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Abstract: Understanding the spatial patterns of land-use and land-cover (LULC) and their driving forces in transnational areas is im-

portant for the sustainable development of these regions. However, the spatial patterns of LULC and their driving forces across multiple 

scales are poorly understood in transnational areas. In this study, we analyzed the spatial patterns of LULC and driving forces in the 

transnational area of Tumen River (TATR) in 2016 across two scales: the entire region and the sub-regions of China, the Democratic 

People’s Republic of Korea (DPRK), and Russia. Results showed that the LULC was dominated by broadleaf forest and dry farmland in 

the TATR in 2016, which accounted for 66.86% and 13.60% of the entire region, respectively. Meanwhile, the LULC in the three 

sub-regions exhibited noticeable differences. In the Chinese and the DPRK’s sub-regions, the area of broadleaf forest was greater than 

those for the other LULC types, while the Russian sub-region was dominated by broadleaf forest and grassland. The spatial patterns of 

LULC were mainly influenced by topography, climate, soil properties, and human activities. In addition, the driving forces of the spatial 

patterns of LULC in the TATR had an obvious scaling effect. Therefore, we suggest that effective policies and regulations with coopera-

tion among China, the DPRK, and Russia are needed to plan the spatial patterns of LULC and improve the sustainable development of 

the TATR. 
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1  Introduction 

Transnational areas are regions where two or more coun-
tries exist along national boundary lines (Grant and Quinn, 

2007). The spatial pattern of land-use and land-cover 
(LULC) refers to the composition and configuration of 
various LULC types in the region, reflecting the charac-
teristics of regional LULC under different natural condi-

tions and human activities (Zhang et al., 2008; Pelorosso et 

al., 2009; Verburg et al., 2011; Hansen and Loveland, 2012; 
Mao et al., 2018). In transnational areas, the spatial pat-
terns of LULC and their driving forces show a significant 
difference between countries due to different government 
policies, socioeconomic conditions and regulations. 
These differences have placed significant pressure on the 
sustainable development of entire transnational areas. It is 
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therefore important to quantify and understand the spatial 
patterns of LULC and their driving forces in transnational 
areas, an area of investigation which has become highly 
significant in landscape ecology and sustainability sci-
ence (Kashaigili and Majaliwa, 2010; Wu et al., 2014; Ak-

htar et al., 2017). 
The transnational area of Tumen River (TATR) is lo-

cated in the northeastern area of China, covering Jilin 
Province of China, northeastern areas of the Democratic 
People’s Republic of Korea (DPRK), and southeastern 
areas of Russia. This region comprises the major area of 
the ‘Major Function Oriented Zoning of China’ 
launched by the Ministry of Environmental Protection 
and the Chinese Academy of Sciences in 2011, as well as 
an important part of the ‘China-Russia- DPRK-Mongolia’ 
economic zone under ‘The Belt and Road Initiative’ 
national strategy launched by the Chinese government 
(Fang, 2017; Yang et al., 2019). Forest area in this region, 
an important vegetation cover which provides an im-
portant role in maintaining several important ecosystem 
services, such as biodiversity, water retention, and car-
bon sequestration, accounts for about 70% of the entire 
region (Tao et al., 2017; Wang et al., 2020). This region, 
therefore, is important for the sustainable development 
of China, the DPRK, and Russia, as well as across 
northeast Asia (Zhu et al., 2012; Wang et al., 2020). It is 
of great theoretical and practical significance to quantify 
and analyze the spatial patterns of LULC and their driv-
ing forces in this region. 

Recent studies have examined the spatial patterns of 
LULC and their driving forces in transnational areas. 
For example, Kashaigili and Majaliwa (2010) assessed 
the spatial patterns of LULC in the Malaga River Basin, 
located in the transnational area between Tanzania and 
Burundi. Wu et al. (2017) analyzed the spatial patterns of 
LULC and their driving forces in the Cauchy Basin in 
2010 (i.e., a transnational region between China and 
Nepal). However, the existing studies have almost fo-
cused on quantifying the spatial patterns of LULC and 
analyzing their driving forces on a single scale (i.e., the 
entire region). In the transnational areas, there are sig-
nificant differences in national government policies, 
socioeconomic development, and driving forces of 
LULC among different countries. It is necessary to 
conduct research on the spatial patterns of LULC and 
their driving forces on multiple scales, i.e., the entire 
region and the sub-regions of different countries. This 

kind of research can provide suggestions for different 
countries to formulate relevant policies to improve the 
sustainable development of the transnational areas. 

In this study, our objective was to quantify the spatial 
patterns of LULC and their driving forces across multi-
ple scales in the TATR. This was undertaken by initially 
obtaining LULC data for 2016 using remote sensing 
data. Landscape metrics were then used to quantify the 
spatial patterns of LULC across the entire region and in 
the sub-regions of China, the DPRK, and Russia. Fi-
nally, logistic regression analysis was used to quantify 
the driving forces of the spatial patterns of LULC across 
multiple scales. 

2  Materials and Methods 

2.1  Study area 
The TATR, covering an area of 24 000 km2, is situated 
between 128°E–133°E and 40°N–44°N (Wang et al., 
2020) (Fig. 1). The northern and western areas are lo-
cated in China and cover an area of 10 100 km2 (42.09% 
of the total area), including Yanji, Longjing, Tumen, and 
Hunchun. Yanji is large city with population exceeding 
300 thousand, Longjing, Tumen, and Hunchun are me-
dium cities with population between 100 thousand and 
300 thousand (Li et al., 2018; Yang et al., 2019). The 
southwestern area is located in the DPRK and covers 
6800 km2 (28.33% of the total area), mainly including 
one large city with population exceeding 300 thousand 
(i.e., Chongjin) and seven small cities with population 
below 100 thousand (i.e., Wencheng, Saibie, Ende, 
Xianfeng, Luojin, Puryong, and Hoeryong) (Li et al., 
2018; Yang et al., 2019). The eastern area is located in 
Russia and covers 7100 km2 (29.58% of the total area), 
including one large city with population exceeding 300 
thousand (i.e., Vladivostok) and three small cities with 
population below 100 thousand (i.e., Khasanskiy, Ar-
tem, and Nadezhdinskiy) (Li et al., 2018; Yang et al., 
2019). Elevation of the TATR is higher in the northeast-
ern area and lower in the southeastern area. The region 
has a medium temperate monsoon climate. Average an-
nual precipitation is 700–800 mm, and annual average 
temperature is 2℃–6  (℃ Guo et al., 2015). 

2.2  Data 
Data used in this study included remote sensing data, 
geographic information system (GIS) ancillary data,  
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Fig. 1  Location of the transnational area of Tumen River (TATR). LULC data was produced through visual interpretation using Land-
sat-8 imagery 

 

meteorological data, population density data, nighttime 
light data, and soil data. The remote sensing data obtained 
in July and August in 2016 could cover the three sub-regions 
of China, the DPRK, and Russia with less cloud cover and 
high radiation resolution. Meanwhile, the year 2016 was the 
starting year of the 13th Five-Year Plan for Economic and 
Social Development of the People Republic of China. For 
these two reasons, LULC for 2016 was selected to analyzing 
the spatial patterns of LULC and their driving forces in the 
TATR, which could provide a solid basis for the further 
analysis of land-use and land-cover change (LUCC) in the 
next five years. Remote sensing data included Landsat-8 
imagery from 2016 (Orbital numbers 114/30, 114/31, 
115/30, and 115/31) were obtained from the Geospatial 
Data Cloud of the Computer Network Information Center 
of Chinese Academy of Sciences (http://www.gsc-loud. 
cn). After obtaining these images, we finished geometric 
correction and radiation correction for these remote sens-
ing data. Then, we extracted these remote sensing data 
based on the administrative boundaries of TATR. The GIS 
ancillary data, including administrative boundaries, were 
obtained from the Chinese National Geographic Informa-
tion Center (http://ngcc.sbsm.gov.cn) and the Global Ad-
ministrative Boundaries Dataset (http://www.gadm.org/). 
Meteorological data, including temperature and precipita-
tion data, were obtained from the global weather station 
(https://gis.ncdc.noaa.gov). The meteorological data were 
then converted to raster data by using Kriging interpola-
tion method. Population density data were derived from 

the History Database of the Global Environment (HYDE) 
data (http://themasites.pbl.nl/tridion/en/themasites/hyde/). 
Nighttime light data were acquired from the National 
Oceanic and Atmospheric Administration (https://www. 
ncdc.noaa.gov). Soil data were downloaded from the 
world soil database (http://www.fao.org/soil-survery). All 
the data were georegistered to the Universal Transverse 
Mercator Projection coordinate system and resampled to 
a spatial resolution of 30 m. 

2.3  Methods 
2.3.1  Extracting LULC information 
Methods used to extract LULC information from remote 
sensing images mainly include supervised classification, 
unsupervised classification, and visual interpretation 
(Zhou et al., 2008; Tuia et al., 2009). As visual interpreta-
tion can produce LULC data with a higher level of accu-
racy and reliability compared with supervised classifica-
tion and unsupervised classification (Tuia et al., 2011; Du 
et al., 2012), we therefore used visual interpretation to 
interpret remote sensing images to produce LULC data. 
Firstly, according to national standards and Nan et al. 
(2012), we established the classification system of LULC 
in the TATR. The LULC types included urban land, rural 
settlement, dry farmland, paddy field, river, lake, swamp, 
grassland, bare land, coniferous forest, mixed forest, and 
broadleaf forest. We then performed a visual interpreta-
tion based on the interpretation criteria to obtain the 
LULC information in the TATR for 2016. 
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After obtained the LULC classifications, we evalu-
ated their accuracy based on high-resolution remotely 
sensed data from Google Earth in 2016 (Tao et al., 2017). 
This was undertaken by initially randomly selecting 60 
sampling points for each LULC type (720 random 
points in total) using a stratified random sampling 
method. The 720 random sampling points were then 
imported into Google Earth to obtain real LULC infor-
mation. Finally, the accuracy of the LULC data was 
evaluated by comparing the classification result of each 
random point with the real LULC information. The ac-
curacy assessment revealed an overall accuracy of 
88.25%, and a Kappa coefficient of 0.87, indicating that 
the LULC classification result can accurately reflect real 
LULC information in this region. 
2.3.2  Quantifying spatial patterns of LULC 
Landscape metrics were used to quantify the spatial pat-
terns of LULC across the entire region and in the three 
sub-regions in the TATR in 2016 (Zhu et al., 2012; 2014; 

Wu, 2013; Ma et al., 2014; Tao et al., 2017). The landscape 
metrics were: patch density (PD), edge density (ED), land-
scape shape index (LSI), contagion index (CONTAG), 
mean patch size (MPS), mean patch fractal dimension in-
dex (FRAC_MN), and Shannon’s diversity index (SHDI) 
(Table 1). For these landscape metrics, when the values for 
PD, LSI, CONTAG, FRAC_MN, and SHDI were larger, 
the fragmentation of the spatial pattern of LULC was lar-
ger. Meanwhile, when the values for ED and MPS were 
smaller, the configuration of the spatial pattern of LULC 
was simple, and the fragmentation of the spatial pattern of 
LULC was larger. Fragstats 4.2 software was used to cal-
culate the seven landscape metrics across the TATR and in 
the sub-regions of China, the DPRK, and Russia. 
2.3.3  Analyzing the driving forces of spatial patterns 
of LULC 
A logistic regression analysis was used to analyze the 

driving forces of the spatial patterns of LULC in the 
TATR in 2016. In this analysis, Xn = (x1, x2, ..., xn) is a 
set of independent variables (i.e., driving forces). Yi is a 
dependent variable, this being a binary variable used to 
indicate if the given LULC type i is a certain LULC 
type or not, where 1 represents a certain LULC type and 
0 represents an uncertain LULC type (Wang et al., 2013; 
Wu et al., 2016). Pi is used to express the probability of 
the occurrence of LULC type i. In other words, when 
the pixel values for a LULC type mainly correspond to 
the pixel values for a specific driving force, it can be 
said that the spatial pattern of this LULC type is affected 
by this driving force. When the Pi values are larger, the 
LULC type i will more likely occur, and vice versa. Pi 
can be calculated as: 

0 1 1 2 2log( ) ln
1

i
i n n

i

P
P x x x

P
   

 
       

  (1) 

where x1, x2, ..., xn are the driving forces; and α0, α1, ..., 
αn are the regression coefficients of the driving forces. 
The positive regression coefficients mean that the spatial 
patterns of LULC will be positively influenced by the 
driving forces, and vice versa. Meanwhile, the absolute 
values of the regression coefficients are used to indicate 
the contribution of the driving forces. 

Based on previous studies and the geographical 
characteristics in the TATR, eight natural driving forces 
and four anthropogenic driving forces were selected as 
the key driving forces of the spatial patterns of LULC in 
this study. The natural driving forces included elevation, 
slope, temperature, precipitation, silt content, sand con-
tent, clay content, and distance to the nearest river, 
meanwhile, the anthropogenic driving forces included 
population, intensity of nighttime light, distance to the 
nearest town, and distance to the nearest road (Ye et al., 
2001; Zhou et al., 2008; Sun et al., 2015). 

 
Table 1  Landscape metrics used in this study 

Landscape metrics Abbreviation Description 

Patch density PD The number of patches per hectare (num/ha), reflecting landscape fragmentation 

Edge density ED The total length of all edge segments per hectare (m/ha) 

Landscape shape index LSI A modified perimeter-area ratio that measures the shape complexity of the patch 

Contagion index CONTAG 
Used to describe the degree of agglomeration or extended trend of different block types in the 
landscape 

Mean patch size MPS The average area of all patches in the landscape (ha) 

Mean patch fractal dimension index FRAC_MN 
The value of the fractal dimension is one to two. If value is closer to one, the shape of the patch is 
simpler, and vice versa 

Shannon’s diversity index SHDI Used to describe the diversity or heterogeneity of landscape types 
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In order to analyze the driving forces of the spatial 
patterns of LULC at multiple scales, firstly, random 
points (totally 27 000 points) in the three sub-regions of 
China, the DPRK, and Russia were selected using a 
stratified random sampling method. Then, the LULC 
information and the values of driving forces of each 
random point were extracted. Finally, the information of 
LULC and the values of driving forces were imported 
into the SPSS software, and the logistic regression 
model was used to analyze the driving forces of the spa-
tial patterns of LULC in the TATR and the sub-regions 
of China, the DPRK, and Russia. 

3  Results  

3.1  LULC in the TATR 
Broadleaf forest (16 055.11 km2) and dry farmland 
(3265.69 km2) covered the greatest area of the TATR, 
respectively (Fig. 2). Grassland was the next largest area 
(1169.52 km2), accounting for 4.87% of the total area, 
whilst lakes and bare land (combined area of 138.33 
km2) accounted for the smallest areas (less than 1.00% 
of the total area). 

Analysis of LULC results for the three sub-regions 
(China, the DPRK, and Russia) indicated noticeable 
differences between the LULC types. In China, broad-
leaf forest (7156.32 km2; 70.68%) and dry farmland 
(1241.77 km2; 12.26%) occupied the greatest area, fol-
lowed by mixed forest (431.30 km2; 4.26%) (Fig. 2). 
Lakes and bare land covered the smallest area. In the 
DPRK, broadleaf forest (4174.48km2; 61.08%) and dry 
farmland (1594.78km2; 23.34%) were the dominant 

LULC types. In Russia, broadleaf forest and grassland 
(totally accounting for 77.43%) accounted for the great-
est area of coverage, while coniferous forest and bare 
land accounted for the smallest area, accounting for only 
0.14% of the total area in the sub-region. 

3.2  Spatial patterns of LULC 
In the TATR, the fragmentation of coniferous forest was 
the largest, followed by broadleaf forest and grassland, 
and the fragmentation of urban land and bare land was 
the smallest. PD and LSI values for coniferous forest 
were 0.46 and 142.08, respectively, higher than the other 
LULC types (Fig. 3). Meanwhile, MPS value for conif-
erous forest was 6.74 ha, lower than the other LULC 
types except for bare land. PD values for broadleaf for-
est and grassland were 0.35 and 0.30, respectively, while 
PD values for urban land and bare land were both lower 
than 0.01. In addition, ED, MPS, LSI, and FRAC_MN 
values for bare land were 0.02 m/ha, 4.95 ha, 8.49, and 
1.05, respectively. 

In the three sub-regions, the fragmentation of LULC 
was the greatest in China, followed by the DPRK, and 
then Russia (Fig. 4). By analyzing the values for PD, 
LSI, and CONTAG, the PD value for LULC was 2.04, 
and the LSI and CONTAG values were 79.15 and 72.37, 
respectively, which meant that the configuration of 
LULC was complex in China. In the sub-region of the 
DPRK, the LSI and CONTAG values for LULC were 
75.70 and 71.04, respectively, meaning the configura-
tion of LULC was simple. In addition, in the sub-region 
of Russia, the PD, LSI, CONTAG, and SHDI values 
were 0.66, 50.43, 71.86, and 1.24, respectively. 

 

Fig. 2  The proportion of LULC in the TATR (a) and in the sub-regions of China, the Democratic People’s Republic of Korea (DPRK), 
and Russia (b) in 2016. Area proportion represents the proportion of each LULC to the total area in the sub-regions of China, the DPRK, 
and Russia 
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Fig. 3  Landscape metrics of different LULC in the transnational area of Tumen River (TATR). Meanings of abbreviations see Table 1 

 

Fig. 4  Landscape metrics of LULC in the entire region and the sub-regions of China, the DPRK, and Russia. Meanings of abbrevia-
tions see Table 1 
 

3.3  Driving forces of spatial patterns of LULC in 
the TATR 
For the spatial pattern of broadleaf forest, among the 
natural driving forces, temperature had the greatest ef-

fect (Table 2), with the regression coefficient of 0.56. 
Meanwhile, the regression coefficients of the other im-
portant natural driving forces (i.e., slope, elevation, and 
precipitation) were 0.51, 0.47, and 0.29, respectively. 
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Among the anthropogenic driving forces, the most im-
portant one affected the spatial pattern of broadleaf for-
est was intensity of nighttime light, with the regression 
coefficient of –0.61. 

For the spatial pattern of dry farmland which had the 
second largest area, the major natural driving forces 
were temperature and elevation, with the regression co-
efficients of –0.92 and –0.77, respectively (Table 2). 
Among the anthropogenic driving forces, the most im-
portant one was distance to the nearest road, with the 
regression coefficient of –0.52. Meanwhile, for the spa-
tial pattern of grassland which had the third largest area 
across the entire TATR, the major natural driving forces 
were elevation (–0.69) and clay content in soil (0.39). 
Furthermore, among the anthropogenic driving forces, 
distance to the nearest road and intensity of nighttime 
light had a significant influence on the spatial pattern of 
grassland. 

For the spatial pattern of urban land, the anthropo-
genic driving forces (including population, intensity of 
nighttime light, and distance to the nearest town) were 
the main driving forces (Table 2). The increase in popu-
lation and nighttime light intensity meant the increase in 
artificial buildings. Therefore, the spatial pattern of ur-
ban land had a positive correlation with nighttime light 
intensity and population, with the regression coefficients 
of 1.07 and 0.22, respectively. Among the natural driv-
ing forces, the most important forces that affected the 

spatial pattern of urban land were elevation and slope, 
with the regression coefficients of –1.52 and –0.93, re-
spectively. In the TATR, urban land was usually distrib-
uted in the areas with low altitude and low slope. For 
this reason, the spatial pattern of urban land was nega-
tively correlated with elevation and slope. 

3.4  Driving forces of spatial patterns of LULC in 
the sub-regions 
In the three sub-regions of China, the DPRK, and Rus-
sia, the driving forces of spatial patterns of LULC 
showed significant differences. For the LULC type 
which covered the greatest area of the TATR (i.e., 
broadleaf forest), in the sub-region of China, the spatial 
pattern of broadleaf forest had a positive correlation 
with elevation and slope, with the regression coeffi-
cients of 1.12 and 0.76, respectively (Table 3). Mean-
while, among the anthropogenic driving forces, intensity 
of nighttime light influenced the spatial pattern of 
broadleaf forest negatively, with the regression coeffi-
cient of –3.97. In the sub-region of the DPRK, the spa-
tial pattern of broadleaf forest was positively related 
with the natural driving forces except for distance to the 
nearest river, while negatively related with intensity of 
nighttime light (–2.10) and population (–0.09). In addi-
tion, in the sub-region of Russia, the most important 
force that affected the spatial pattern of broadleaf forest 
was elevation, with the regression coefficient of 0.51. 

 
Table 2  Regression coefficients of driving forces of spatial patterns of LULC in the TATR 

Driving forces Indices 
Broadleaf 

forest 
Mixed 
forest 

Coniferous 
forest 

Grassland River Lake Swamp
Paddy 
field 

Dry 
farmland 

Urban 
land 

Rural 
settlement

Elevation 0.47* 0.99* 0.62* –0.69* –1.12* –2.12* –3.20* –2.11* –0.77* –1.52* –0.94*

Slope 0.51* – 0.20* –0.28* –1.05* –0.77* – –2.04* –0.54* –0.93* –0.63*

Temperature 0.56* 0.20* –0.77* – – –0.72* –0.38* –1.25* –0.92* – 0.32*

Precipitation 0.29* 0.66* 0.50* –0.30* 0.64* 1.25* – – 0.13* – –0.81*

Silt content in soil – – 0.24* –0.14* – 0.37* 0.34* 0.64* 0.13* – – 

Sand content in soil – 0.17* – – – – –0.67* –0.39* 0.17* – – 

Natural 

Clay content in soil 0.12* – –0.38* 0.39* – –0.41* –0.58* –0.38* –0.16* – –0.20*

 Distance to the 
nearest river 

– – – 0.21* –220.02* 0.45* –1.90* –0.71* – 0.37* 0.22*

Population –0.28* –0.24* –0.17* – 0.71* – – – 0.14* 0.22* – 

Intensity of night-
time light 

–0.61* –19.61* –0.91* –0.23* – – – –0.25* –0.42* 1.07* 0.29*

Distance to the 
nearest town 

0.21* –0.50* –0.37* – 0.41* 0.62* 1.03* –0.41* –0.26* –10.24* –0.30*

Anthropogenic 

Distance to the 
nearest road 

0.09* 1.03* – –0.27* – – –0.94* – –0.52* – –1.54*

Notes: * denotes that correlation is significant at 0.05 level. – represents the driving force was excluded from logistic regression analysis 
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For the LULC type which covered the second largest 
area in the TATR (i.e., dry farmland), in the sub-region 
of China, elevation (–1.20) was the major natural driv-
ing force, and distance to the nearest road (–0.52) was 
the most important anthropogenic driving force (Table 3). 
In the sub-region of the DPRK, among the natural driv-
ing forces, silt content had the greatest effect, with the 
regression coefficient of –2.73; among the anthropo-
genic driving forces, the most important force was dis-
tance to the nearest road, with the regression coefficient 
of –0.26. In addition, in the sub-region of Russia, eleva-
tion (–4.52) was the most important natural driving 
force, and distance to the nearest town (–1.72) was the 
major anthropogenic driving force. 

In addition, for the LULC type which was most af-
fected by human activities (i.e., urban land), the anthro-
pogenic driving forces were the major forces in the three 
sub-regions. Among the anthropogenic driving forces, 
distance to the nearest town was the most influential 
driving force in the three sub-regions. The regression 
coefficients were –68.12, –51.23, and –82.15 in the 
sub-regions of China, the DPRK, and Russia, respec-
tively, which were significantly higher than the other 
driving forces (Table 3). 

4  Discussion 

4.1  Changes of driving forces of spatial patterns of 
LULC across different scales 
According to Wu (2004) and Ma et al. (2018), scaling 
usually refers to the translation of information across 
spatial and temporal scales or organizational levels, 
which frequently involves changing grain size, extent, 
or both. Recently, several studies have shown that the 
driving forces of spatial patterns of LULC have an ob-
vious scaling effect on different scales (Huang et al., 
2009; Ma et al., 2016). In other words, the influences of 
driving forces of spatial patterns of LULC will change 
across different scales. This is of great significance for 
understanding the drivers of LULC and formulating 
land management policies. In this study, we found that 
the driving forces of spatial patterns of LULC changed 
across different scales in the TATR. Across the entire 
TATR, the influences of natural driving forces were 
greater than those of anthropogenic driving forces for all 
LULC types. For all LULC types, the number of natural 
driving forces influencing the spatial patterns of LULC 

exceeded that of anthropogenic driving forces (Table 2). 
Meanwhile, the regression coefficients of natural driving 
forces were generally greater than those of anthropo-
genic driving forces. 

On the other hand, we found that the influences of 
anthropogenic driving forces gradually increased from 
the entire TATR to the three sub-regions of China, the 
DPRK, and Russia. For example, for the LULC type 
which covered the greatest area of the TATR (i.e., 
broadleaf forest), the absolute values of regression coef-
ficients of anthropometric driving forces increased from 
0.09–0.61 for the whole TATR to 0.09–3.97 for the three 
sub-regions (Table 3). For another LULC type which 
covered a large area in the TATR (i.e., dry farmland), the 
absolute values of regression coefficients of anthropom-
etric driving forces increased from 0.14–0.52 at the re-
gional scale to 0.26–1.72 at the sub-region scale. In ad-
dition, for the LULC type which was most affected by 
human activities (i.e., urban land), the influences of an-
thropometric driving forces of the three sub-regions 
were significantly higher than those of the whole region, 
with the absolute values of regression coefficients in-
creasing from 0.22–10.24 to 0.14–82.15. This finding 
showed that the spatial patterns of LULC were mainly 
influenced by natural driving forces in the whole TATR, 
while in the three sub-regions of China, the DPRK, and 
Russia, the influences of anthropometric driving forces 
significantly enhanced. 

4.2  Implications for land resource management 
and sustainable development in the TATR 
In the TATR, land resource management has become an 
important issue. The sub-region of China has experi-
enced a rapid urban expansion in recent years (Yang et 
al., 2019). Meanwhile, in the DPRK, food security 
problem due to arable land loss is always serious. In 
addition, deforestation and reclamation of cropland are 
commonly used to address the severe food security 
problem in the DPRK. This kind of deforestation and 
cropland reclamation have already caused serious soil 
erosion and natural habitat loss for several decades. 
Therefore, how to effectively manage land resources 
and promote regional sustainable development have 
become important issues in this transnational area. 

At present, China, the DPRK, and Russia have issued 
a series of policies to manage land resources in the 
TATR. In China, ‘Land Management Law of the Peo-
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ple’s Republic of China’ and ‘The Overall Plan for Land 
Utilization of Yanbian Korean Autonomous Prefecture 
from 1997 to 2010’ were issued in 1998 and 2005, re-
spectively. In 1977, the DPRK’s government issued the 
‘Land Law of Democratic People’s Republic of Korea’, 
which pointed out that ‘land development and urban 
expansion must not occupy cropland, as far as possible 
to protect high-quality cropland’. Meanwhile, the 
DPRK’s government issued ‘Environmental Conserva-
tion Management Law’ in 1998 and ‘Environmental 
Protection Law’ in 1999. In Russia, ‘Natural Resources 
Protection Law’ and ‘Agricultural Land Circulation Law 
of the Russian Federation’ have been launched in 1993 
and 2003, respectively (Prishchepov et al., 2013). These 
policies have produced positive effects in managing land 
resources and promoting sustainable development of the 
TATR. However, there are still several serious problems 
to be solved, such as natural habitat loss, deforestation, 
and cropland loss (Yang et al., 2019). Therefore, based 
on the major findings of this study, we suggest that: 
firstly, forest was positively correlated with elevation in 
the whole TATR and the three sub-regions of China, the 
DPRK, and Russia. Meanwhile, both dry farmland and 
paddy field were negatively correlated with elevation. 
Therefore, forest at high elevations should be regarded 
as ecological protection red line to reduce land reclama-
tion in the high elevation area, which was usually hap-
pened in the DPRK during the past several decades. 
Secondly, in this study, we found that urban land, dry 
farmland, and paddy field were all negatively correlated 
with elevation, that is urban land and cropland were dis-
tributed at low altitudes in the TATR and the three 
sub-regions of China, the DRPK, and Russia. Therefore, 
we should pay attention to protect important cropland 
distributed around cities at low altitudes. Finally, China, 
the DPRK, and Russia should strengthen their coopera-
tion and conduct effective measures for the sustainable 
utilization of land resources and the regional sustainable 
development in the TATR. 

4.3  Future perspectives 
This study has certain limitations. First, we only ana-
lyzed the LULC of the TATR in 2016 and the driving 
forces of spatial patterns of LULC, the temporal-spatial 
dynamics of LULC over a long period was not quanti-
fied. Second, we analyzed the driving forces of spatial 
patterns of LULC using statistical methods, rather than 

analysis from the mechanism. However, these limita-
tions will not fundamentally affect the results above. We 
analyzed the spatial patterns of LULC and driving 
forces in the TATR in 2016 on multiple scales. The out-
come of this study will play an important role in under-
standing the driving forces of LULC and promoting the 
sustainable development in this transnational area. 

In the future, more remote sensing data will be used 
to analyze the temporal-spatial dynamics of LULC in 
this region, more auxiliary data will be used to analyze 
the driving forces of spatial patterns of LULC (He et al., 

2014). We will also attempt to analyze the spatial pat-
terns of LULC and changes from the angle of mecha-
nism, rather than only use statistical method (Ma et al., 

2016). In addition, we will attempt to quantify the 
LUCC and forecast its impacts on the sustainable man-
agement of land resources in the TATR in the near future 
(Zhang et al., 2017; 2019). 

5  Conclusions 

In this study, we analyzed the spatial patterns of LULC 
in the TATR (transnational area of Tumen River) on two 
scales, i.e., the entire region and the three sub-regions of 
China, the DPRK (Democratic People’s Republic of 
Korea), and Russia using remote sensing images. Then, 
logistic regression analysis was used to analyze the 
driving forces of spatial patterns of LULC on different 
scales. We found that broadleaf forest and dry farmland 
were the main LULC types in the TATR in 2016, ac-
counting for 66.86% and 13.60% of the total land area, 
respectively. Meanwhile, these two LULC types occu-
pied the greatest area in the sub-region of China, as well 
as the sub-region of the DPRK. In addition, broadleaf 
forest and grassland were the two dominant LULC types 
in the sub-region of Russia. 

In the TATR, elevation and slope were the major 
natural driving forces, while distance to the nearest town 
was the major anthropogenic driving force. In the three 
sub-regions, the spatial patterns of LULC were mainly 
affected by elevation, slope, nighttime light intensity, 
and distance to the nearest town. In addition, the driving 
forces of spatial patterns of LULC changed across dif-
ferent scales. Across the entire TATR, the influences of 
natural driving forces were greater than those of an-
thropogenic driving forces for all LULC types. Mean-
while, the influences of anthropogenic driving forces 
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gradually increased from the entire TATR to the three 
sub-regions of China, the DPRK, and Russia. This find-
ing showed that the spatial patterns of LULC were 
mainly influenced by natural driving forces in the entire 
TATR, while in the three sub-regions, the influences of 
anthropometric driving forces enhanced. Based on our 
findings, we suggest that it is of great significance for 
understanding the driving forces of spatial patterns of 
LULC at multiple scales in the transnational area to 
formulate land management policies. For the TATR, 
China, the DPRK, and Russia should strengthen their 
cooperation and conduct effective measures for the sus-
tainable utilization of land resources and the regional 
sustainable development. 
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