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Abstract: Urban particulate matter 2.5 (PM2.5) pollution and public health are closely related, and concerns regarding PM2.5 are wide-

spread. Of the underlying factors, the urban morphology is the most manageable. Therefore, investigations of the impact of urban 

three-dimensional (3D) morphology on PM2.5 concentration have important scientific significance. In this paper, 39 PM2.5 monitoring 

sites of Beijing in China were selected with PM2.5 automatic monitoring data that were collected in 2013. This data set was used to ana-

lyze the impacts of the meteorological condition and public transportation on PM2.5 concentrations. Based on the elimination of the me-

teorological conditions and public transportation factors, the relationships between urban 3D morphology and PM2.5 concentrations are 

highlighted. Ten urban 3D morphology indices were established to explore the spatial-temporal correlations between the indices and 

PM2.5 concentrations and analyze the impact of urban 3D morphology on the PM2.5 concentrations. Results demonstrated that road 

length density (RLD), road area density (RAD), construction area density (CAD), construction height density (CHD), construction vol-

ume density (CVD), construction otherness (CO), and vegetation area density (VAD) have positive impacts on the PM2.5 concentrations, 

whereas water area density (WAD), water fragmentation (WF), and vegetation fragmentation (VF) (except for the 500 m buffer) have 

negative impacts on the PM2.5 concentrations. Moreover, the correlations between the morphology indices and PM2.5 concentrations 

varied with the buffer scale. The findings could lay a foundation for the high-precision spatial-temporal modelling of PM2.5 concentra-

tions and the scientific planning of urban 3D spaces by authorities responsible for controlling PM2.5 concentrations.  
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1  Introduction 

Air pollution has become a social topic of global con-
cern, especially in developing countries (Westervelt et 
al., 2016). Over the past four decades, remarkable eco-
nomic development has been achieved in China. How-

ever, urban air pollution is currently becoming more 
severe. The issue has been a growing concern for the 
public and the government in China (Wang, 2013; Cao 
et al., 2016; Chen et al., 2017). Among the several types 
of pollution, particulate matter 2.5 (PM2.5) pollution is 
attracting the most attention. PM2.5 refers to particles 
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with aerodynamic diameters less than 2.5 μm, which are 
also known as fine particles (Westervelt et al., 2016; Yan 
and Wu, 2016). Epidemiological studies have shown 
that PM2.5 is significantly related to adverse health ef-
fects (Chow et al., 2006; Miller et al., 2007; Seltenrich, 
2016), such as cardiopulmonary mortality or morbidity 
(Lin et al., 2015; Bonyadi et al., 2016). In addition, 
PM2.5 significantly affects atmospheric visibility and the 
urban landscape (Moore et al., 2007; Vidot et al., 2007; 
Xian, 2007; Ji et al., 2014; Tao et al., 2014; Meng et al., 
2015). Researchers define two types of data for PM2.5 

(Moore et al., 2007; Vidot et al., 2007). The first type is 
based on real-time monitoring site data, which have the 
advantages of long-term observations, accuracy, and 
diversity (Zhang and Cao, 2015; Ma et al., 2017). Re-
mote sensing data are the second type (Wang et al., 
2010; Wu et al., 2016; You et al., 2016). Remote sensing 
data can cover larger scales than in situ monitoring. 
Chuersuwan et al. (2000) and Yang et al. (2005) are 
representative of site monitoring studies. In the study by 
Chuersuwan et al. ( 2000), they suggested the impor-
tance of transport and atmospheric chemistry (i.e., sec-
ondary formation) in PM2.5 episodes by collecting 
time-resolved data across New Jersey from July 1997 to 
June 1998. The mass concentrations of Al, Si, Ca, Mg, 
and Fe exhibited similar weekly variations in both Bei-
jing and Shanghai of China (Yang et al., 2005). In addi-
tion, an analysis of the mineral composition of PM2.5 
pollutants indicates that the major crustal elements Mg 
and Si are almost 1.40 to 2.24 times more abundant in 
Beijing than in Shanghai (Yang et al., 2005). For studies 
based on remote sensing, ground level fine particulate 
matter and aerosol optical depth (AOD) data are derived 
from moderate resolution satellite data, such as Moder-
ate Resolution Imaging Spectroradiometer (MODIS) 
(Tian and Chen, 2010) and SeaWiFS (Vidot et al., 
2007). This data are then used to estimate PM10 and 
PM2.5. With the emergence of high-resolution data (e.g., 
Chinese Huanjing-1 (HJ-1) satellite and Gaofen-1 
(GF-1) wide-field view (WFV) satellite) in recent years, 
high-resolution AOD data can be retrieved to increase 
the accuracy of urban air quality monitoring (Li et al., 
2012; Bao et al., 2016). 

Based on the two sources of PM2.5 data and the im-
pact of various factors on PM2.5 concentration, most 
researchers have focused on meteorological factors 
(e.g., temperature, humidity, and wind speed) and 

two-dimensional surface morphology (Beckett et al., 
2000; Hien et al., 2002; Moore et al., 2007; Xian, 2007; 
Jim and Chen, 2008; Tai et al., 2010). Tai et al. (2010) 
applied a multiple linear regression (MLR) model to 
study the correlations of total PM2.5 and its components 
with meteorological variables in the United States. The 
research suggested that an MLR model can explain up 
to 50% of the PM2.5 variability with temperature, rela-
tive humidity (RH), and precipitation. Xian (2007) in-
vestgated two-dimensional surface morphology (land 
use and land cover) impacts in the Las Vegas region and 
suggested that PM2.5 was apparently impacted by the 
impervious surface area (ISA) in a 1 km grid and was 
weakly impacted by the urban vegetation canopies 
within 1 km and 2 km grids. Beckett demonstrated that 
urban tree species could impact particulate pollution, 
and a similar conclusion had been proposed by Jim for 
Guangzhou, China (Beckett et al., 2000; Jim and Chen, 
2008). Moreover, Escobedo evaluated the spatial het-
erogeneity of urban forest influences on air pollution 
removal at a sub-regional scale and suggested that air 
pollution removal per square meter of tree cover was 
greatest in the low socioeconomic sub-region (Escobedo 
and Nowak, 2009). Although a variety of factors have 
been explored in previous studies, the scale of 
two-dimensional data may introduce uncertainty (Xian, 
2007; Mansfield et al., 2015; Xu et al., 2016). 

In recent years, the impact of urban morphology on 
meteorology and public transportation in various cities 
had been studied (Liu et al., 2014). Moreover, the rela-
tionship between urban two-dimensional (2D) mor-
phology and air pollution had been widely examined in 
China (Fan et al., 2018; Liu et al., 2018; Shi et al., 
2019). Because ventilation channels can accelerate at-
mospheric circulation and help diffuse air pollution, 
several cities in China have presented designs for 
ventilation channels from urban three-dimensional (3D) 
morphologies perspective to relieve air pollution (Xin-
hua News Agency, 2016). During the past of urban 
planning, 3D morphologies are considered an inconven-
ient factor, especially in megacities (Handayanto et al., 
2017). Urban 3D morphology may be a key factor that 
impacts air pollution and even PM2.5. However, investi-
gations of the impacts on PM2.5 concentrations still ig-
nore urban three-dimensional (3D) characteristics. 

Beijing experienced severe air pollution in 2013. Ex-
ploring the impact of urban 3D morphology on PM2.5 
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concentration during this period will objectively reveal 
scientific laws. The findings can provide novel insights 
for government control of PM2.5 pollution from the per-
spective of urban 3D morphology. In this paper, 39 
PM2.5 monitoring sites in Beijing of China with urban 
3D morphologies and automatic PM2.5 monitoring data 
were selected. The meteorological condition and public 
transportation factors were eliminated by analyzing the 
temporal patterns of PM2.5 concentrations. We then es-
tablished urban 3D morphology indices and comprehen-
sively investigated the spatial-temporal correlations be-
tween the urban 3D morphology indices and PM2.5 con-
centrations to evaluate the impacts of urban 3D mor-
phology on PM2.5 concentrations.  

2  Materials and Methods 

2.1  Study area 
The study area covers the whole Beijing of China, 
which consists of 14 districts and 2 counties. The total 
area is 16 410.54 km2 and the built-up area has reached 
1289.30 km2. Beijing experienced the most serious air 

pollution in 2013 and PM2.5 was the main pollutant (Ji et 
al., 2014). To monitor and control the PM2.5, govern-
ment agencies had invested to build a large number of 
PM2.5 monitoring sites. The Fig. 1 shows the spatial dis-
tribution of 39 PM2.5 monitoring sites. These sites are 
distributed from the urban central to suburbs. The de-
scriptions of all sites are summarized in Table 1. The 
urban 3D morphology of Shangdianzi, Changping_2, 
Chaoyang, Shunyi_2, and Baolian are shown in Fig. 2. 

2.2  Data sources and data processing 
Among the 39 PM2.5 monitoring sites, 34 PM2.5 moni-
toring sites belong to the Environmental Protection 
Agency (EPA), while 5 PM2.5 monitoring sites (Shang-
dianzi, Changping_2, Chaoyang, Shunyi_2 and Baolian) 
belong to the Beijing Meteorological Administration 
(BMA). Meteorological data of EPA site were acquired 
from the closest weather stations and the meteorological 
data of BMA site were recorded with PM2.5 concentra-
tion. The PM2.5 concentrations at monitoring sites were 
collected for the period starting at 0:00 on 2013-01-01 
to 24:00 on 2013-12-31. The high-resolution remote 

 

Fig. 1  Distribution of the 39 PM2.5 monitoring sites in Beijing, China. (The number of the sites corresponds to the site name in Table 1) 
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Table 1  Description of the 39 PM2.5 monitoring sites in the study area 

No. Name No. Name No. Name No. Name 

1 Dongsi 11 Yungang 21 Miyun 31 Yongding Gate Avenue 

2 Temple of Heaven 12 Gucheng 22 Yanqing 32 Xizhimen north 

3 Guanyuan 13 Daxing 23 Dingling 33 Nansanhuan 

4 West Wanshou 14 Yizhuang 24 Badaling 34 Dongsihuan 

5 Olympic Sports Center 15 Tongzhou 25 Miyun Reservoir 35 Shangdianzi 

6 Agriculture exhibition center 16 Shunyi_1 26 Donggao Village 36 Changping_2 

7 Wanliu 17 Changping_1 27 Youngledian 37 Chaoyang 

8 Northern New Area 18 Mentougou 28 Yufa 38 Shunyi_2 

9 Botanic Garden 19 Pinggu 29 Liuli River 39 Baolian 

10 Fengtai garden 20 Huairou 30 Qianmen   

 

Fig. 2  The urban 3D morphology of five typical sites in Beijing, China. (The three circles correspond to 500 m, 1000 m and 2000 m 
buffers from inside to outside) 

 
sensing images used in this research are collected by 
Quickbird, and the acquisition date was 2010-08-03. 
Because the land use around PM2.5 monitoring sites 
were restricted by urban planning, the urban 3D mor-
phology had slightly changed from 2010 to 2013. 
Therefore, the effect of period different between PM2.5 
monitoring sites data and urban 3D morphology could 
be ignored. The image processing includes geometric 
correction, image fusion and image mosaic. According 
to the China standard of urban land use and planning 
classification, the four types of urban morphology (road, 
water body, construction and vegetation) were extracted 
from high resolution Quickbird images via artificial 
visual discrimination with eCognition software plat-
form. Those data were stored as vector types. The height 
of construction multiplied by the number of layers on 
each floor yielded a statistical average height of 3 m. 
The construction data were collected from the 2010 Bei-
jing Civil Affairs Bureau (BCAB) field survey results. 

2.3  Method 
2.3.1  Underlying principles and research flow 
The urban PM2.5 concentrations are influenced by vari-
ous factors (Hochadel et al., 2006; Xian, 2007; Tai et al., 
2010). Meteorological conditions affect the diffusion of 
PM2.5 pollutants, and public transportation is an impor-
tant source of PM2.5 pollutants (Brauer et al., 2003; Wen 
et al., 2018). Moreover, urban 3D morphology impacts 
the meteorological condition and public transportation 
(Collier 2006; Liu et al., 2014). Therefore, three main 
factors are selected for this analysis: meteorological 
condition, public transportation, and urban 3D mor-
phology. 

The experiment flow of this research is shown in Fig. 3. 
First, the meteorological data and PM2.5 concentration 
data are acquired via ground monitoring sites. The im-
pact of meteorological condition on PM2.5 concentra-
tions can be analyzed from two perspectives: the rela-
tionships between average wind speed and the daily and  
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Fig. 3  Flow chart of the research 
 

weekly PM2.5 concentrations as well as between average 
wind speed and the monthly variation of PM2.5 concen-
trations. Moreover, the effects of public transportation 
factors on the PM2.5 concentrations will be revealed by 
an analysis of the weekly and daily variations of PM2.5 
concentrations. Secondly, the impacts of the meteoro-
logical condition and public transportation on the PM2.5 
concentrations can be eliminated by averaging the PM2.5 
concentrations over different time scales. This can high-
light the differences in PM2.5 concentrations due to urban 
3D morphology. Finally, through extracting and analyzing 
urban 3D morphology indices based on high resolution 
images, the relationship between the urban 3D morphology 
and PM2.5 concentrations at various spatial scales can be 
evaluated using a spatial-correlation method. 
2.3.2  Establishing 3D morphological indicators 
Urban 3D morphology is affected by the natural, social, 
economic, and urban environments. It reflects the com-
prehensive properties of the city, and it affects the dis-
tribution and transmission of a city’s material, energy, 
and information (Liu et al., 2014). In this study, we es-
tablish 3D morphological indicators of the morphology 
of four land uses, roads, water body, construction, and 
vegetation. Moreover, density, height, and structural 
indicators are considered to extract the 3D urban mor-
phology. The formulations for each indicator are shown 
in Table 2. 
2.3.3  Statistics and analysis 
To eliminate the instrumental and human causes of data 
errors, PM2.5 automatic monitoring data throughout the 
year are filtered according to the China Ambient Air 
Quality Standards (CAAQI). The time scale for the me-
teorological condition changes is yearly variation, and 
the time scales for public transportation are weekly 

variation and hourly variation. Therefore, the monthly, 
weekly, and hourly of PM2.5 concentrations will be cal-
culated by averaging the effective data. To explore the 
correlation between PM2.5 concentrations and wind 
speed, the monthly average wind speed is also included 
in the analysis. 

To explore the potential relation between urban mor-
phology and PM2.5 concentrations, different scale buff-
ers (500 m, 1000 m, and 2000 m radius circular) cen-
tered on each site are generated (Xian, 2007; Xu et al., 
2016) and the urban 3D morphological indicators are 
calculated for each buffer. The results are shown in Fig. 4. 
For each buffer, the correlations between the PM2.5 
concentrations and the urban 3D morphological indices 
were analyzed via monthly, weekly, and daily variation. 
The Pearson correlation coefficient is calculated by 
Equation (1): 

1 1 1

2 2
2 2 2

1 1 1 1

N N N

i i i i
i i i

N N N N

i i i i
i i i i

N x y x y

r

N x x N y y
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   




   
    
   

  

   
  (1) 

where r is the Pearson correlation coefficient and xi is 
the PM2.5 concentrations for the ith site. yi is the urban 
3D morphology index value for the i-th site, and N is the 
total number of sites. To investigate the significance 
levels of the correlations, confidence levels of 95% (P < 
0.05) or 99% (P < 0.01) are calculated using a one-sided 
test. 

3  Results 

3.1  Urban 3D morphology at different spatial 
scales 
The PM2.5 monitoring sites are located in regions with 
different urban 3D morphology. Using the ArcGIS soft-
ware platform, urban 3D morphology indices are calcu-
lated according to the definition of each index in the 
three buffers. These results are shown in Fig. 4. There 
was little variation in road length density (RLD) and 
road area density (RAD) along the gradient from the 
city center to suburbs is small. However, the RLD and 
RAD in some typical sites, such as Botanic Garden, 
Liuli River, and Shangdianzi, are lower than in other 
sites. The water area density and water fragmentation in 
city center is low, but these indices are high in suburbs  
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Table 2  Urban 3D morphological indicators definition 
Feature indicator Indicator name Expression Definition 

Road Length Density 
1

/
n

i
i

RLD L S


   
Refers to the area ratio of the length of all roads, where Li is the length of road section i, n
is the number of roads, and S is the area of the range 

Road Area Density 
1

/
n

i
i

RAD B S


   
Refers to the area ratio of the area of all roads, where Bi is the area of road section i, n is 
the number of roads, and S is the area of the range 

Construction Area Density 
1

/
n

i
i

CAD A S


   
Refers to the area ratio of the area of all construction sites, where Ai is the area of con-
struction section i, n is the number of construction sites, and S is the area of the range 

Construction Height Density 
1

/
n

i
i

CHD H S


   
Refers to the area ratio of the height of all construction sites, where Hi is the height of 
construction section i, n is the number of construction sites, and S is the area of the range

Construction Volume Density 
1

/
n

i
i

CVD V S


   
Refers to the area ratio of the volume of all construction sites (volume = construction area 
× construction height), where Vi is the volume of construction site i, n is the number of 
constructions, and S is the area of the range 

Water Area Density 
1

/
n

i
i

WAD W S


   
Refers to the area ratio of the area of all water, where Wi is the area of water body i, n is 
the number of water, and S is the area of the range 

Density  
Features 

Vegetation Area Density 
1

/
n

i
i

VAD C S


   
Refers to the area ratio of the area of all vegetation, where Ci is the area of the vegetation 
section i, n is the number of vegetation sites, and S is the area of the range 

Height  
Features 
Indicator 

Construction Otherness /CO H  
Refers to the height standard deviation (δ) ratio of the average height ( H ) of all con-
struction sites. It reflects the amount of scatter in the groups of construction areas 

Water Fragmentation 
1 1

/
n n

i i
i i

WF R Q
 

    
Refers to the ratio of all water areas to the perimeter of all water areas, where Ri is the 
area of water body i, and Qi is the perimeter of water body i 

Structural  
Features  
Indicator 

Vegetation Fragmentation 
1 1

/
n n

i i
i i

WF S T
 

    
Refers to the ratio of all-vegetation area to the perimeter of all vegetation areas, where Si

is the area of vegetation section i, and Ti is the perimeter of vegetation section i 

 
(e.g., Miyun Reservoir and Yanqing). This is because 
these stations are close to open water body. There was 
no obvious difference in construction area density from 
the city center to suburbs across among the three buffer 
sizes. However, there were significant differences in 
urban height morphology indices (i.e., construction 
height density, construction volume density, and con-
struction otherness) from city center to suburbs. These 
differences were especially pronounced for construction 
otherness. Vegetation area density and vegetation frag-
mentation are low in the city center, but they are high in 
the suburbs. The morphology indices related to roads 
and construction decrease along the gradient from the 
city center to the suburbs, while the morphology indices 
related to water body and vegetation increase with dis-
tance from the city center. 

3.2  Impact of meteorological conditions and pub-
lic transportation on PM2.5 concentrations 
3.2.1  Impact of meteorological conditions on PM2.5 
concentrations 
Meteorological conditions are an important factor for 
the aggregation and diffusion of PM2.5 (Westervelt et 
al., 2016). The variations of monthly PM2.5 concentra-
tions in response to wind speeds and temperature are 
shown in Fig. 5. Fig. 5a shows the spatial variations in 

monthly PM2.5 concentrations. There are significant 
heterogeneities in the PM2.5 concentrations among the 
39 PM2.5 monitoring sites and the high concentration 
monitoring sites are located in the center and southeast 
of Beijing. The Shangdianzi site is located in the sub-
urbs, and the vegetation coverage is high. The PM2.5 
concentrations at the Shangdianzi site are lowest. 
Dongsihuan, Nansanhuan, and Qianmen are located in a 
transportation hub. The PM2.5 concentration variations 
for those three sites are high. The BL, Olympic sports 
center, and agriculture exhibition center are located in 
the city center, where photochemical reactions easily 
occur in the summer (Huang et al., 2012). Therefore, 
the PM2.5 concentrations are high at these sites.  

The amplitudes of the PM2.5 monthly average con-
centrations are high and exhibit two ‘peak-valley’ forms 
(Fig. 5b). There is a significant peak in January with a 
concentration of 169.51 μg/m3. This far exceeds the 
Ambient Air Quality Standards (AAQS) (Hu et al., 
2013). The peaks in January are due to the increased 
stability of the atmosphere with low wind speeds (Li et 
al., 2009). The PM2.5 concentrations are low during 
spring and summer, whereas they fluctuate from Sep-
tember to December. The possible explanations are as 
follows. 1) The wind speed is high from March to June 
in Beijing and the deciduous vegetation growth is able 
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Fig. 4  Urban morphology indices for each site. (a) Road Length Density (RLD); (b) Road Area Density (RAD); (c) Water Area Den-
sity (WAD); (d) Water Fragmentation (WF); (e) Construction Area Density (CAD); (f) Construction Height Density (CHD); (g) Con-
struction Volume Density (CVD); (h) Construction Otherness (CO); (i) Vegetation Area Density (VAD); and (j) Vegetation Fragmenta-
tion (VF) (The 500 m, 1000 m and 2000 m correspond to the three buffers) 

 
to absorb and hold PM2.5 (Jim and Chen, 2008). 2) The 
low PM2.5 concentrations in summer may have been due 
to increased precipitation from June to August (Filon-

chyk et al., 2016). 3) The low concentrations in autumn 
and winter from September to December may have been 
associated with regional meteorological conditions, such 
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as the wind directions changing from southeast to 
northwest (Song et al., 2012). 

The monthly averaged wind speeds and temperature 
are also shown in Fig. 5b. There is an insignificant nega-
tive correlation between the PM2.5 concentrations and 
wind speeds. The peaks of the PM2.5 concentrations 
correspond to the local minima of wind speeds in Janu-
ary, June, and October. However, the local minimum of 
PM2.5 concentrations in April corresponds to valley local 
maximum in wind speeds. This result indicates that 
faster wind speeds increase air circulation which could 
reduce PM2.5 concentrations and improve air quality (Lu 
and Fang, 2002; Wen et al., 2018). Moreover, there is no 
strong correlation between temperature and PM2.5 con-
centrations, which indicates that the temperature is not a 
key factor affecting PM2.5 concentrations. 

3.2.2  Impact of public transportation factors on 
PM2.5 concentrations 
The statistical weekly averages (Monday to Sunday) of 
PM2.5 concentrations among the 39 PM2.5 monitoring 
sites throughout 2013 are shown in Fig. 6a. The PM2.5 
concentrations ranged from 74.05 to 95.99 μg/m3. The 
PM2.5 concentrations show decreased trend from Mon-
day to Friday and increased from Saturday to Sunday. 
The reason for this pattern may be related to the public 
traffic intensity change. 

The hourly averages of the PM2.5 concentration 
among the 39 PM2.5 monitoring sites throughout the 
year are shown in Fig. 6b. The PM2.5 concentrations 
show significant increases from 5:00 to 8:00 during the 
rush hours. During the typical working hours (9:00 to 
14:00), the PM2.5 concentrations decrease from 95.42 to 

 

Fig. 5  Change of PM2.5 concentrations with wind speed and temperature. (a) Spatial pattern of PM2.5 monthly concentrations. (b) 
Monthly variations of PM2.5 concentrations, wind speeds and temperature 

 

Fig. 6  The weekly (a) and hourly (b) PM2.5 concentrations in Beijing, China  
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79.99 μg/m3. The PM2.5 concentrations increase after 
work from 16:00 until 19:00, and they reach a maximum 
of 85.37 μg/m3. The PM2.5 concentrations begin to de-
crease at 20:00, which corresponds to typical sleep pe-
riods in the population. 

3.3  Relations between PM2.5 concentrations and 
urban 3D morphology 
The monthly average PM2.5 concentrations for the 39 
PM2.5 monitoring sites during the 2013 were calculated 
to eliminate the effects of the meteorological factors on 
the PM2.5 concentrations, and the PM2.5 weekly and 
daily average concentrations are calculated to eliminate 
the effects of the public transportation factors. Further-
more, to explore the correlations between urban 3D 
morphology and PM2.5 concentrations, ten urban 3D 
morphology indices are calculated at different scales 
(500 m, 1000 m, and 2000 m buffers). 

Scatter graphs of the road morphology indices and 
PM2.5 concentrations are shown in Fig. 7. The correlation  

coefficients between RLD and the monthly, weekly, and 
daily PM2.5 concentrations in the 2000 m buffer are 
0.243, 0.237 and 0.238, respectively, and those coeffi-
cients increase with the expansion of the buffer scale. 
This finding indicates that RLD has a greater impact on 
the PM2.5 concentrations at the larger scales, but that 
pattern is inconsistent at different time scales. The cor-
relations between RAD and PM2.5 concentrations are 
significant at the 2000 m buffer scale. The correlation 
coefficients increase with the expansion of the buffer 
scale. In the 500 m buffer, the correlation coefficients 
between RAD and the monthly, weekly, and daily PM2.5 
concentrations are 0.184, 0.173, and 0.173, respectively. 
These values increase to 0.271, 0.274, and 0.275, re-
spectively at the 2000 m buffer scale. These results in-
dicate that higher values in road morphology indices 
entail higher PM2.5 concentrations. 

The correlation coefficients for the two water body 
morphological indices and the PM2.5 concentrations ex-
hibited large variations at different spatial scales (Fig. 8).  

 

Fig. 7  Correlations between the PM2.5 concentrations and the road morphology indices. Panels (a), (b), and (c) are scatterplots of the 
road length density (RLD) indices and PM2.5 concentrations at the 2000 m, 1000 m and 500 m buffer scales, respectively. Panels (d), (e), 
and (f) are scatterplots of the road area density (RAD) indices and PM2.5 concentrations at the 2000 m, 1000 m, and 500 m buffer scales, 
respectively. The r1, r2, r3 correspond to coefficients of the month relation, week relation and day relation, respectively. * P < 0.05 
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Fig. 8  Correlations between the PM2.5 concentrations and the water indices. Panels (a), (b), and (c) are scatterplots of the water area 
density (WAD) index and PM2.5 concentrations at 2000 m, 1000 m and 500 m buffers, respectively. Panels (d), (e), and (f) are scatter-
plots of the water fragmentation (WF) index and PM2.5 concentrations at the 2000 m, 1000 m, and 500 m buffer scales, respectively. The 
r1, r2, r3 correspond to the coefficients of month relation, week relation and day relation, respectively. * P < 0.05 

 
 

The correlation between WAD and PM2.5 concentrations 
in the 500 m buffer are low, whereas the correlations are 
high for the 1000 m and 2000 m buffer scales. These 
results demonstrate that the correlations between WAD 
and PM2.5 concentrations are high at small scales. The 
correlations between WF and the PM2.5 concentrations 
are highest in the 1000 m buffer. The WF exhibited 
higher correlations with PM2.5 concentrations than 
WAD. This demonstrates that WAD is more sensitive 
than WF to the PM2.5 concentrations. The correlation 
trends between water body morphology indices and 
PM2.5 concentrations indicate that water areas have a 
negative impact on the PM2.5 concentrations. 

The construction indices are the main components of 
the urban 3D morphology indices, and their correlation 
results are shown in Fig. 9. The correlations between 
four construction indices and the PM2.5 concentrations 

are positive across the three buffers scales. As to four 
construction indices, the correlations are highest at the 
2000 m buffer scale. The coefficient of height dimen-
sion indices (CHD, CVD, and CO) with PM2.5 show 
significant correlation at 2000 m buffer, which suggests 
that the urban construction height can impact the PM2.5 
concentrations. 

The results of the correlation analysis between the 
vegetation indices and the PM2.5 concentration are 
shown in Fig. 10. The correlations between VAD and 
the PM2.5 concentrations at the three buffers scales are 
slightly positive. The correlations between VF and the 
PM2.5 concentrations are positive at the 500 m buffer 
scale, however, the correlations at the 1000 m and 2000 
m buffer scales are negative. The fragmentation degree 
of vegetation can help reduce the PM2.5 concentrations, 
but this effect is greater at larger buffer scales. 
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Fig. 9  Correlations between the PM2.5 concentrations and construction indices. Panels (a), (b), and (c) show scatterplots of the con-
struction area Density (CAD) index and PM2.5 concentrations for the 2000 m, 1000 m and 500 m buffer scales, respectively. Panels (d), 
(e), and (f) show scatterplots of the construction height density (CHD) index and PM2.5 concentrations at the 2000 m, 1000 m, and 500 
m buffer scales, respectively. Panels (g), (h), and (i) show scatterplots of the construction volume density (CVD) index and PM2.5 con-
centrations for the 2000 m, 1000 m, and 500 m buffer scales. The panels (j), (k), and (l) show scatterplots for the construction otherness 
(CO) index and PM2.5 concentrations at the 2000 m, 1000 m, and 500 m buffer scales, respectively. The r1, r2, r3 correspond to the coef-
ficients of month relation, week relation and day relation, respectively. * P < 0.05 
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Fig. 10  Correlations between PM2.5 concentrations and vegetation indices. Panels (a), (b), and (c) show scatterplots of the vegetation 
area density (VAD) index and PM2.5 concentrations for the 2000 m, 1000 m and 500 m buffer scales, respectively. Panels (d), (e), and 
(f) show scatterplots of the vegetation fragmentation (VF) index and PM2.5 concentrations for the 2000 m, 1000 m, and 500 m buffer 
scales, respectively. The r1, r2, r3 correspond to the coefficients of month relation, week relation and day relation, respectively 
 

4  Discussion 

The risks of severe air pollution have been increasingly 
highlighted over the past decades (Zhang and Cao, 
2015) and a series of studies have explored the causes of 
PM2.5 (Yang et al., 2005; Moore et al., 2007; Tai et al., 
2010). This paper aims to investigate the impact of ur-
ban 3D morphology on PM2.5 concentrations. Aspects of 
three factors, meteorological conditions, public trans-
portation, and urban 3D morphology, have been exten-
sively discussed. However, urban 3D morphology has 
an obvious impact on other the two factors. 

Before analyzing the effects of urban morphology on 
PM2.5 concentrations, the impacts of meteorological 
conditions and public transportation on PM2.5 concen-
trations were analyzed using monthly, weekly, and 
hourly PM2.5 monitoring sites data. It should be noted 
that only one meteorological condition factor, wind 
speed, was collected to discuss its correlations with 

PM2.5 concentrations. This is because wind speed is a 
commonly used sensitivity factor that impacts PM2.5 
concentrations, and this influence is sometimes even 
decisive in Beijing (Yin et al., 2016). In addition, the 
patterns of weekly and hourly PM2.5 concentrations re-
lated to public transportation are determined. The results 
can demonstrate the impacts of public transportation on 
PM2.5 concentrations, and these results are consistent 
with those of a previous study (Yin et al., 2016). 

Ten urban 3D morphological indicators were then are 
calculated for 39 PM2.5 monitoring sites at different 
buffer scales. In 2013, there were 39 PM2.5 monitoring 
sites in Beijing. The annual dataset of PM2.5 concentra-
tions collected at these sites were utilized for this study. 
Those sites located in different functional zones that 
range from urban center to suburbs. Therefore, those 
sites are representative for spatial analysis. Surely, if 
there are denser stations with long-term PM2.5 concen-
tration monitoring sites data, more statistical samples 
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will be obtained to analyze correlations between urban 
3D morphological indices and PM2.5 concentrations. 
Therefore, the correlation uncertainties can be further 
reduced. 

The correlations between PM2.5 concentrations and 
urban 3D morphology are summarized in Table 3. The 
data suggest that RLD, RAD, CAD, CHD, CVD, CO, 
and VAD have positive impacts on the PM2.5 concentra-
tions, whereas WAD, WF, and VF (except at the 500 m 
buffer scale) have negative impacts on the PM2.5 con-
centrations. 

From the perspective of source apportionment, road 
emissions are among the major sources of PM2.5 pollu-
tion (Song et al., 2012; Hu et al., 2013). The impact of 
public transportation and road morphology on PM2.5 
concentrations are further confirmed from spatial- 
temporal perspective. Through in-depth analysis of traf-
fic factors, it is helpful to build more universe models 
for larger spatial scale simulation (Brauer et al., 2003). 
Water body can affect the local relative humidity, and 
relative humidity is one of meteorological factor that 
affects the formation of particulate matter (Hien et al., 
2002). Based on the correlation analyses, PM2.5 concen-
trations are more susceptible to impacts from water 
transpiration areas than impacts from spatial structure. 
Previous studies using land use modeling to predict 
PM2.5 concentrations demonstrate that construction area 
is a key factor that impacts PM2.5 concentrations (Moore 
et al., 2007; Xian, 2007). The correlation coefficients 
between the PM2.5 concentrations and urban height di-
mension indices (CHD, CVD, and CO) are significant at 
the 2000 m buffer scale, and a positive correlation can 
be determined. Generally, a rational distribution of ur-
ban heights can help improve air circulation and local 
micro-climates within the city. The construction of arti-
ficial ventilation corridors via urban planning and the 
establishment of measures that protect a city’s natural 
ventilation corridors can effectively enhance air circula-

tion, thereby reducing concentrations of PM2.5 pollutants 
(Xin et al., 2012). The effect of these measures can be 
especially pronounced in dense urban areas with tall 
built up areas. Vegetation can help improve regional 
ecological environments and trap particulate matter 
pollutants (Jim and Chen, 2008). Moreover, this effect is 
affected by wind and tree species (Beckett et al., 2000). 
Our study also found that vegetation structure can nega-
tively impact PM2.5 concentration. 

This study investigates the impacts of urban 3D 
morphology on the PM2.5 concentrations and, the im-
pacts of 3D morphology are concisely analyzed by 
eliminating meteorological and public transportation 
factors. Our findings provide important idea that can 
help authorities control air pollution via urban planning. 

5  Conclusions 

Urban morphology may impact air pollution concentra-
tion by changing atmospheric circulation. This paper 
investigated the impact of urban 3D morphology on 
PM2.5 concentrations in 2013 of Beijing, China. The 
meteorological condition and public transportation fac-
tors were eliminated and the spatial-temporal correla-
tions between the urban 3D morphology indices and 
PM2.5 concentrations were comprehensively analyzed. 
The conclusions are as follows: 

1) The monthly PM2.5 concentration variations are 
primarily affected by the meteorological conditions and 
are negatively correlated with wind speed. The weekly 
and hourly PM2.5 concentration variations are associated 
with public transportation. The PM2.5 concentrations 
increase during the weekends and significant increase 
during commute times. 

2) Correlation results suggest that construction indi-
ces and road indices positively impacted PM2.5 concen-
trations, whereas water indices and vegetation indices 
(except VF at the 500 m buffer scale) negatively impact  

 
Table 3  The correlation trends of the ten morphology indexes for the three buffers 

Index 2000 m 1000 m 500 m Index 2000 m 1000 m 500 m 

RLD + + + CHD + + + 

RAD + + + CVD + + + 

WAD – – – CO + + + 

WF – – – VAD + + + 

CAD + + + VF – – + 

Notes: + represents a positive correlation, and – represents a negative correlation. Meanings of abbreviations see Table 2 
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the PM2.5 concentrations. The correlations between the 
morphology indices and PM2.5 concentrations varied 
across buffer scales. The coefficient of height dimension 
indices with PM2.5 suggested that the urban construction 
height can impact the PM2.5 concentrations. 

These results aid in developing an understanding of 
the impacts of PM2.5 concentrations from the perspec-
tive of urban 3D morphology. The results have potential 
applications in regulating urban air pollution from the 
perspective of urban 3D morphology. Buffer scale is a 
factor that impacts correlation level, and scale issues 
that arise in assessing the impact of urban 3D morphol-
ogy on PM2.5 concentrations need to be addressed in the 
next study. 
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