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Abstract: Agricultural innovation is important for the green transformation of agriculture. Based on the perspective of technology trans-
formation, this paper builds a theoretical analysis framework and evaluation index system for green efficiency of agricultural innovation,
and discusses the evolution laws and influencing factors of the green efficiency of China’s agricultural innovation from 2005 to 2017
utilizing  the  DEA  model,  Malmquist  index,  and  Tobit  regression  analysis.  The  results  show  that:  1)  The  overall  green  efficiency  of
China’s  agricultural  innovation  is  not  high,  the  green  efficiency  of  agricultural  innovation  in  eastern  China  is  mainly  driven  by  pure
technical efficiency, while that in central and western China is mainly driven by the scale efficiency. The green efficiency of agricultur-
al  innovation shows significant  spatial  differences,  and the  low efficiency and relatively  low-efficiency regions  moved to  central  and
southeastern China. 2) Technical progress is the main force affecting the change of green total factor productivity of China’s agricultur-
al innovation, seeing a trend of decrease followed by an increase. Pure technical efficiency and scale efficiency exhibit an increasing-de-
creasing trend, and gradually transform into key factors that restrict the improvement of the green total factor productivity of agricultur-
al innovation. 3) Agricultural technologies’ diffusion, absorption, and implementation are three influencing factors of the green efficien-
cy of agricultural innovation. The local level of informatization, the number of agricultural technicians in enterprises and institutions, av-
erage education level of residents, and the level of agricultural mechanization have positive impacts on the promotion of the green effi-
ciency of agricultural innovation, promoting the diffusion, absorption and implementation of agricultural innovation technology can sig-
nificantly improve the green efficiency of agricultural innovation.
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1　Introduction

Since  the  20th  Century,  ‘green’ and  ‘innovation’ have

gradually  evolved  into  the  themes  of  global  economic
development (Sala et al., 2015; Li and Liu, 2017). Agri-
culture  is  an  important  component  of  the  world’s eco-
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nomics. With the rapid growth of agriculture, agricultur-
al environmental  problems  have  become  of  great  con-
cern to society. Coordination between agricultural envir-
onmental  protection and agricultural  growth,  as well  as
the  mechanisms  of  agricultural  green  transformation,
have become hot issues in academic circles. As a largely
agricultural  country,  China  urgently  needs  agricultural
green transformation. Since the 18th National Congress
of the  Communist  Party  of  China,  it  has  been  men-
tioned in many No. 1 Central  Documents that  more ef-
forts should be made in terms of governance of agricul-
tural non-point source pollution and that agricultural fer-
tilizer and  pesticide  saving  measures  should  be  ex-
ecuted. No. 1 Central  Document 2020 further reiterates
that resource protection and ecology recovery should be
strengthened to promote the green development of agri-
culture. As an important way to control and reduce agri-
cultural  pollution,  agricultural  technology  innovation
has received increasing attention.  Constructing an agri-
cultural  innovation  system  has  become  an  important
policy tool for governments to solve the problems of ag-
ricultural growth  and  agricultural  environmental  pollu-
tion. To this end, it is important to clarify the green effi-
ciency  of  agricultural  innovation  and  its  development
law  in  different  areas  as  soon  as  possible  to  accelerate
China’s transformation to green agriculture.

At  present,  the  interaction  between  innovation  and
green development is not very clear. Some scholars be-
lieve that  innovation  is  triggered  by  regional  environ-
mental  regulation  (Gray  and  Shadbegian,  1998; De
Azevedo and Pereira, 2010), and regard innovation as a
process of passive adaptation in a region; others regard
innovation as  a  necessity  for  regional  development,  fo-
cus on the positive impact of innovation on the environ-
ment and discuss regional green innovation ability from
the  perspective  of  the  innovative  value  chain  (Olson,
2014; Chen  and  Lei,  2018).  Existing  literature  mainly
focuses on green agriculture and agricultural innovation;
it overlooks  agricultural  innovation  for  green  develop-
ment. Research on green agriculture has mainly focused
on  green  agriculture  evaluation  (Liu  et  al,  2020),
policies  (OECD,  2011; Mouysset,  2014),  efficiency
(Hoang and Rao, 2010; Ray and Ghose, 2014), etc., and
research  on  agricultural  innovation  has  mainly  focused
on  innovation  diffusion  (Turaeva  and  Hornidge,  2013;
Cavallo  et  al.,  2014; Spielman  and  Ma,  2016) and  in-
novation  networks  (Hermans  et  al.,  2015; Reed  and

Hickey, 2016; Gava et al., 2017; Li et al., 2018).
Innovation efficiency highlights the operational level

and  quality  of  a  regional  innovation  system  (Liu  and
Guan, 2002). Cao et al. (2015) analyzed the spatial dif-
ferentiation characteristics of the technical research and
development  efficiency  of  city  clusters  in  the  Yangtze
River Delta with the DEA method and Malmquist index.
Sheng et  al.  (2020) discussed  the  innovation  efficiency
and influence factor of five major city clusters in China’s
eastern coastal area by using the Stochastic Frontier Ap-
proach. Han  et  al.  (2017) researched  the  efficiency  of
the  whole  process  from  innovation  input  to  innovation
transformation of three provinces in northeastern China
from the perspective of the innovation system. Qin et al.
(2017) thought that  research  of  the  innovation  effi-
ciency from the perspective of the whole process of in-
novation may cover  the efficiency characteristic  of  one
link of innovation and researched the evolution charac-
teristics of  the  innovation  efficiency  of  Chinese  uni-
versities from  three  aspects,  including  knowledge  ac-
cess, technical  innovation and achievement  transforma-
tion.  These  researches  revolve  around  non-agricultural
fields, with little research on the green efficiency of ag-
ricultural innovation. China’s technologies have taken a
good lead in the world,  but China’s achievement trans-
formation rate is far lower compared to developed coun-
tries; this is attributable to the poor industry-university-
research cooperation that makes it difficult to transform
and elevate  science  and  technologies  to  advanced  pro-
ductivity  (Li  et  al.,  2018).  Therefore,  researching  the
green efficiency of regional agricultural innovation from
the  perspective  of  agricultural  innovation  technology
transformation will better explore the efficiency charac-
teristics of  each  link  of  innovation.  However,  such  re-
search has been scarcely conducted in previous literature.

In this case, what is the green efficiency of agricultur-
al innovation?  What  is  the  nature  of  the  green  effi-
ciency of  China’s  agricultural  innovation?  What  are  its
spatial differences? What are its influencing factors? To
approach these  questions,  this  paper  builds  an  evalu-
ation index system of the green efficiency of agricultur-
al innovation  based  on  definitions  and  theoretical  dis-
cussions, explores the pattern and evolution of the green
efficiency  of  agricultural  innovation  using  the  DEA
model and  Malmquist  index,  and  analyzes  the  influen-
cing factors  on  the  green  efficiency  of  agricultural  in-
novation through Tobit regression. As a result, the evol-
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ution laws of the green efficiency of China’s agricultur-
al  innovation  are  summarized,  providing  references  for
agricultural green transformation in different regions of
China.

2　Theoretical Analysis Framework

2.1　Definition of the green efficiency of agricultur-
al innovation
There are mainly two views on understanding the defin-
ition  of  innovation  in  the  academic  circle.  One  view is
exploring  the  relationship  between  subjects  during  the
technical  research  and  development  process  based  on
the Theory of Knowledge Production (Jiao et al., 2019;
Zhou et al., 2019), and such research mainly focuses on
the  production  end  of  innovation  knowledge;  the  other
view is exploring the diffusion, adoption and economic
benefits of  innovation  achievements  based  on  the  The-
ory of Diffusion of Innovations (Li and Luo, 2016; Shi
et  al.,  2016),  and  such  research  mainly  focuses  on  the
application end  of  innovation  knowledge.  The  innova-
tion theory of  Schumpeter  points  out  that  innovation is
establishing  a  new  ‘production  function’ to  introduce
the ‘new combination’ of production elements and pro-
duction conditions  into  the  production system (Miao et
al., 2011). This paper is more inclined to understand ag-
ricultural  innovation  from  the  knowledge  application
end and thinks  that  agricultural  innovation  is  a  process
where regional rural households change the original ag-
ricultural  production  relations  with  new  agricultural
technologies  (OECD,  2013).  Rural  households  are  the
subject  in  this  process,  and  the  innovation  behavior  of
regional rural  households  will  ultimately  drive  the  in-
novation of  the  entire  agricultural  level.  Regional  tech-
nology achievement is the basis of innovation as well as
the  source  of  agricultural  innovation  technologies.

Green  development  of  agriculture  cannot  be  separated
from agricultural  innovation.  The  significance  of  agri-
cultural innovation  for  green  development  of  agricul-
ture  lies  in  that  rural  households  change  the  traditional
agricultural  production  modes,  optimize  the  input-out-
put relation of agricultural production and realize a win-
win situation  of  agricultural  economic  benefits  and  en-
vironmental benefits with new agricultural technologies
and  new  achievements  (Fig.  1). Thus,  the  essence  of
green efficiency of agricultural innovation is a new-type
input-output relation  formed  by  incorporating  agricul-
tural technical  innovation  into  the  agricultural  produc-
tion system.

2.2　Evaluation indexes  of  green  efficiency  of  agri-
cultural innovation
The  input-output  relationship  is  used  to  determine  the
green  efficiency  of  agricultural  innovation.  The  lesser
the  input  and  non-expected  output,  and  the  greater  the
expected output,  the higher  the efficiency (Fig.  1).  The
green efficiency of agricultural innovation is mainly re-
flected in  economic  efficiency  and  environmental  effi-
ciency: 1) Economic efficiency is an important goal for
both  traditional  agriculture  and  green  agriculture;
however, green agriculture pursues more green econom-
ic benefits.  The  economic  connotation  of  green  effi-
ciency  of  agricultural  innovation  is  to  maximize  the
green  economic  benefits  under  the  given  investment
level.  2)  Agricultural  green  production  should  ensure
both economic  benefit  and  eco-environmental  protec-
tion. The environmental connotation of green efficiency
of agricultural innovation is to minimize agricultural en-
vironmental  pollution  at  the  given  input  and  economic
output levels. Based on input and output processes, this
paper  creates  an  evaluation  index  system for  the  green
efficiency of agricultural innovation (Table 1). Input in-
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Fig. 1    Theoretical analytical framework for green efficiency of agricultural innovation
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dexes comprise land, labor, energy and innovation, and
expected  output  indexes  comprise  economic  output
(measured  by  agricultural  green  GDP),  and  non-expec-
ted output indexes mainly refer to environmental output
(measured  by  agricultural  pollutants,  such  as  Chemical
Oxygen  Demand  (COD),  total  phosphorus  (TP),  and
total  nitrogen  emissions  (TN)).  The  agriculture  in  this
paper refers to general agriculture (agriculture, forestry,
animal  husbandry,  and fishery).  It  should be noted that
agricultural  green  GDP  is  calculated  mainly  from  the
perspective  of  ecological  value  and  carbon  emissions,
while COD, TP, and TN emissions focus on the negat-
ive impact introduced by organic pollution during agri-
cultural  production.  Essentially,  they  complement  each
other.

2.3　 Influencing factors  of  green  efficiency  of  agri-
cultural innovation
The diffusion, absorption, and transformation of agricul-
tural technology directly impact agricultural innovation,
which, in turn, will alter the input-output relationship of
agricultural production,  further  affecting the green effi-
ciency of agricultural innovation. Based on the Region-

al Innovation Theory and Technology Diffusion Theory,
we have  built  a  multi-stage  theoretical  analysis  frame-
work of  influencing factors  of  green efficiency of  agri-
cultural innovation featuring ‘diffusion environment-ab-
sorption  capacity-implementation  foundation’ from  the
technology  transformation  perspective  (Fig.  1).  ‘Diffu-
sion  environments’ affect  the  flow  of  new  agricultural
technologies;  ‘Absorption  capacity’ reflects the  poten-
tial of farmers to learn new technologies; ‘Implementa-
tion foundation’ provides conditions for the transforma-
tion of  new agricultural  technologies.  The three  factors
affect the ability of agricultural scientific and technolo-
gical  achievements  to  metamorphose  into  agricultural
green productivity and have a significant impact on the
green efficiency of agricultural innovation. The quantit-
ative  indexes  are  shown  in Table  2. Innovation  diffu-
sion is correlated with the local development of inform-
ation  technology  and  expressed  in  the  throughput  of
postal and telecommunication services per capita, as the
better  the  development  of  information  technology,  the
stronger  the  flow  capacity  of  new  knowledge  and  new
technology  in  a  region.  The  extension  of  agricultural
technology is conducive to the diffusion of new agricul-

 
Table 1    The evaluation indexes of green efficiency of agricultural innovation
 

Index type Consideration Selected index

Input Land input Sown area of farm crops / 1000 ha

Labor input Number of agricultural, forestry, animal husbandry, and fishery employees / 10000 people

Energy input
Energy consumption of agriculture, forestry, animal husbandry, and fishery / 10000 t standard coal); Pesticide
usage (t); Application amount of chemical fertilizer / 10000 t; Agricultural water consumption / 100 million m3

Innovation input Number of patents and technology achievements in agriculture, forestry, animal husbandry, and fishery

Desirable output Economic output Agricultural green GDP / 10000 yuan (RMB)

Unexpected output Environment output Agriculture COD, TP, and TN emissions / 10000 yuan (RMB)

 
Table 2    The influence factors and descriptive statistics of green efficiency of agricultural innovation
 

Influencing mechanism Specific index Average value
Standard
deviation

Min. Max.

Diffusion environment Total postal and telecommunication services/total population /
(yuan (RMB)/person (X1))

1682.28 1036.42 454.54 6255.56

The number of agricultural technicians in enterprises and
institutions/the number of employees in agriculture, forestry,
animal husbandry and fishery / (person/10000 person (X2))

34.824 21.362 104.802 7.808

Absorption capacity Average years of schooling / yr (X3) 8.61 1.22 3.74 12.50

Rural per capita net income / yuan (RMB) (X4) 7994.64 4673.01 1876.96 27825.00
Implementation foundation Total power of agricultural machinery/sown area of farm

crops / (kW/ha (X5))
6.22 3.39 2.08 24.63

Fiscal expenditure for agriculture, forestry and water
conservancy/total output value of agriculture, forestry, animal
husbandry and fishery / % (X6)

0.20 0.24 0.02 1.68
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tural technology. Agricultural technicians of enterprises
and institutions  undertake  the  task  of  agricultural  tech-
nology extension, playing an important role in the diffu-
sion  of  agricultural  technology.  Innovation  absorption
ability is represented by average years of education and
rural per capita net income, as the higher the education
level  of  rural  people,  the  greater  their  ability  to  learn
new  technologies  (Abebe  et  al.,  2013);  the  higher  the
rural  income  level,  the  more  capable  rural  people  will
become  to  bear  the  opportunity  costs  and  innovation
risks  inherent  in  the  adoption  of  new  technologies
(Wegren,  2008). The  foundation  for  innovation  imple-
mentation is  expressed  by  the  agricultural  mechaniza-
tion  level  and  financial  support  for  agriculture,  as  the
implementation  of  new  agricultural  technologies  sets
higher requirements for local agriculture. The higher the
level of  agricultural  mechanization  and  the  more  com-
plete  the  agricultural  infrastructure  construction,  the
more conducive  the  environment  for  the  implementa-
tion of new technologies.

3　Research Method and Data Sources

3.1　Research method
3.1.1　Calculation of agricultural green GDP
Green GDP is regarded as an important index to meas-
ure  the  coordinated  development  of  the  economy  and
environment  (Wang,  2016). Based  on  the  emergy  ana-
lysis, the accounting method of green GDP was put for-
ward  (Zhang  et  al.,  2010; Kunanuntakij  et  al.,  2017),
where Li et al. (2016) introduced it to calculate agricul-
tural green GDP. The formula is as follows:
GDPg =GDPt −GDPe = Vp−Cp+Ves−Ce (1)

where GDPg represents  agricultural  green  GDP, GDPt
and GDPe stand for  general  agriculture GDP and agro-
ecology  GDP,  respectively, Vp stands for  the  total  out-
put of farming, forestry, animal husbandry, and fishery,
Cp represents the intermediate consumption of farming,
forestry,  animal  husbandry,  and  fishery, Ves represents
the value of agro-ecosystem services, and Ce represents
the  agriculture  ecological  environmental  cost.  Data  on
the  total  output  of  farming,  forestry,  animal  husbandry
and  fishery,  and  the  intermediate  consumption  of  the
same, are extracted from the statistical  yearbook.  Next,
this  paper  will  next  deal  with  calculating  the  service
value of the agro-eco system and agriculture ecological

environmental cost.
(1) Ves is calculated by the following formula:

Ves = I×V =
K

1+ae−b(1/En−3)
×

m∑
i=1

n∑
j=1

A jEi j (2)

where I represents public acceptance of agro-ecological
value at the given stage, and V represents the total eco-
logical service value of the regional agricultural system.
To facilitate calculation, we regard K, a, and b as 1, the
development stage index as the pearl growth curve, and
En as the Engel coefficient (Li, 2002). Aj represents the
area of j-type agricultural resources. The value of agro-
ecological services  represents  the  ecological  value  pro-
duced during agricultural activities in farmlands, forests,
and water areas; therefore, n = 3. In this paper, the value
produced  by  tea  gardens,  orchards,  and  aquiculture
stands for the value produced by forest and water areas.
Eij represents  the  price  unit  of  ecological  service i re-
garding  agricultural  resource j.  According  to Xie  et  al.
(2003) research, there  are  nine  types  of  ecological  ser-
vice; therefore, m = 9.

The formula for Eij is as follows:

Ei j = ei j×Ea = ei j×
1
7

k∑
t=1

mtqt pt

M
(3)

where eij represents  the  value  equivalent  to  ecological
service i of  agricultural  resource j,  according  to  the
value  equivalence  scale  provided  by Xie  et  al.  (2003),
Ea represents the value of food production per unit area,
t represents a  type  of  grain  crop  (this  paper  only  in-
cludes  the  most  widely  grown  crops  in  China,  such  as
wheat,  paddy,  corn,  and  soybean;  therefore, k =  5), mt
represents the growing area of the t-type crop, qt repres-
ents  the  per  unit  yield  of  the t-type  crop, pt represents
the  average  price  of  the t-type  crop,  and M represents
the sum of the growing area of the t-type crop.

(2) The formula for Ce is given below:
Ce =Ls+Lg+L f +Lr = A1(E1S 1+E2S 2)+

Pc(a1T1+a2T2)+A3Vp+Lr
(4)

where Ls, Lg and Lf are the environmental cost of farm-
ing,  animal  husbandry  and  aquaculture  respectively, Lr
is ecological  value loss caused by the decrease of  agri-
culture area  due  to  the  adjustment  of  agriculture  re-
sources  (it  is  the  accounting  result  of  formulas  (2)  and
(3)), A1 is  farmland  area, E1 and E2 are ecological  ser-
vice  price  regarding  biodiversity  protection  and  food
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production, S1 and S2 are the  loss  rates  of  farm  biod-
iversity  and  food  production  respectively  (we  take S1
and S2 as 35.4% and 2.04% (Li et al., 1999)), T1 and T2
are the emissions of  two greenhouse gases respectively
(Hu  and  Wang,  2010),  as  animal  husbandry  will  emit
greenhouse gas of CH4 and N2O, a1 and a2 are conver-
sion  coefficients  from  the  two  greenhouse  gases  and
CO2 (Cao, 1998), Pc is economic loss per unit of green-
house gas,  which  is  almost  150  yuan  (RMB)/t  accord-
ing  to  the  2007  World  Bank  report, A3 is  the  area  of
aquaculture, and Vp is the eutrophication cost per unit of
aquaculture  area,  which  is  taken  as 4192 yuan
(RMB)/ha (Yang et al., 2012).
3.1.2　List analysis
We calculate chemical oxygen demand, total phosphor-
us  and  total  nitrogen  emissions  of  agriculture  by  list
analysis. The formula (Chen et al., 2006) is as follows:

Ei j = EUij×ρij (1−ηi)Ci j
(
EUi j,S

)
(5)

where Eij is  the  emission  of  contaminant j in  district i,
EUij is the statistical index of contaminant j in district i,
ρij is the pollutant-producing coefficient of contaminant
j in  district i, ηi is the  utilization  rate  of  the  related  re-
source in district i, and Cij is the emission coefficient of
contaminant j in district i, which depends on the charac-
teristics of the contaminant and the district, ρij, ηi and Cij
can be  decided according to  the  relevant  literature  (Lai
et al., 2004; Liang et al., 2010).
3.1.3　DEA model
Data  Envelopment  Analysis  (DEA)  is  a  nonparametric
method  for  analyzing  relative  input-output  efficiency
(Cao  et  al.,  2015).  Suppose  we  wish  to  evaluate  the
green efficiency of agricultural  innovation in K regions
and there are L input indexes and M output indexes; we
assume that Xij stands for the input of factor i in unit j,
and yjm stands  for  the  output  of  factor m in  unit j.  The
following are the DEA models for unit n (n=1, 2,..., K)
(Wang et al., 2012):

min
[
θ−ε
(
eT

1 s−+ eT
2 s+
)]

s.t.
K∑

j=1

X jlλ j+ s− = θXn
1 l = 1,2, . . . ,L

K∑
j=1

y jmλ j− s+ = yn
m m = 1,2, . . . ,M

λ ⩾ 0 n = 1,2, . . . ,K

(6)

In  the  formula, θ (0  < θ ≤ 1)  is  the  combined  effi-

∑K

j=1
λj= 1

ciency  index, λj (λj ≥  0)  is  the  weight  variable, s- (s- ≥
0)(is  the  slack  variable, s+ (s+ ≥ 0)  is  the  surplus  vari-
able,  and ε is  Archimede’s  infinitely  small  quantity.
e1

T = (1, 1, …, 1) ∈Em and e2
T= (1, 1, …, 1) ∈Em are

the  unit  vector  space of  dimension m and dimension k.
The closer θ is to 1, the higher the efficiency; the closer
θ is  to  0,  the  lower  the  efficiency. θ =  1  indicates  that
the  green  efficiency  of  agricultural  innovation  is  at  the
forefront of  optimal  production  with  the  highest  com-
bined  efficiency.  The  constraint  is  added  to
formula (6) to transform it into a model with variable re-
turns  to  scale  (VRS).  The VRS model  is  used to  break
the  combined  efficiency  into  pure  technical  efficiency
and scale efficiency.

The DEA model can only be used to compare the rel-
ative efficiency  of  different  assessment  units,  not  effi-
ciency at different times. As such, it  is necessary to in-
troduce  the  Malmquist  Index  to  study  the  dynamic
change of efficiency at different times. According to the
rational  exponent  theory,  the  geometric  mean  between
two periods  is  the  change of  the  total  factor  productiv-
ity exponent. Under the VRS assumption, the change of
the Malmquist  exponent  can  be  divided  into  technolo-
gical  change  (techch),  pure  technical  efficiency  change
(pech),  and  scale  efficiency  change  (sech).The  formula
is as follows (Kortelainen, 2008; Guo et al., 2009):
t f pch = techch · e f f ch = techch · pech · sech (7)
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where tfph is the change of green total factor productiv-
ity of the agricultural innovation; (xt, yt) and (xt+1, yt+1)
is  taken as the relation between the input and output at
the t and t + 1 stages, the change in the relation between
input and output from (xt, yt) to (xt+1, yt+1) is the change
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in total factor productivity; Dc
t (xt, yt) and Dc

t+1(xt+1, yt+1)
are  distance  functions  between  real  output  and  optimal
output based on constant returns to scale; Dv

t (xt, yt) and
Dv

t+1(xt+1, yt+1) are  distance  functions  between  real  out-
put  and  optimal  output  based  on  variable  returns  to
scale. When tfph techch, pech, and sech are greater than
1, it indicates that total factor productivity, technologic-
al progress,  pure  technical  efficiency,  and  scale  effi-
ciency tend to increase; else, it decreases.
3.1.4　Tobit regression
As  the  efficiency  resulting  from  the  DEA  model  is
between 0  and  1,  the  dependent  variable  of  the  regres-
sion formula is cut off. If we use the normal least-square
theory  in  regression,  the  regression  parameter  will  be
biased (Greene,  1981).  To solve  this  problem,  we used
the  Tobit  regression  model  to  analyze  the  influence
factors of  the  green  efficiency  of  agricultural  innova-
tion (Adesina and Zinnah, 1993).

Yi =

{
Y∗i > 0
0,Y∗i

Y∗i =
n∑

i=1

aiXi+bi (i = 1,2,3, . . . ,n) (10)

where Yi
* is the dependent variable, Yi is the green effi-

ciency  of  agricultural  innovation, Xi is  an  independent
variable, ai is the coefficient of association, and bi is an
error term.

3.2　Data sources
The statistical data in this paper mainly comes from the
China Agriculture  Yearbook (China Agricultural  Year-
book  Editorial  Committee,  2006–2018), China  Rural
Statistical  Yearbook (National  Statistical  Bureau  of
China,  2006–2018a), Yearbook of  Science and Techno-
logy  of  China (National  Statistical  Bureau  of  China,
2006–2018b), and China Statistical Yearbook (National
Statistical Bureau of China, 2006–2018c). The numbers
of  agricultural  technology  patents  and  technological
achievements in agriculture, forestry, animal husbandry,
and fishery are from the CNKI (https://www.cnki.net/).
Since  agricultural  COD,  TP,  and  TN  are  non-expected
output indexes, they were positively transformed by ad-
opting the inverse in the calculation (Cheng et al., 2016;
Xie  et  al.,  2017).  After  transformation,  these  indicators
can be treated as expected indicators. Additionally, con-
sidering  that  the  DEA  model  has  certain  requirements
for input and output quantity, that is, the total number of
input and output indicators is less than or equal to one-
third of the number of decision units (Liu et al.,  2018),

we  take  the  environmental  output  as  a  comprehensive
index and calculate it  by the entropy method (Zhang et
al.,  2008; Wu and Wu,  2009; Ren et  al.,  2017).  In  this
paper,  the  scope  of  China’s  three  major  zones  is  based
on the classification of China Statistical  Yearbook,  and
eastern  China  includes  Liaoning,  Beijing,  Tianjin,
Hebei,  Shandong,  Jiangsu,  Shanghai,  Zhejiang,  Fujian,
Guangdong, Guangxi,  and  Hainan;  central  China  in-
cludes Shanxi, Inner Mongolia, Heilongjiang, Jilin, An-
hui, Henan, Jiangxi, Hubei, and Hunan, and the western
China  includes  Shaanxi,  Gansu,  Qinghai,  Ningxia,
Xinjiang,  Sichuan,  Chongqing,  Yunnan,  Guizhou,  and
Tibet. The missing data of Tibet for individual years are
fixed  using  the  interpolation  method. Statistical Year-
book does not contain Hong Kong, Macao, and Taiwan
data, so they are not considered in this study.

4　Results

4.1　Lateral  static  evaluation  of  green  efficiency  of
agricultural innovation
4.1.1　Green efficiency measures for the agricultural
innovation
The score of green efficiency of agricultural innovation
of 31 areas in China in 2005, 2010, and 2017 (Table 3)
were calculated with DEAP2.1 software,  and presented
the following features:

First, the  overall  green  efficiency  of  agricultural  in-
novation was low, while the green efficiency of agricul-
tural innovation  in  most  areas  did  not  reach the  optim-
um level. The average green efficiency of China’s agri-
cultural innovation in 2005, 2010, and 2017 was 0.856,
0.907,  and  0.751,  respectively,  which  means  that  they
only accounted for 85.6%, 90.7%, and 75.1% of the op-
timum level, leaving much room for improvement. The
numbers of areas that reached an efficiency level of 1 in
2005,  2010,  and  2017  were  9,  14,  and  7,  respectively,
accounting for  29.0%,  45.2%,  and  22.6%.  The  effi-
ciency  levels  of  Beijing,  Shanghai,  Liaoning,  Hainan,
and Tibet in the selected years were about 1, indicating
that in these regions agricultural innovation to green de-
velopment was efficient, without redundant input or in-
sufficient  output,  whilst  the  efficiency  levels  of  most
areas were relatively low, suggesting fluctuation.

Second,  the  impact  of  pure  technical  efficiency  and
scale efficiency on comprehensive efficiency were quite
different across  various  regions.  During  the  investigat-
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ive years, the mean value of pure technical efficiency in
eastern  China  was  higher  than  that  of  scale  efficiency.
At  the  provincial  level,  except  in  2017  when  the  scale
efficiency  in  Tianjin  was  a  little  higher  than  the  pure

technical  efficiency,  the  pure  technical  efficiency  was
either  larger  or  equal  to  the  scale  efficiency  in  all  the
other regions of eastern China in other years;  the mean
value  of  pure  technical  efficiency  in  central  China  was

 
Table 3    The score of green efficiency of agricultural innovation in different areas from 2005–2017
 

DUM
2005 2010 2017

crste vrste scale rts crste vrste scale rts crste vrste scale rts

Beijing 1.000 1.000 1.000 – 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Tianjing 1.000 1.000 1.000 – 1.000 1.000 1.000 – 0.537 0.538 0.998 irs

Hebei 0.850 1.000 0.850 drs 0.925 1.000 0.925 drs 0.625 0.819 0.764 drs

Shanxi 0.501 0.501 0.999 – 0.622 0.781 0.796 drs 0.464 0.465 0.998 drs

Inner Mongolia 0.926 1.000 0.926 drs 0.970 0.971 0.999 irs 0.841 0.854 0.984 drs

Liaoning 1.000 1.000 1.000 – 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Jilin 0.862 0.938 0.919 drs 0.907 0.908 0.998 irs 0.662 0.697 0.951 drs

Heilongjiang 0.802 1.000 0.802 drs 0.736 0.743 0.991 drs 0.834 1.000 0.834 drs

Shanghai 1.000 1.000 1.000 – 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Jiangsu 0.825 1.000 0.825 drs 1.000 1.000 1.000 – 0.900 1.000 0.900 drs

Zhejiang 0.984 1.000 0.984 drs 1.000 1.000 1.000 – 0.581 1.000 0.581 drs

Anhui 0.942 0.978 0.963 drs 0.883 0.903 0.978 drs 0.462 0.575 0.803 drs

Fujian 0.962 1.000 0.962 drs 1.000 1.000 1.000 – 0.902 1.000 0.902 drs

Jiangxi 1.000 1.000 1.000 – 0.967 0.967 1.000 – 0.552 0.556 0.993 drs

Shandong 0.865 1.000 0.865 drs 0.917 1.000 0.917 drs 0.628 1.000 0.628 drs

Henan 0.853 1.000 0.853 drs 0.941 1.000 0.941 drs 0.608 1.000 0.608 drs

Hubei 0.856 0.981 0.873 drs 0.944 1.000 0.944 drs 0.733 1.000 0.733 drs

Hunan 0.849 0.930 0.913 drs 1.000 1.000 1.000 – 0.496 0.562 0.883 drs

Guangdong 0.845 1.000 0.845 drs 0.787 1.000 0.787 drs 0.600 1.000 0.600 drs

Guangxi 0.914 1.000 0.914 drs 0.837 0.895 0.934 drs 0.603 0.925 0.652 drs

Hainan 1.000 1.000 1.000 – 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Chongqing 0.771 0.842 0.916 drs 0.672 0.822 0.818 drs 0.815 0.905 0.900 drs

Sichuan 1.000 1.000 1.000 – 1.000 1.000 1.000 – 0.802 1.000 0.802 drs

Guizhou 0.670 0.743 0.902 drs 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Yunnan 0.645 0.645 1.000 – 0.653 0.654 0.998 irs 0.651 0.662 0.984 drs

Tibet 1.000 1.000 1.000 – 1.000 1.000 1.000 – 1.000 1.000 1.000 –

Shaanxi 0.778 0.778 0.999 – 1.000 1.000 1.000 – 0.942 1.000 0.942 drs

Gansu 0.403 0.405 0.994 drs 0.451 0.556 0.812 drs 0.330 0.385 0.858 drs

Qinghai 1.000 1.000 1.000 – 1.000 1.000 1.000 – 0.793 0.799 0.992 irs

Ningxia 0.485 0.500 0.970 drs 0.901 0.919 0.980 drs 1.000 1.000 1.000 –

Xijiang 0.960 1.000 0.960 drs 1.000 1.000 1.000 – 0.935 0.950 0.984 drs

Average of the eastern 0.937 1.000 0.937 0.956 0.991 0.964 0.781 0.940 0.835

Average of the central 0.843 0.925 0.916 0.886 0.919 0.961 0.628 0.745 0.865

Average of the western 0.771 0.791 0.974 0.868 0.895 0.961 0.827 0.870 0.946

Average of whole country 0.856 0.911 0.943 0.907 0.939 0.962 0.751 0.861 0.880
Notes: DUM represents the area, crste, vrste and scale represents comprehensive efficiency, pure technical efficiency, and scale efficiency, respectively; rts
represents the change of scale efficiency; –, irs and drs represents the same scale efficiency, increasing scale efficiency and decreasing scale efficiency
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lower than that of scale efficiency, except 2005 when it
was  a  little  higher  than  that  of  scale  efficiency.  At  the
provincial  level,  the number of regions where the scale
efficiency was higher than the pure technical efficiency
in central China surpassed the number of regions where
the pure technical efficiency was higher than scale effi-
ciency,  except  2005;  In  western China,  the  mean value
of scale efficiency was higher than that of the pure tech-
nical  efficiency in all  years,  and the number of  regions
where the scale efficiency was higher than pure technic-
al  efficiency  surpassed  the  number  of  regions  where
pure technical  efficiency  was  higher  than  scale  effi-
ciency. In conclusion, the green efficiency of agricultur-
al innovation in eastern China is mainly driven by pure
technical efficiency, while in central and western China;
scale efficiency is the main driver.

Third,  although  scale  efficiency  shows  a  high  level,
we see  the  same  returns  to  scale  and  diminishing  re-
turns  to  scale  in  most  areas.  In  2005,  2010,  and  2017,
the average value  of  scale  efficiency of  agricultural  in-
novation  to  green  development  in  China  was  0.943,
0.962,  and  0.880,  respectively,  which  were  higher  than
the  average  value  of  pure  technical  efficiency  in  the
same period; except for Inner Mongolia, Jilin, and Yun-
nan in 2010, Tianjin and Qinghai in 2017, others show
the characteristics of same returns to scale and diminish-
ing  returns  to  scale,  which  indicates  that  scaling  up
alone  will  fail  to  continually  promote  the  efficiency  of
scale during the investigation period. Therefore, the fo-
cus of regional agricultural green development needs to
shift  from the  ‘heavy investment’ to ‘structural  adjust-
ment’ in the future, and the allocation of agricultural in-
novation  resources  must  be  optimized  continuously,
with much attention channeled to the promotion and ap-
plication  of  new  agricultural  technology  in  the  green
transformation  of  agricultural.  This  suggests  that  it  is

only when  pure  technical  efficiency  and  scale  effi-
ciency are  brought  into full  play that  can they promote
the continued improvement of green efficiency of China’s
agricultural innovation.
4.1.2　Spatial  pattern  of  green  efficiency  of  China’s
agricultural innovation
Using the Arc GIS10.2 software, the comprehensive ef-
ficiency of China’s agricultural  innovation to green de-
velopment  in  2005,  2010,  and  2017  was  divided
between areas  of  high  efficiency,  relatively  high  effi-
ciency,  relatively  low  efficiency,  and  low  efficiency
through the Jenks Nature Breaks method (Fig. 2).

Fig.  2 indicates  that  the  green  efficiency  of  China’s
agricultural  innovation  has  an  obvious  spatial  variation
where low efficiency and relatively low-efficiency areas
move to central and southeast China. In 2005, high effi-
ciency and relatively high-efficiency areas were mainly
concentrated  in  the  northwest,  central,  and  east  China
and areas  of  low  efficiency  and  relatively  low  effi-
ciency  were  mainly  distributed  in  mid-western  China,
especially in Gansu, Ningxia, and Shanxi. In 2010, high-
efficiency  areas  expanded  to  Hunan,  Yunnan,  and
Shaanxi,  with  Guangxi  and  Guangdong  changing  from
high-efficiency  areas  to  low-efficiency  areas.  The  low-
value areas  of  green  efficiency  of  agricultural  innova-
tion show a tendency of  moving to southeast  China.  In
2017, high-efficiency areas decreased sharply, and low-
efficiency areas  and  relatively  low-efficiency  areas  ex-
panded rapidly to central and southeast China. Low effi-
ciency  and  relatively  low-efficiency  areas,  except  for
Hubei  cover  the  central  areas.  The  low-value  areas  of
green efficiency  of  agricultural  innovation  show  con-
centrated distribution in central and southeast China.

Central  China  has  a  large  agricultural  production
scale but  insufficient  industry-university-research  co-
operation  in  the  aspect  of  agriculture,  thus  resulting  in

 

High-efficiency areas Relatively high-efficiency areas Relatively low-efficiency areas Low-efficiency areas No dataLegend

a. 2005 b. 2010 c. 2017

0 1000 km
GS(2019)1833

Fig. 2    Spatial differences in green efficiency of agricultural innovation in 2005 (a), 2010 (b), and 2017 (c)
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low contributions of agricultural innovation to the green
development  of  agriculture  (Qin  et  al.,  2017).  During
the  years  where  the  national  agricultural  innovation
level was  low,  the  green  efficiency  of  agricultural  in-
novation  in  central  China  was  still  at  a  medium-high
level because of the huge agricultural economic output.
However, with the transformation of traditional agricul-
ture  to  green agriculture,  this  disadvantage has  become
more prominent. During the transformation to green ag-
riculture, central China may experience a risk of ‘locked
low-end  paths’; thus,  steadily  promoting  the  improve-
ment  of  the  green  efficiency  of  agricultural  innovation
in China’s large agricultural production provinces is vi-
tal for the transformation to green agriculture. In south-
eastern  China,  urbanization  and  industrialization  levels
are  high,  so  urban  and  industrial  development  leaves
few opportunities for agricultural development. Li et al.
(2012) carried out research and found that the crop yield
in southeastern China was on the decline; hence, its pos-
ition  of  the  ‘land  of  fish  and  rice’ was gradually  re-
placed. Meanwhile, in southeastern China, technical re-
search  and  development  levels  are  high,  a  plethora  of
agricultural  technology  achievements  have  been  made,
and innovation input in agricultural green production in
this region is redundant. Therefore, promoting the cross-
regional  transformation  of  agricultural  innovation
achievements  can  improve  the  entire  green  level  of
China’s agriculture to some extent.

4.2　Vertical dynamics evaluation of green efficiency
of agricultural innovation
To analyze the dynamic changes in the green efficiency
of  China’s  agricultural  innovation  from  2005–2017
more precisely,  the  Malmquist  Total  Factor  Productiv-
ity Index was applied to resolve the change of green ef-
ficiency  of  agricultural  innovation  into  the  changes  of
technical  progress,  pure  technical  efficiency,  and  scale
efficiency  (Table  4).  The  calculation  results  have  the
following features:

First,  technical  progress  is  the  main  force  affecting
the green total factor productivity of agricultural innova-
tion.  From  2005  to  2010,  the  total  factor  productivity
dropped  by  0.6%,  wherein  technical  progress  dropped
by  1.9%,  pure  technical  efficiency  increased  by  1.0%,
and  scale  efficiency  increased  by  0.4%,  indicating  that
technical  progress  had  the  most  impact  on  total  factor
productivity  and  determined  the  change  direction  of

total  factor  productivity.  From  2010  to  2017,  the  total
factor productivity increased by 3.2%, wherein technic-
al progress increased by 6.4%, pure technical efficiency
dropped by 1.5%, scale efficiency dropped by 1.4%, in-
dicating that technical progress still contributed the most
to  total  factor  productivity.  In  the  three  major  zones,
from 2005 to  2010,  technical  progress  in  eastern,  cent-
ral,  and  western  China  dropped  by  2.0%,  1.4%,  and
2.2%,  pure  technical  efficiency  increased  by –0.2%,
0.2%, and 3%, and scale  efficiency increased by 0.6%,
1%,  and –0.3%.  Total  factor  productivity  dropped  by
1.7% in eastern China and 0.2% in central China but in-
creased by 0.4% in western China. From 2010 to 2017,
technical progress in eastern, central, and western China
increased by 7.6%, 7.0%, and 4.3%, pure technical effi-
ciency dropped  by  0.9%,  3.3%,  and  0.6%,  scale  effi-
ciency  dropped  by  2.3%,  1.6%,  and  0.2%,  and  total
factor productivity increased by 4.2%, 1.8%, and 3.4%.
The above analysis reveals that technical progress is the
most  important  factor  affecting  the  change  of  total
factor  productivity,  except  from  2005–2010  when  the
impact of  technical  progress  on  the  total  factor  pro-
ductivity was a little lower than those of pure technical
efficiency  in  western  China.  In  terms  of  provinces,
where  technical  progress  contributed  the  most  to  total
factor  productivity,  was  18  from 2005 to  2010,  and  25
from 2010 to 2017, suggesting the pivotal  role of tech-
nical  progress  in  the  growth  of  the  green  total  factor
productivity of agricultural innovation.

Second,  total  factor  productivity,  technical  progress,
pure technical  efficiency,  and  scale  efficiency  all  dis-
play stage characteristics, and decreasing pure technical
efficiency  and  scale  efficiency  have  gradually  become
key factors  restricting  the  growth  of  total  factor  pro-
ductivity.  From  2005  to  2010,  from  the  perspective  of
the  average  level  of  the  country  and  the  three  major
areas,  technical  progress  indicated  a  downtrend;  pure
technical efficiency  and  scale  efficiency  display  an  in-
crease,  except  with  pure  technical  efficiency  in  eastern
China  and  scale  efficiency  in  western  China.  From the
perspective of provinces,  the number of provinces with
decreased  technical  progress  was  21,  accounting  for
67.7%.  The  number  of  provinces  with  increased  pure
technical  efficiency  and  scale  efficiency  was  8  and  15
respectively, more  than  the  number  of  areas  with  de-
creased pure  technical  efficiency  (6)  and  scale  effi-
ciency (4). Within this period, the improvement of total
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factor  productivity  depended  on  the  improvement  of
pure  technical  efficiency  and  scale  efficiency.  From
2010–2017,  the  technical  progress  of  the  country  and
three major areas appeared to be increasing, while pure

technical  efficiency  and  scale  efficiency  displayed  a
downtrend. From the perspective of provinces, the num-
ber  of  areas  with  increased  technical  progress  was  28,
accounting for  90.3%.  The  number  of  areas  that  re-

 
Table 4    Dynamic decomposition of green efficiency of China’s agricultural innovation from 2005 to 2017
 

DUM
2005–2010 2010–2017

techch pech sech tfpch techch pech sech tfpch

Beijing 0.826 1.000 1.000 0.826 1.000 1.000 1.000 1.000

Tianjing 0.940 1.000 1.000 0.940 1.189 0.915 1.000 1.088

Hebei 0.989 1.000 1.017 1.005 1.074 0.972 0.973 1.016

Shanxi 0.999 1.093 0.956 1.043 1.090 0.929 1.033 1.045

Inner Mongolia 1.001 0.994 1.015 1.010 1.104 0.982 0.998 1.081

Liaoning 0.999 1.000 1.000 0.999 1.083 1.000 1.000 1.083

Jilin 0.959 0.994 1.017 0.968 1.056 0.963 0.993 1.010

Heilongjiang 0.963 0.942 1.043 0.947 1.041 1.043 0.976 1.060

Shanghai 1.081 1.000 1.000 1.081 1.153 1.000 1.000 1.153

Jiangsu 0.979 1.000 1.039 1.017 1.042 1.000 0.985 1.026

Zhejiang 0.994 1.000 1.003 0.998 1.103 1.000 0.925 1.020

Anhui 0.997 0.984 1.003 0.984 1.066 0.938 0.972 0.972

Fujian 0.994 1.000 1.008 1.002 1.047 1.000 0.985 1.032

Jiangxi 0.958 0.993 1.000 0.952 1.061 0.924 0.999 0.979

Shandong 1.006 1.000 1.012 1.018 1.039 1.000 0.947 0.984

Henan 0.986 1.000 1.020 1.006 1.066 1.000 0.940 1.002

Hubei 1.008 1.004 1.016 1.028 1.080 1.000 0.965 1.042

Hunan 1.007 1.015 1.018 1.041 1.069 0.921 0.982 0.967

Guangdong 0.993 1.000 0.986 0.979 1.046 1.000 0.962 1.006

Guangxi 0.997 0.978 1.004 0.979 1.044 1.005 0.950 0.997

Hainan 0.956 1.000 1.000 0.956 1.097 1.000 1.000 1.097

Chongqing 0.998 0.995 0.978 0.971 1.073 1.014 1.014 1.103

Sichuan 1.008 1.000 1.000 1.008 1.018 1.000 0.969 0.986

Guizhou 1.001 1.061 1.021 1.084 1.038 1.000 1.000 1.038

Yunnan 0.994 1.003 1.000 0.996 1.035 1.002 0.998 1.034

Tibet 0.903 1.000 1.000 0.903 1.000 1.000 1.000 1.000

Shaanxi 1.009 1.051 1.000 1.061 1.036 1.000 0.992 1.028

Gansu 0.996 1.065 0.960 1.019 1.076 0.949 1.008 1.029

Qinghai 1.008 1.000 1.000 1.008 0.999 0.969 0.999 0.966

Ningxia 0.886 1.129 1.002 1.002 1.083 1.012 1.003 1.099

Xijiang 0.978 1.000 1.008 0.986 1.072 0.993 0.998 1.061

Average of the eastern 0.980 0.998 1.006 0.983 1.076 0.991 0.977 1.042

Average of the central 0.986 1.002 1.010 0.998 1.070 0.967 0.984 1.018

Average of the western 0.978 1.030 0.997 1.004 1.043 0.994 0.998 1.034

Average of whole country 0.981 1.010 1.004 0.994 1.064 0.985 0.986 1.032
Notes: DUM represent the area, techch, pech, sech and tfpchf represent the changes of technical progress, pure technical efficiency, scale efficiency and total factor
productivity
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duced pure technical efficiency and scale efficiency was
11 and  20,  far  more  than  the  number  of  areas  with  in-
creased pure  technical  efficiency  (5)  and  scale  effi-
ciency (4). Within this period, the improvement of total
factor  productivity  depended  on  the  improvement  of
technical progress,  and  decreasing  pure  technical  effi-
ciency and scale efficiency were the main cause restrict-
ing the growth of total factor productivity.

4.3　 Influencing  factors  of  the  green  efficiency  of
China’s agricultural innovation
To  further  investigate  the  influencing  factors  of  the
green efficiency of agricultural innovation, the compre-
hensive  efficiency  obtained  from the  DEA analysis  for
2005 to 2017 is taken as the dependent variable (Y), and
X1, X2, X3, X4, X5 and X6 in Table 2 are taken as the in-
dependent  variables  to  build  a  panel  Tobit  regression
model.  It  is  found  through  collinearity  diagnostics  that
the  VIF  values  of  the  whole  variables  and  individual
variables are less than 5, indicating that there is no obvi-
ous  collinearity  between  the  variables  (Chen,  2014;
Wang et al., 2016). The Tobit model is chosen to estim-
ate the impact of each variable (Table 5).

According  to Table  5,  the  regression  coefficients  of
X1, X2, X3,  and X5 are positive;  that  is,  the  level  of  re-
gional  informatization,  regional  agricultural  technology
promotion level,  average education attainment of resid-
ents, and level of agricultural mechanization have posit-
ive impacts  on  the  green  efficiency  of  agricultural  in-
novation.  The  level  of  regional  informatization  paves
the  way  for  the  diffusion  of  agricultural  scientific  and
technological achievements,  which,  in  turn,  helps  agri-
culture operators to learn advanced agricultural  techno-
logies  and  improve  the  green  efficiency  of  agricultural
innovation. Agricultural technicians play a very import-
ant  role  in  the  absorption,  publicity,  and  promotion  of
new agricultural technologies. They make up the cognit-
ive gap  between  rural  households  and  agricultural  re-
searchers  (Klerkx  et  al.,  2010), can  help  rural  house-
holds absorb and utilize new agricultural technologies to
improve rural households’ innovation abilities,  and fur-
ther promote the improvement of green efficiency of re-
gional  agricultural  innovation.  Agriculture  operators
with a higher educational level can learn new agricultur-
al  technologies  faster,  and  they  will  be  more  likely  to
apply  new  technologies  to  agricultural  production  to
make agriculture develop in a greener way, thus improv-

ing  the  green  efficiency  of  agricultural  innovation.
Whether new  agricultural  technologies  are  implemen-
ted depends on the agricultural foundation. The areas of
higher levels of agricultural mechanization provide con-
ditions for the implementation of new agricultural tech-
nologies  and  achievements,  which  can  also  effectively
improve the green efficiency of agricultural innovation.
More specifically, improving the green efficiency of ag-
ricultural innovation depends on the combination of ag-
ricultural innovation from generation to implementation.
Only  by  steadily  enhancing  the  ‘capabilities’ in  each
stage can agricultural innovation be made to better serve
agricultural green development, and ultimately improve
the green efficiency of agricultural innovation.

The  regression  coefficient  of X4 is  negative,  that  is,
the net income per capita of rural residents is negatively
related to the green efficiency of agricultural innovation.
Li  et  al.  (2008) found that  non-agricultural  income  ac-
counts  for  a  great  proportion  of  Chinese  farmers’ in-
come, and  those  rural  residents  with  a  higher  net  in-
come often  leave  agricultural  activities  behind  to  en-
gage in non-agricultural activities. Gao et al. (2015) also
found  that  the  income  of  migrant  workers  is  generally
higher  than  that  of  agriculture,  thus  compelling  some
farmers to abandon agricultural activities and seek non-
agricultural  activities  to  engage  in.  Under  the  special
background  of  China’s  rural  areas,  the  increase  of  the
number of people engaged in non-agricultural activities
might  trigger  actual  investment  in  agricultural  labor  to
be  lower  than  the  statistical  input,  which  would  not  be
conducive to the improvement of green efficiency of ag-
ricultural  innovation.  On the  other  hand,  the  regression
coefficient of X6 is positive but not significant, because
financial support for agriculture is currently focused on
 
Table 5    Panel Tobit regression results of green efficiency of ag-
ricultural innovation
 

Variable Regression coefficient Standard error Z value

X1 8.93×10–5*** 1.80×10–5 4.97

X2 1.66×10–3* 8.82×10–4 1.88

X3 2.42×10–2** 1.50×10–2 2.12

X4 –1.84×10–5*** 5.20×10–6 –3.54

X5 1.29×10–2** 5.26×10–3 2.49

X6 0.184 0.115 1.60

Cons 0.544*** 0.148 3.67
Notes: *, ** and *** represent significance at confidence levels of 90%, 95% and
99%
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casting off poverty and becoming prosperous, while the
effect on the green efficiency of agricultural innovation
is not fully exerted. Fang (2011) found that China’s fin-
ancial support for agriculture is mainly used for agricul-
tural science and technology research and development,
rural infrastructure construction and rural relief, and the
financial support for farmers’ technical training and ag-
ricultural technology promotion are very limited. Finan-
cial support  for  agriculture should focus on the promo-
tion of  agricultural  innovation technology and the  gov-
ernance of  the  agricultural  environment  as  the  sub-
sequent step.

5　Conclusions and Suggestions

Based on the perspective of  technology transformation,
this paper  defines  the  connotation  of  the  green  effi-
ciency of agricultural innovation and constructs a theor-
etical  analysis  framework  and  evaluation  index  system
of  the  green  efficiency  of  agricultural  innovation.  The
DEA model  and Malmquist  index are applied to calcu-
late  the  green  efficiency  of  agricultural  innovation  in
China’s provinces (cities) from 2005 to 2017, and Tobit
regression  is  used  to  analyze  the  influencing  factors.
The main conclusions are as follows: 1) the lateral state
performance  evaluation  indicates  that  the  overall  green
efficiency of China’s agricultural innovation is low and
that the efficiency level in most provinces is not optim-
al.  The  green  efficiency  of  agricultural  innovation  in
eastern China  is  mainly  driven  by  pure  technical  effi-
ciency, while in central and western China; it is mainly
driven by scale efficiency. The green efficiency of agri-
cultural innovation shows significant spatial differences,
and low efficiency and relatively low-efficiency regions
moved to central and southeast China. 2) the vertical dy-
namic  performance  evaluation  indicates  that  the  green
total factor  productivity  of  China's  agricultural  innova-
tion,  technical  progress,  pure  technical  efficiency,  and
scale  efficiency  all  exhibit  stage  characteristics  from
2005  to  2017;  technical  progress  has  always  been  the
most  important  force  that  affects  the  green  total  factor
productivity of  agricultural  innovation.  The  contribu-
tion of pure technical efficiency and scale efficiency to
total factor productivity alternates from positive to neg-
ative, and  have  gradually  become  the  main  factors  re-
stricting  the  growth  of  total  factor  productivity.  3)  the

local level of informatization, the number of agricultur-
al  technicians  in  enterprises  and  institutions,  average
educational  level  of  residents,  and  level  of  agricultural
mechanization  have  positively  impacted  the  promotion
of green  efficiency  of  agricultural  innovation.  This  in-
dicates that the improvement of green efficiency of agri-
cultural innovation is closely related to the diffusion, ab-
sorption, and implementation of innovation, which is the
result of the combined action of multiple stages. There-
fore,  skills  training at  multiple stages should be streng-
thened, as well as the transformation of innovation res-
ults,  to allow agricultural  innovation to better  serve the
development of  green  agriculture.  The  main  contribu-
tion  of  this  paper  is  to  establish  a  theoretical  analysis
framework and evaluation index system of the green ef-
ficiency of agricultural  innovation from the perspective
of  agricultural  technology  conversion  innovatively,
which will contribute to promoting the green transform-
ation of agriculture in developing countries.

Based  on  the  research  results  of  the  paper,  several
suggestions  on  green  development  of  China’s agricul-
tural innovation were posited: First, ramp up agricultur-
al  technology training to  improve rural  households’ in-
novation  skills.  Research  indicates  that  a  significant
positive  correlation  exists  between  the  literacy  level  of
farmers and the green efficiency of agricultural innova-
tion; however, in most regions, farmers’ literacy level is
not high, coupled with their  prevalence of low skills  to
proactively  learn  new  agricultural  technologies  and
carry out agricultural innovation. Therefore, it is imper-
ative  and  urgent  to  offer  training  on  new  agricultural
technologies to farmers to elevate their innovation abil-
ities.  Second,  construct  an  industry-university-research
cooperation network and refine the agricultural  innova-
tion system. Agricultural innovation is a systematic pro-
cess  and involves many links.  Research has proven the
positive impacts of innovation diffusion, absorption, and
implementation  on  the  green  efficiency  of  agricultural
innovation. Therefore, we should keep polishing the ag-
ricultural  innovation  environment  in  agricultural  areas,
make more efforts to build the agricultural industry-uni-
versity-research  cooperation  network,  use  the  network
as the carrier to promote the spread and feedback of ag-
ricultural information, and gradually form an agricultur-
al innovation  system  featuring  close  contacts  of  sub-
jects and  promote  innovation  achievement  transforma-
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tion. Third,  strengthen  the  cross-regional  transforma-
tion  of  agricultural  technology  achievements.  Research
shows that innovation input in eastern China is redund-
ant, with central China inundated with insufficient agri-
cultural  innovation  capabilities.  Therefore,  we  should
strengthen the  cross-regional  flow  of  agricultural  tech-
nologies and  achievements  to  realize  mutual  comple-
mentarity of regions and accelerate the green transform-
ation of agriculture in China.
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