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Abstract: Delineating life circles is an essential prerequisite for urban community life circle planning. Recent studies combined the en-
vironmental contexts with residents’ global positioning system (GPS) data to delineate the life circles. This method, however, is con-
strained by GPS data, and it can only be applied in the GPS surveyed communities. To address this limitation, this study developed a
generalizable delineation method without  the constraint  of  behavioral  data.  According to previous research,  the community life  circle
consists of the walking-accessible range and internal structure. The core task to develop the generalizable method was to estimate the
spatiotemporal behavioral demand for each plot of land to acquire the internal structure of the life circle, as the range can be delineated
primarily  based on environmental  data.  Therefore,  behavioral  demand estimation models  were  established through logistic  regression
and machine learning techniques, including decision trees and ensemble learning. The model with the lowest error rate was chosen as
the final estimation model for each type of land. Finally, we used a community without GPS data as an example to demonstrate the ef-
fectiveness of the estimation models and delineation method. This article extends the existing literature by introducing spatiotemporal
behavioral  demand estimation models,  which learn the relationships between environmental  contexts,  population composition and the
existing delineated results based on GPS data to delineate the internal structure of the community life circle without employing behavi-
oral data. Furthermore, the proposed method and delineation results also contributes to facilities adjustments and location selections in
life circle planning, people-oriented transformation in urban planning, and activity space estimation of the population in evaluating and
improving the urban policies.
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1　Introduction

The  ‘National  New-type  Urbanization  Plan’ of  China
necessitates  the  transformation  of  urban  planning  from
place-oriented  to  people-oriented,  from  emphasizing
quantity  to  balancing  both  the  quantity  and  quality  of
urban  development,  and  from  focusing  on  economic
production  to  recognizing  residents’ needs  for  better
lives  (The  Central  Committee  of  the  Communist  Party

of  China  and  the  State  Council  of  China,  2014).  As  a
key direction for the transformation of urban planning in
China, urban life circle planning considers the daily life
of the residents as a planning object and can unify phys-
ical  spatial  planning,  behavioral  planning  and  social
planning.  The  goal  of  urban  life  circle  planning  is  to
realize equal and precise allocation of public service fa-
cilities, satisfy  the  increasingly variable  needs of  resid-
ents, and promote the realization of bottom-up and parti-
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cipatory planning (Wu, 2015; Sun and Chai, 2017).
An  urban  life  circle  is  a  geographical  space  where

residents usually  conduct  their  daily  lives,  and  it  con-
sists  of  the  necessary  spatiotemporal  resources  (Chai,
2014; Liu  and  Chai,  2015).  Specifically,  an  urban  life
circle exists  at  the  following  five  spatial  scales:  com-
munity,  housing  cluster,  commute,  metropolitan  and
urban agglomeration life circles (Chai et al., 2015). The
community life  circle  is  the  entry  point  for  the  trans-
formation  of  urban  planning  and  has  recently  received
considerable attention  from  practitioners  and  research-
ers  in  urban  planning.  To  evaluate  the  facility  supply,
traditional  residential  area  planning  adopts  methods
such as ‘index per thousand people’ and ‘service radius’,
which can not fulfill  the actual facility related needs of
residents  while  improving  the  residential  satisfaction
and  sense  of  community  (Xu  and  Ye,  2010; Sun  and
Chai, 2017). In this context,  developing novel planning
theories and  methods  from the  perspective  of  the  com-
munity  life  circle  can  help  overcome  the  shortcomings
of  traditional  residential  area  planning (Yu,  2019).  The
newly  released  standard  for  urban  residential  area
planning  and  design  (GB  50180−2018)  introduces  the
concept and ideas of the community life circle, and takes
the 5-min, 10-min and 15-min community life circles as
the  main  planning  objects  (Ministry  of  Housing  and
Urban-Rural  Development  of  the  People’s  Republic  of
China,  2018).  Major  cities  in  China,  such  as  Beijing,
Shanghai,  Jinan  and  Changsha,  have  already  attempted
to plan the 15-min community life circle to improve the
quality  of  life  and  residential  satisfaction  (Municipal
Bureau of Planning and Natural Resources of Shanghai,
2016; Municipal Bureau  of  Planning  and  Natural  Re-
sources of Jinan, 2019).

However, many aspects pertaining to the planning of
community life circles are still under discussion, includ-
ing  the  concept  definition,  scope  delineation,  function
affiliation,  and  the  development  of  planning  methods
and  implementation  frameworks  (Chai  and  Li,  2019).
Among  these  aspects,  formulating  the  strategies  to
identify and delineate the scope of a life circle is a pre-
requisite  for  further  planning.  The  existing  delineation
methods are  facility-based  and  pay  insufficient  atten-
tion to the community microenvironments, composition
and  needs  of  residents,  and  this  configuration  does  not
conform  with  people-oriented  community  life  circle

planning.  Most  of  the  research  and  planning  practices
are based only on the indicators to delineate the scope of
a life  circle,  such  as  the  areas  accessible  within  a  cer-
tain duration by walking, population size and land area,
and  are  coordinated  with  the  administrative  boundaries
(Municipal  Bureau  of  Planning  and  Natural  Resources
of  Shanghai,  2016; Municipal  Bureau  of  Planning  and
Natural Resources of Jinan, 2019; Guo et al., 2019; Han
et  al.,  2019).  Other  scholars  delineated  the  community
life  circle  considering  the  completeness  and  density  of
the public service facilities (Cui et al., 2016; Xiao et al.,
2018). However,  such  delineation  results  lack  flexibil-
ity and can not satisfy the new requirements to adapt to
local contexts and respond to the various needs of resid-
ents in community life circle planning (Yu, 2019).

Theoretically, the community life circle is equivalent
to  the  aggregated  result  of  the  activity  space  near  and
within the community of all the residents (Chai and Li,
2019). Activity space is defined as ‘the local area with-
in which people move or travel in their daily activities’
(Wang et al., 2018). Compared with the traditional facil-
ity-based buffer  method,  by delineating the  community
life circles from the activity space, the differences in the
socio-economic status,  walking  ability  and  spatiotem-
poral demand of residents in different communities can
be  fully  considered  (Rainham  et  al.,  2010; Chai  et  al.,
2015).  However,  the  existing  activity  space  delineation
methods involve certain limitations when used to delin-
eate community  life  circles.  Conventionally,  the  activ-
ity space has been measured by standard deviational el-
lipses, GPS  trajectory  buffers,  minimum  convex  poly-
genes  and  kernel  density  surfaces  (Perchoux  et  al.,
2013; Sharp et al., 2015). Such methods may be biased
by  the  scale  of  the  community  life  circle,  and  certain
parameters  may  often  be  defined  arbitrarily. Sun  et  al.
(2016) considered the  area  in  which  the  residents  con-
ducted  non-work  activities  outside  their  homes  as  the
activity  space  and  community  life  circle;  however,  the
result  was  limited  by  the  sample  size  of  the  behavior
surveys.  Several  scholars  identified  the  activity  space
using location-based  service  (LBS)  data,  such  as  cellu-
lar  signaling data  and check-in data  (Ahas et  al.,  2015;
Zhen  et  al.,  2017).  However,  the  scale  of  such  data  is
excessively  small  to  effectively  delineate  the  life  circle
of a community. In addition, the existing methods only
take  into  account  the  actual  behavior  and  neglect  the
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role of the environmental  contexts (Wang et  al.,  2018).
The identified activity space is thus notably constrained
by the behavioral data and can not precisely describe the
potential activity space.

In response to this imperfection, Chai et al. (2019) re-
cently  proposed  a  delineation  method  for  community
life  circles,  based  on  the  ‘context-based  crystal-growth
(CCG)  activity  space’ method,  which  can  sufficiently
integrate  the  behavioral  information  and  environmental
contexts.  In  this  approach,  an  accessibility-weighted
plane is firstly defined based on the environmental con-
texts,  then  the  walking  accessible  range  is  delineated
with a high precision by using the CCG method, and fi-
nally the internal structure within the range is identified
using  GPS data  (Wang  et  al.,  2018; Chai  et  al.,  2019).
The walking accessible  range is  the  maximum area  ac-
cessible by walking within a certain period of time un-
der the constraints of the environmental contexts, which
are  reflected  by  the  accessibility-weighted  plane,  and
those of the walking ability of residents of different ages
and different abilities. Due to the low acquisition cost of
the  environmental  data  and  residential  demographic
composition,  as  they  can  be  derived  from  the  existing
data sets,  the range delineation method can be general-
ized  to  other  communities  in  a  relatively  easy  manner.
The internal  structure  of  the  community  life  circle  rep-
resents the  spatiotemporal  demand  for  the  different  fa-
cilities within  the  walking-accessible  range.  Specific-
ally, this structure reflects the core concept of the com-
munity  life  circles  by  focusing on the  various  needs  of
the residents, in contrast to the concept pertaining to the
traditional residential areas. The identification of the in-
ternal  structure  relies  considerably  on  behavioral  data,
especially GPS data. However, the cost of GPS surveys
is extremely high, and thus, this method can not be eas-
ily applied to other communities.

To realize  community  life  circle  planning,  a  delin-
eation method that can integrate the behavioral informa-
tion with environmental contexts and can be easily gen-
eralized is required. The CCG activity space method can
facilitate  such  integration,  but  it  is  not  generalizable.
The  key  reason  is  that  the  identification  of  the  internal
structure depends on the behavioral data. Therefore, this
study  was  aimed  at  developing  a  method  based  on
which the internal structure could be delineated through
established relationships among the behavioral demands
and certain easily obtained variables, instead of new sur-

veyed  behavioral  data.  Machine  learning  techniques
were  applied  to  establish  the  estimation  models  for  the
spatiotemporal  behavioral  demand  for  facilities  within
the  walking-accessible  range.  By  combining  the  CCG
method with  the  estimation  models,  an  urban  com-
munity life  circle  delineation  method  that  is  generaliz-
able and can integrate humans and the environment was
developed.

2　Method

2.1　Framework
The framework of the community life circle delineation
method based on the spatiotemporal behavioral demand
estimation  is  shown  in Fig.  1. This  method  can  be  ap-
plied to communities for which GPS data are or are not
available.

First, the life circles were delineated according to the
existing  CCG  activity  space  method  in  communities
with  the  GPS  data.  This  method  included  two  stages:
1)  delineating  the  15-min  walking-accessible  range  by
using the CCG method based on the environmental con-
texts and population composition, and 2) delineating the
internal structure by conducting a kernel density analys-
is based mainly on the behavioral data.

Second, the  spatiotemporal  demand  estimation  mod-
els  were  constructed  by  analyzing  the  relationships
between the behavioral  demand reflected by the intern-
al  structure,  environmental  contexts  and  population
composition. The key challenge in  ensuring the applic-
ability of the delineation method is the high cost of ob-
taining  the  behavioral  data.  The  internal  structure,  the
identification of which depends significantly on the be-
havioral data, reflects the spatiotemporal behavioral de-
mand  for  different  areas  within  the  walking-accessible
range. Therefore, estimating the behavioral demand and
thereby delineating the  internal  structure  by using low-
cost data,  such  as  environmental  contexts  and  popula-
tion  composition,  can  help  delineate  the  life  circles  in
communities without behavioral data.

To this  end,  machine  learning  techniques  were  ap-
plied to  construct  the  demand  estimation  models.  Ma-
chine learning has received increasing attention from re-
searchers in urban and behavioral studies, because of its
high  estimation  performance  and  the  relaxation  of  the
assumptions in traditional  regressions.  In transportation
behavior  research,  machine  learning  techniques  have
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already been  applied  for  different  purposes.  For  ex-
ample, decision trees have been used to model the indi-
vidual spatiotemporal behavior and to derive the behavi-
or decision rules from activity travel data (Arentze et al.,
2000; Arentze  and  Timmermans,  2004; Sammour  and
Vanhoof,  2018).  Regional  travel  demand has  also  been
modeled  and  predicted  using  data  mining  techniques
(Ghasri  et  al.,  2017).  Other  applications  include  the
modeling of travel mode choices (Tang et al., 2015; Ha-
genauer  and  Helbich,  2017; Wang  and  Ross,  2018),
modeling of walking route choices (Tribby et al., 2017),
and  inferring  trip  purposes  by  combining  smart  card
data and activity travel diary data (Alsger et  al.,  2018).
However,  machine  learning  is  still  underrepresented  in
the research of spatiotemporal behavioral demand mod-
eling. This study can contribute to the existing research
in this regard.

Finally,  the  life  circles  in  the  communities  without
GPS data were delineated by combining the CCG meth-
od and  the  spatiotemporal  behavioral  demand  estima-
tion models obtained from machine learning. The CCG
method  was  used  to  delineate  the  15-min  walking-ac-
cessible range based on the environmental contexts and
population  composition,  and  the  demand  estimation
model  was  applied  to  identify  the  internal  structure
within this range. This delineation method required data

that could be acquired at a low cost, and thus, the gener-
alizability was ensured.

2.2　Model construction
The  key  task  in  this  work  was  the  construction  of  the
spatiotemporal  behavioral  demand  estimation  models
according  to  the  framework  of  the  delineation  method.
The  construction  procedure  is  defined  in Fig.  2.  Four
stages were implemented to obtain the estimation mod-
els: identifying the spatiotemporal behavioral demand of
the residents, selecting the explanatory variables, apply-
ing the machine learning techniques and choosing the fi-
nal models with the lowest error rates.

First, the  identified  internal  structures  of  the  com-
munities  with  GPS  data  were  treated  as  the  residents’
spatiotemporal behavioral demand for different plots of
land  within  the  15-min  walking-accessible  range.  The
plot of land was used as the basic analysis unit because
it is  also  the  basic  object  in  urban  planning.  Consider-
ing  that  residents  may  have  different  demand  patterns
for  different  land use types,  demand estimation models
for five types of land use, namely, public service, com-
mercial  service,  green  land,  residential  land  and  other
types  were  developed,  according  to  the  code  for  the
classification of land use for urban and rural planning of
Beijing (DB 11/996−2013). The other types consisted of

 

Community 

life circle 

delineation 

with GPS

Environmental contexts: 

road, POI, land use, 

building outline

Population composition

Behavioral data: 

GPS, activity diary

Data input

Community 

life circle 

delineation 

without GPS

Context-based 

crystal growth

Context-based 

crystal growth

Kernel density 

analysis

Community life circle

Data input

Environmental contexts: 

road, POI, land use, 

building outline

Population composition

Spatiotemporal 

behavioral 

demand 

estimation

Machine

learning

15-min walking 

accessible range

Community life circle

Internal 

structure

15-min walking 

accessible range

Internal 

structure

Fig. 1    Framework of the community life circle delineation method based on spatiotemporal behavioral demand estimation
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industrial  land,  utility  land  and  other  land  types  that
were  unrelated  to  the  function  of  the  community  life
circle.  The  number  of  GPS  points  per  capita  on  each
plot served as the spatiotemporal behavioral demand for
the  plot  (Table  1).  In  general,  the  absolute  number  of
GPS points is meaningless because the value is affected
by  the  sample  size  and  duration  of  behavioral  surveys.
Therefore, the demand for each plot was defined as high
or  low  according  to  the  median  value  of  this  number.
The plots  with a  number of  GPS points  greater  than or
equal  to  and  fewer  than  the  median  corresponded  to
‘high demand’ and ‘low demand’, respectively.

Second, explanatory variables were selected to estim-
ate the spatiotemporal behavioral demand, including the
land characteristics,  community  population  composi-
tion and  built  environment.  Two  aspects  were  con-
sidered when selecting these variables. First, the acquis-
ition cost of the variables was required to be low; for ex-
ample, an  existing  database  was  available  for  the  vari-
ables, which  guaranteed  the  generalizability  of  the  de-
lineation  method.  Second,  the  explanatory  variables
were required  to  be  correlated  with  the  behavioral  de-
mand.  In  previous  studies,  the  researchers  considered
the  distance,  demographic  variables  such  as  age  and

 
Table 1    The variables for construction of the spatiotemporal behavioral demand estimation models
 

Variables Description

Dependent variable

Spatiotemporal behavioral demand
The total number of the non-work non-travel GPS points outside the home on the plot divided by the
sample size of the community, classified as high or low demand according to the median value

Explanatory variables

Distance Distance to the community center of each plot

Area Area of each plot

Age
≥

Proportion of different age groups, including children (0–14), young adults (15–29),
the middle-aged group (30–49) and the elderly group ( 50)

Education Proportion of residents with education levels below high school (ref. level) and high school and above

Hukou Proportion of local residents with hukou and migrants without hukou (ref. level)

Public facility density Number of public facilities divided by the plot area

Commercial facility density Number of commercial facilities divided by the plot area

Diversity Simpson diversity index of Point of interest (POIs) (Comer and Greene, 2015)

Transit accessibility Distance to the nearest bus stop

Else variable

Land use type
Types of land use, including public service, commercial service, green land, residential land and other
types
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Fig. 2    Process of constructing the spatiotemporal behavioral demand estimation models
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education, as  well  as  the  built  environment  when  con-
structing  the  behavioral  models  (Tang  et  al.,  2015;
Ghasri et al., 2017; Hagenauer and Helbich, 2017). Con-
sidering these  aspects,  nine  explanatory  variables  be-
longing  to  three  categories  were  selected  (Table  1).
Among  these  variables,  the  distance  and  area  of  each
plot  represented  the  basic  land  characteristics.  A larger
distance  of  the  plot  from  the  center  of  the  community
and a  smaller  plot  area  corresponded  to  a  lower  spati-
otemporal behavioral demand for the plot. The age, edu-
cation level  and hukou status structures represented the
different needs of the different residents for the land. In
general,  the  household  registration  (hukou)  status  has
been noted to be a key socio-economic variable that also
influences the travel behavior (Li and Liu, 2016; Zhang
et  al.,  2018).  The  introduction  of  the  sociodemogra-
phic composition into the estimation models can ensure
that the  delineated  life  circle  can  represent  the  com-
munity characteristics.  In  terms  of  the  built  environ-
ment,  the density  of  the public  and commercial  service
facilities, diversity of points of interest (POIs) and trans-
it  accessibility  were  considered.  These  variables  were
noted to be closely related with the spatiotemporal beha-
vior (Ewing and Cervero, 2010; Hagenauer and Helbich,
2017).

Third,  different  machine  learning  techniques  as  well
as logistic regression were applied to model the behavi-
oral demand for different types of plots. Logistic regres-
sion, which is the most widely used analytical model for
behavioral  decisions,  served  as  the  basic  model  to
demonstrate the strengths of the machine learning tech-
niques. In  this  work,  decision  tree  and  tree-based  en-
semble  learning  were  applied  as  the  machine  learning
techniques. Tree-based learning methods have been ap-
plied  for  many  purposes,  for  instance,  to  analyze  the
mode choice,  trip  purpose,  travel  destination and spati-
otemporal  behavioral  decisions  (Arentze and  Timmer-
mans,  2004; Hagenauer  and  Helbich,  2017; Ghasri  et
al., 2017). These methods generally exhibit a higher per-
formance and efficiency than those of logit models and
artificial neural networks (Xie et al., 2003, Tribby et al.,
2017).

Decision  trees  utilize  a  tree-like  structure  for  data
classification. Starting  with  the  root,  each  node  recurs-
ively splits  the  data  by  features,  and  the  leaves  repres-
ent  the  classes.  ID3  and  classification  and  regression
trees (CART) are the most widely used decision tree in-

duction  algorithms.  ID3  uses  the  entropy  measure  to
choose  the  attribute  at  each  node.  C4.5  improves  upon
the ID3 algorithm (Quinlan, 1993), and C5.0 further im-
proves upon the C4.5.  Therefore,  in this research,  C5.0
was employed. The CART algorithm, which is based on
the Gini index, measures the purity of a response distri-
bution  and  evaluates  the  splits  (Breiman  et  al.,  1984).
Although decision trees can effectively manage nonlin-
ear  relationships,  a  single  tree  is  sensitive  to  noise  and
tends  to  overfit  (Hagenauer  and  Helbich,  2017).  Tree-
based  ensemble  techniques  combine  many  decision
trees to obtain a higher predictive performance than that
of  any  single  classifier.  Bagging  trains  classifiers  in  a
parallel manner by using bootstrap samples. Each classi-
fier has an equal weight,  and the majority vote determ-
ines  the  class  assignment  in  the  prediction  (Breiman,
1996).  The  random  forest  (RF)  algorithm  is  similar  to
bagging. Although the random forest also trains classifi-
ers  using  bootstrap  samples,  the  nodes  of  the  trees  are
determined  by  a  random  subset  of  variables  (Breiman,
2001). Boosting  is  different  from the  bagging  and  ran-
dom forest  techniques  in  that  it  trains  classifiers  suc-
cessively,  with  a  new  classifier  established  to  improve
the incorrect  classifications in the preceding classifiers.
The prediction is based on weighted voting (Freund and
Schapire,  1997).  In  this  work,  the  adaptive  boosting
(AdaBoost)  technique  was  applied,  which  is  the  most
commonly implemented type of boosting.

All the techniques were implemented for each type of
land  use  in  the  R  programming  environment  (R  Core
Team,  2019).  The  relevant  packages  for  this  research
were ‘raprt’ (Therneau et al., 2019), ‘C50’ (Kuhn et al.,
2020), ‘adabag’ (Alfaro et al., 2013) and ‘randomForest’
(Liaw  and  Wiener,  2002).  The  performance  of  each
model  was  estimated  using  10-fold  cross-validation,  to
reduce the bias in selecting the training and testing sub-
sets  (Kohavi,  1995).  The  parameters  of  the  number  of
trees in  the  ensemble  and  the  number  of  variables  ran-
domly  sampled  at  each  split  in  the  random forest  were
defined  by  trial  and  error,  and  the  parameters  of  the
models that produced the lowest error rate were chosen
as the  final  parameters.  The  other  parameters  were  as-
signed default values.

Finally, for each type of land use, the model with the
lowest  error  rate  was  chosen  as  the  final  estimation
model.  For  the  final  models,  the  variable  importance
(Ⅵ) was determined through the algorithms to examine
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the  effectiveness  of  the  selected  explanatory  variables.
The  mean  decrease  in  the  Gini  index  of  each  variable
was used  as  the  Ⅵ measure  (Ghasri  et  al.,  2017). Al-
though more effective approaches are available to define
the Ⅵ, the average reduction in the Gini index was used
in this  research because the Ⅵ among the different  en-
semble learning models is comparable.

3　Data

3.1　Data source
The  data  for  this  research  were  primarily  derived  from
the ‘daily activity and travel survey of Beijing residen-
ts’,  which  was  conducted  by  the  Behaviorlal  Research
Group  of  Peking  University  in  the  Qinghe  sub-district
(jiedao),  Haidian District,  Beijing in 2012.  Overall,  the
continuous 7-d GPS data and 7-d activity diary data for
242 valid residents in 15 communities (Fig. 3) and com-
munity population  composition  information  were  in-
cluded.  In  addition,  the  environmental  context  data  for
the survey communities, including roads, POIs, land use
and  building  outlines  were  employed.  The  data  for  the
14  communities  were  applied  to  construct  the  spatiot-
emporal behavioral  demand estimation models.  The re-

maining Dangdai Chengshi Jiayuan (DDJY) community
was used as an example to delineate the community life
circle  based  on  the  models.  The  predicted  result  was
compared with  the  actual  result  to  verify  the  effective-
ness  of  the  delineation  method.  The  DDJY community
was chosen as the example as it is a representative com-
munity of the Qinghe sub-district, in which most of the
communities  developed  at  approximately  2000.  More-
over, this community consists of different types of resid-
ents and is located in the center of the district.

The  land  plots  were  considered  as  the  basic  analysis
units and  divided  into  five  types:  public  service,  com-
mercial  service,  green  land,  residential  land  and  other
types. Although  the  life  circles  of  different  communit-
ies  may share  the  same plots,  the  plots  in  different  life
circles were treated as distinct units because certain ex-
planatory  variables  were  different  in  these  regions.
The final numbers of the analysis units were as follows:
72  public  service  plots,  75  commercial  service  plots,
101 green land plots, 158 residential land plots and 126
other types of plots.

3.2　Data preprocessing
Data preprocessing  was  performed  to  obtain  the  vari-

 

Fast road

Highway

Main road

Secondary road

Qinghe sub-district
( jiedao)

Legend

0 0.5 1.0 km
0 2 4 km

LXGG

ANBL

ANDL

DDJY

YMJY
XH

QSY

XFS

HQY

LDJY

MFN

MHY

ANL

MKY

ZXY

N

Na b

Fig.  3    Survery  area:  a)  location  of  Qinghe  Sub-district,  Beijing;  b)  locations  of  the  surveyed  communities  in  Qinghe  sub-district,
Beijing. ANBL: Anning Beilu; ANDL: Anning Donglu; ANL: Anningli; DDJY: Dangdai Chenshi Jiayuan; HQY: Haiqingyuan; LDJY:
Lidu Jiayuan; LXGG: Lingxiu Guigu; MFN: Maofangnan; MHY: Meiheyuan; MKY: Mingkeyuan; QSY: Qingshangyuan; XFS: Xue-
fushu Jiayuan; YMJY: Yimei Jiayuan; ZXY: Zhixueyuan

LI Chunjiang et al. Delineation of an Urban Community Life Circle Based On a Machine-Learning Estimation of ... 33



ables required to construct the estimation models.
First,  the  life  circles  of  the  14 communities  (without

DDJY)  were  delineated  by  applying  the  CCG  activity
space  method (Chai  et  al.,  2019). The population com-
position was used to calculate the walking ability of dif-
ferent  groups  of  residents.  By  combining  the  walking
ability  with  the  environmental  context  data,  including
the roads, land use and building outlines, 15-min walk-
ing-accessible ranges were delineated by using the crys-
tal-growth algorithm.  Therefore,  the  ranges  were  spa-
tially  different  among  different  communities.  The  GPS
data  and  activity  diaries  were  further  applied  to  obtain
internal structures within the accessible range.

Second,  we  obtained  the  behavioral  demand  for  the
plots in each community life circle. The accessible plots
were identified by overlaying the plots of land with the
ranges of the community life circles. For a certain com-
munity,  the spatiotemporal  behavioral  demand for  each
accessible plot within the life circle was represented by
the internal structure, which was defined as the number
of  non-work  non-travel  GPS  points  outside  the  home
per  capita  (Fig.  4).  The  plot  was  classified  as  having  a
high  or  low  demand  by  considering  the  median  value
when the  estimation  models  were  constructed.  In  addi-
tion, other  variables  were  calculated,  including the  dis-
tance to the center of the community of each plot,  area
of  each  plot,  and  built  environment  variables.  Along
with the community population composition, these vari-
ables were treated as the explanatory variables required
to construct the estimation models (Table 1).

4　Results

4.1　Estimation models
The spatiotemporal behavioral demand estimation mod-
els for five types of land use were constructed using six
methods, namely, logistic regression, CART, C5.0, bag-
ging, random forest and boosting. The error rate was es-
timated  using  the  mean  misclassification  rates  in  ten
folds. The rate in the logistic regression model was ex-
tremely  higher  compared  to  those  in  the  decision  tree
models, which  demonstrated  the  effectiveness  of  ma-
chine learning (Fig. 5). The rates in the single tree mod-
els were usually higher than those in the ensemble learn-
ing  models,  especially  for  public  service  and  other
types,  which  indicated  that  the  behavioral  demand  was
only  weakly  associated  with  the  explanatory  variables

and that  the  ensemble  learning  techniques  could  im-
prove the performance. For each type of land, the mod-
el with the lowest error rate was chosen as the final es-
timation  model.  Therefore,  the  random  forest  models
were  chosen  as  the  final  models  for  the  public  service,
commercial  service,  residential  land  and  other  types.
The  boosting  model  was  chosen  as  the  final  model  for
green  land.  The  error  rates  in  the  final  models  were
33.3%, 28.6%, 37.6%, 41.1% and 36.7%. The perform-
ance of  the  final  spatiotemporal  behavioral  demand es-
timation models was comparable to that of the previous
demand models, the accuracy of which varied from 17%
to 72% depending on the model and its definition of ac-
curacy  (Arentze  and  Timmermans,  2004; Ghasri  et  al.,
2017).

The  variable  importance  indicates  the  impact  of  the
explanatory variables  on  the  prediction  of  the  depend-
ent variable. Fig. 6 shows the VIs in the final estimation
models  of  different  types  of  land  use.  The  values  were
scaled to 1 to compare the different models by ensuring
that  the  largest  VI  in  each  model  was  1  (Ghasri  et  al.,
2017).  The  most  important  variable  for  all  the  models
was the plot distance, indicating the law of the distance
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decay.  The  importance  ranking  for  the  other  variables
was more complex and influenced by different types of
land use.  Except  for  the  distance,  the  important  vari-
ables for  the  public  service  model  were  the  transit  ac-
cessibility and plot area. Surprisingly, the importance of
the public facility density was relatively small. The res-
ults  indicated  that  the  demands  for  the  public  service
were most  considerably  influenced  by  the  plot  charac-
teristics and transit  accessibility,  instead of the concen-
tration  of  the  facilities.  The  plot  area,  age  structure
between  30–59,  commercial  facility  density  and  transit
accessibility exhibited  a  high  importance  in  the  com-
mercial  service  model.  This  observation  suggested  that
the  middle  age  group  may  have  a  higher  demand  for
commercial  service,  especially  for  plots  with  a  larger
area, higher density and higher accessibility. Moreover,
the  remaining  variables,  except  for  that  pertaining  to
young  adults  (aged  14–29)  exhibited  a  relatively  high
importance  compared  to  that  in  the  other  models.  The
important variables for the green land model were simil-
ar to those of the public service model because green in-
frastructure is also regarded as public service. The area
and transit accessibility were important variables for the
residential  land  model.  Moreover,  the  facility  density
and diversity  also  exhibited  a  relatively  high  import-
ance.  The  results  indicated  that  the  plot  characteristics
and built environment of the residential land were critic-
al to attract residents. Finally, for the model of the other
land types, consisting of various types of land use, most

of  the  variables  exhibited  a  relatively  high  importance.
The importance ranking was as follows: plot character-
istics,  built  environment,  age structure, hukou and edu-
cation.

Overall,  the  plot  characteristics  represented  the  most
important variable,  and  the  distance  was  more  import-
ant than the area. The results confirmed the findings of
Hagenauer and Helbich (2017), who found that the trip
distance is the most important variable. The built envir-
onment was the second most important variable in most
models, and among the built environment variables, the
transit accessibility was the most important. The second
most  important  variable  was  the  commercial  facility
density,  and  the  diversity  and  public  facility  density
ranked third.  Most  of  the  population  composition  vari-
ables corresponded to the lowest importance. Neverthe-
less,  the  importance  of  the  middle  age  group  (aged
30–59)  was  relatively  higher  than  that  of  the  other
groups, especially in the models for the commercial ser-
vice  and  other  types.  These  results  suggested  that  the
environmental  contexts  likely  exert  a  notable  influence
on the spatiotemporal behavioral demand, while the im-
pact of  the  demographic  variables  is  modest.  In  addi-
tion, the results were consistent with those of the exist-
ing  research,  which  found  the  land  use  characteristics
were the most important factors in predicting the travel
demand,  and  age  was  relatively  important  compared  to
the  education  and  income  (Ghasri  et  al.,  2017; Ha-
genauer and Helbich, 2017).

4.2　Framework validation
Subsequently,  we  considered  the  DDJY  community  as
an example to demonstrate the mechanism of the estim-
ation  models  to  delineate  the  community  life  circle
without  GPS  data  based  on  the  framework  shown  in
Fig.  1.  First,  the  15-min  walking-accessible  range  was
delineated  using  the  CCG  method  by  employing  the
environmental  contexts  and  population  composition
(Fig.  7A).  Second,  the  accessible  plots  were  identified
by overlaying  the  range  with  the  land  use.  The  inde-
pendent  variables  used  to  estimate  the  spatiotemporal
demand  were  obtained  by  extracting  the  types  of  land
use; evaluating the plot distance, plot area and built en-
vironment;  and  linking  the  population  composition
structure of  the DDJY. Third,  the demand of  the resid-
ents for each plot (high or low) was predicted by apply-
ing the estimation models. Finally, the internal structure
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was  identified  by  overlaying  the  estimation  results  and
accessible range (Fig. 7B).

In  the  comparison  of  the  delineated  community
life  circle  based  on  the  estimated  and  actual  demands
(Fig. 7B and Fig. 7C), the prediction accuracy was at an
acceptable  level  of  63.0%  in  the  plots  with  behavioral
data.  In  these  plots,  the  14  actual  high-demand  plots
were  predicted  as  12  high-demand  and  2  low-demand
plots, and  the  13  actual  low-demand  plots  were  pre-
dicted  as  8  high-demand  and  5  low-demand  plots.  The
residential land  and  other  types  of  plots  were  most  of-
ten  misclassified,  specifically,  2  of  the  misclassified
high-demand plots corresponded to residential land, and
4 of the misclassified low-demand plots corresponded to
2  other  types  and  residential  land  plots  each.  Because
the other types involved different types of land use, the
low  accuracy  in  estimating  the  corresponding  demand
was expected. For residential land, the misclassification
likely occurred  owing  to  the  popular  gates  and  sur-
rounding walls of the communities in the Chinese urban
residential  areas  (Douglass  et  al.,  2012).  In  general,
gated  communities  make  it  challenging  to  estimate  the
demand for  residential  land,  and  this  aspect  is  consist-
ent with  the  highest  error  rate  pertaining  to  its  estima-
tion  model.  However,  community  life  circle  planning
focuses  mainly  on  matching  the  demand and supply  of
public  and  commercial  service.  Estimating  the  demand
for residential land and other unrelated land use types is
less important  than  estimating  the  public  service,  com-
mercial service and green land. Moreover, if the plots of
residential land and other types are eliminated, an accur-
acy of  86.7%  can  be  attained.  Therefore,  the  perform-
ance  of  the  estimation  models  is  acceptable,  and  the
models can  be  applied  for  community  life  circle  plan-
ning.

The estimation models also yielded the prediction res-

ults  for  the  plots  without  behavioral  data.  Forty-four
plots without GPS points were predicted as 23 high-de-
mand  plots  and  21  low-demand  plots.  However,  there
were a variety of reasons that the plots had no behavior-
al data, such as survey samples, survey times and facilit-
ies distributions,  and thus,  the efficiency of  the estima-
tion models in these areas could not be evaluated.

5　Discussion

This research  proposed  a  community  life  circle  delin-
eation  method  based  on  a  machine-learning  estimation
of the spatiotemporal behavioral demand. In addition to
delineating the life circles without GPS data,  the meth-
od can be applied for other purposes in urban planning.

First,  the  estimated  behavioral  demand  can  cover
areas  in  no  behavior  data  are  available  within  the  15-
min walking-accessible  range,  which  provides  a  refer-
ence  for  realizing  the  facility  adjustments  and  location
selection  in  future  community  life  circle  planning.  The
areas  for  which  the  residents  indicate  a  high  demand
(high-demand plots) but do not visit at present are valu-
able  objects  in  community  life  circle  planning.  In  this
context,  the  constraints  on  walking  should  be  reduced,
and  the  walking  environment  should  be  improved  in
these areas. Moreover, new facilities should be placed in
these areas  because  these  regions  already  have  the  po-
tential  to  attract  residents.  By  removing  the  walking
constraints,  improving  the  walking  environment  and
adding  new  facilities,  community  life  circle  planning
can provide more opportunities for conducting daily life
activities, thereby improving the quality of life.

Second, the estimated behavioral demand for the dif-
ferent  types  of  land  use  in  different  community  life
circles can help overcome the limitations of the inflexib-
ility of the traditional residential area planning. The in-

 

Highway
Main road
Secondary road
Qinghe sub-district (jiedao)
High demand
Low demand
No behavioral data

Legend

1000 m5000

B CA N

Fig. 7    Delineated life circle in the Dangdai Chengshi Jiayuan (DDJY) community: (A) 15-min walking-accessible range; delineation
result based on the (B) estimated demand and (C) actual demand

36 Chinese Geographical Science 2021 Vol. 31 No. 1



dex  per  thousand  people  method  is  commonly  used  in
traditional  planning;  however,  this  approach  fails  to  fit
the various demands of residents. The estimated behavi-
oral demands and delineated community life circles are
unique for different communities, because they take in-
to account  the  community  population  composition,  en-
vironmental  contexts  and  resident  behavior.  Therefore,
planning  new  facilities  and  adjusting  the  old  facilities
based on the estimated results  can satisfy certain needs
of the residents and improve their quality of life.

Third,  the  behavioral  demand estimation  models  can
be used not only in community life circle delineation but
also to estimate the activity space in large areas. By con-
ducting behavior surveys in certain sampled communit-
ies and establishing the relationships among the activity
space and demographic and environmental variables, we
can estimate the activity space of  the complete popula-
tion  as  well  as  that  for  the  different  groups  of  people.
Estimating  the  spatiotemporal  behavioral  demand  and
activity space of the general and different groups, espe-
cially children, aged and disabled individuals, is the first
step to evaluate and improve the urban policies and urb-
an planning process.

Although the demand estimation models are general-
izable and useful for delineating community life circles
and can help evolve the current urban planning methods.
Several issues must be addressed in future research.

First,  the  transferability  of  the  estimation  models
should be validated. In this study, the generalizability of
the models was tested on a holdout sample. Because the
holdout  sample  was  derived  from the  same survey,  the
test  was  focused  more  on  the  internal  validity  than  the
external validity (Arentze and Timmermans, 2004). Be-
cause the survey area only represents the suburban areas
of the megacities in China, it remains unclear how well
the  models  would  perform  in  another  study  area.  The
transferability  of  a  model  to  a  larger  area  has  recently
received  attention  in  the  disaggregated  travel  demand
system of models (Ghasri et al., 2017). Although the tr-
ansferability of the estimation models remains question-
able, the framework could be transferred to other study
areas. Estimation models should be constructed in other
contexts based  on  the  local  behavioral  surveys  and  en-
vironmental data, such as the city center or outer subur-
ban areas, to improve the external validity of the model.

Second, the performance of the models should be im-

proved. The small sample size negatively influenced the
prediction accuracy in this study. Therefore, larger data-
sets must be used in future research to train the estima-
tion models  to  improve  their  performance  and  robust-
ness. Furthermore, more variables having higher correl-
ations with the behavioral demand along with a low-ac-
quisition  cost  should  be  included.  At  present,  big  data,
such as cellular signaling data, provide opportunities for
acquiring  certain  important  factors  at  a  low  cost  and
with  a  large  sample  size,  such  as  the  proportion  of  the
commuters  and  family  structures  (Ahas  et  al.,  2015).
With  an  expanded  sample  size,  another  aspect  can  be
considered  to  improve  the  performance.  Specifically,
the types  of  land  use  can  be  further  differentiated  ac-
cording to the residents’ daily activity demand, such as
schools,  hospitals  and  gymnasiums,  because  different
activities  exhibit  different  relationships  with  the  built
environment  and  socio-economic  status.  Moreover,  the
goal  of  community  life  circle  planning  is  to  match  the
supply  and  demand  of  facilities  (Sun  and  Chai,  2017).
Future research can also model the demand for different
types of facilities, which can provide more direct refer-
ence for the actual planning.

Third,  the  spatiotemporal  behavioral  demand  should
be  identified  with  a  higher  precision.  Future  research
can delineate life circles for different groups of people,
considering their different walking abilities and behavi-
oral patterns. This aspect can help identify and solve the
problems faced  by  the  disadvantaged  groups  when  us-
ing community facilities. Furthermore, the integration of
the information and communication technologies (ICTs)
in everyday life has led to a considerable increase in on-
line  activities,  which  involve  certain  interactions  with
offline  activities  and  alter  the  relationships  among  the
behavior and environment contexts (Thulin et al., 2020;
Xi  et  al.,  2020a, b).  E-activities  may  also  challenge
space-time  constraints,  the  fixed  relations  between  e-
activity  and  physical  activity  space,  and  thus,  have  an
influence  on  physical  space  (Kwan,  2007; Schwanen
and  Kwan,  2008; Wang  et  al.,  2015; Loo  and  Wang,
2018). Future  community  life  circle  research  and  plan-
ning should consider the e-activities and their influence
as well. Finally, both the spatial and temporal character-
istics of the behavior demand should be considered. The
temporal characteristics of the behavioral  demand for a
certain facility include not only the amount of time that
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the residents require this facility, which can be represen-
ted by the number of  GPS points,  but  also at  the times
that  the  residents  use  it,  which  was  not  considered  in
this work.

6　Conclusions

The  development  of  the  delineation  method  for  urban
community life  circles  is  one  of  the  most  popular  re-
search directions  in  the  academic study and practice  of
urban  planning.  However,  the  delineation  methods  in
most existing studies need behavioral data, of which the
acquisition cost is so high that it  is  difficult  to general-
ize  the  methods.  This  research  improved  the  existing
methods by  introducing  spatiotemporal  behavioral  de-
mand  estimation  models  that  learn  the  relationships
among the environmental contexts, population composi-
tion and existing delineated results based on GPS data to
delineate  the  internal  structure  of  the  community  life
circle  without  behavioral  data.  Furthermore,  the  life
circle of  a  certain  community  was  delineated  as  an  ex-
ample by applying the estimation models that employed
only  the  easily  obtained  environmental  contexts  and
community  population  composition.  The  delineation
result  based  on  the  estimated  demand  corresponded  to
an  acceptable  predictive  accuracy  compared  with  the
result  based on the  actual  demand,  which indicated  the
effectiveness of the estimation models.
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