitation
events between the WRF output and the TMPA product,
partially leading to better performance of the WRF out-
put. Moreover, because of the impacts of snow-covered
areas and glaciers, the ‘falseAlarms’ events show signi-
ficant  seasonal  differences  and  lead  to  extremely  poor
performance of the TMPA product  in winter  in the up-
per reach of the Heihe River Watershed.

(3)  ‘ FalseAlarms’ events  are  over  three  times  more
than  ‘ hits’ events  when  estimated  precipitation  values
larger than  0.285  mm  for  the  WRF  output,  and  estim-
ated  precipitation  values  larger  than  0.597  mm  for  the
TMPA product, which should be cautioned in the future
applications.

(4) Simple linear bias correction method significantly
improves the accuracy of both the WRF output and the
TMPA product in estimating precipitation values, indic-
ating that  only  removing  systematical  errors  can  signi-
ficantly  improve  precipitation  estimations  in  arid  high
mountainous areas with data scarcity. Evaluated by hy-
drological simulations, the bias-corrected WRF output is
more reliable  than  the  gauge  dataset.  Thus,  data  mer-
ging of the WRF output  and gauge observations would
provide  more  reliable  precipitation  estimations  in  arid
high mountainous areas.

The  conclusions  in  this  study  are  useful  to  improve
the  regional  climate  models  and  satellite  products  in
high mountainous  areas,  especially  for  the  improve-
ment of the continuous project of the TRMM, the Glob-
al Precipitation Measurement (GPM) project.  With sig-
nificant  improvements,  bias  correction  is  an  effective
way for data merge of different precipitation datasets in
arid high mountainous areas, which should be get more
attentions and be improved in future studies.
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