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Abstract: Wetlands play a key role in regulating local climate as well as reducing impacts caused by climate change. Rapid observa-

tions of the land surface temperature (LST) are, therefore, valuable for studying the dynamics of wetland systems. With the development 

of thermal remote sensing technology, LST retrieval with satellite images is a practicable way to detect a wetland and its neighboring 

area’s thermal environment from a non-point visual angle rather than the traditional detection from a point visual angle. The 

mono-windows (MW) method of retrieving LST was validated. On the basis of estimated LST, we used Geographical Information Sys-

tem (GIS) technology to study the impact of wetland reclamation on local temperatures at a regional scale. Following that, correlations 

between LST and the wetland were analyzed. The results show that: 1) It is feasible to retrieve the LST from Landsat 8 OLI satellite 

images with MW model. The model was validated with the land surface temperature observed in four meteorological stations when the 

satellite scanned the study region. The satellite retrieval error was approximately 1.01°C. 2) The relationship between the spatial distri-

bution of land surface temperatures and the Zhalong wetland was analyzed based on GIS technology. The results show that wetland has 

an obvious influence on LST, and that this influence decreases with increasing distance from the wetland. When the distance from the 

wetland was less than 500 m, its influence on LST was significant. Results also illustrated that the effect of the wetland’s different land 

use/land cover’s LST distribution varied with different seasons. 
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1  Introduction 

Wetlands have been called ‘the kidneys of the earth’. 
They have a total global area of more than 12.8 million 
km2 and are considered to be one of the largest ecosys-
tems in the world, along with forests and oceans (An, 
2004). They have very high biodiversity and numerous 
ecological roles, including supply, regulation, support 
and cultural functions (MEAB, 2005). Wetland changes 
have impacted on climate at different spatial scales 
(Dickenson, 1991; Hostetler, 1991; Pitman, 1991; 
Hostetler et al., 1993; Gorham, 1995; Lofgren, 1997; 

Chen, 1999). At large and mesoscales, wetlands influ-
ence global and regional climate change because their 
carbon emissions and storage are important contributory 
factors for the global carbon cycle, and thus greenhouse 
gases in the atmosphere (Song, 2003; Tong and Zeng, 
2006; Hu et al., 2009; Yang and Tong, 2011). At a 
smaller scale, wetlands play an important role in deter-
mining local climates, primarily through the cold-humid 
effect (Gao et al., 2002; Gao et al., 2003; Krinner, 2003; 
Nie and Wang, 2010). When compared to other land-use 
types, wetlands show large differences in albedo, heat 
capacity, roughness and energy exchange. This means 
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that they can locally reduce temperature and raise hu-
midity under conditions of cold radiation and 
evapotranspiration (Bonan, 1995; Gong et al., 2011). 
Several previous studies concentrated on the cold-humid 
effect of wetlands producing broader scale environ-
mental change. Working in the Sanjiang Plain of north-
east China, Gao et al. (2002) found that temperatures 
measured in wetlands, both daytime and night time, 
were always higher than those from the surrounding 
farmland. Saaroni and Ziv (2003) carried out observa-
tions around a pond in a Mediterranean urban park and 
found lower temperatures, higher relative humidity and 
lower heat stress indexes downwind of the pond, com-
pared with those from stations located upwind. Li et al. 
(2007) used a numerical simulation method to estimate 
the temperature decrease and humidity-changing effects 
of wetlands on the surrounding areas. They developed a 
model of air flow and diffusion combined with the dy-
namic moisture characteristics. 

In previous studies, research into the cold-humid ef-
fects of wetland has been based mostly on small scale 
field observation, and research at a regional scale is rare. 
Field observation can not provide the synchronized, 
quantitative large scale information which would be 
necessary for discussion of the range, amplitude and 
impact factors of a large wetland’s cold-humid effect, 
but remote sensing can. Many studies have used remote 
sensing to extract thermal environmental features and 
analyze their temporal or spatial distribution. Thermal 
information is mainly gained by the retrieval of 
land-surface temperature (LST). Because of the different 
characteristics of thermal sensors, LST retrieval meth-
ods have developed in tandem with them. The Advanced 
Very High-Resolution Radiometer (AVHRR), the Mod-
erate-Resolution Imaging Spectroradiometer (MODIS), 
the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER) and other multi-channel 
thermal satellite images allow the application of a 
split-window method (Price, 1983; Prata, 1994; Sobrino 
et al., 1996) and temperature/emissivity separation 
(TES) (Gillespie et al., 1998). Images from Landsat-5 
TM, Landsat-7 ETM+ and other satellites with only one 
thermal channel allow the use of the single-window in-
version method with either Qin et al. (2001)’s algorithm 
or Jiménez-Muñoz and Sobrino’s (2003) algorithm. A 
great deal of research has been directed towards the 
close relationship between LST and surface features. 

Stable triangle (Price, 1983; Carlson et al., 1995; Gillies 
and Carlson, 1995) and relationships between LST and 
NDVI (Normalized Difference Vegetation Index) have 
been extensively reported (Han et al., 2005; Chen et al., 
2006).  

The Zhalong wetland is one of the major wetlands of 
China, and is located on the Songnen Plain of Songhua 
River Basin in Heilongjiang Province. In 1992, the 
Zhalong wetland was listed as a Wetland of International 
Importance. It is home to about 265 different types of 
bird including large wading and swimming species. 
Most belong to the Palearctic species and a few are 
Oriental. Unfortunately, some very rare species, such as 
the white-naped and red-crowned cranes, are now on the 
edge of extinction in this area because of the shrinking 
of the wetland itself. During the past two decades, a 
warmer and drier regional climate, together with distur-
bance from intensive, uncontrolled human activities, 
have caused degradation and shrinkage of the wetland, 
and the environment of Zhalong has become more vul-
nerable (Han et al., 2007; Huang et al., 2007; Yuan et 
al., 2009). It is necessary to study the wetland’s effect on 
local climate in this region in order to lay the foundation 
for a future study of the impact of wetland change. In 
this paper, thermal environmental features were re-
trieved with Landsat8 OLI imaging. Analyses of the 
patterns as influenced by the Zhalong wetland were car-
ried out and the mono-windows method of retrieving 
LST was validated. On the basis of estimated LST, we 
have tried to study the impact of wetland reclamation on 
local temperatures at a regional scale using geographic 
information system (GIS) technology. This both helps to 
enrich the case study of environmental effects from 
wetland changes, whilst at the same time, contributing 
significantly to a quantitative understanding of wet-
lands’ ecological functioning. 

2  Study Area and Data 

2.1  Study site 
The Zhalong wetland reserve occupies around 2100 km2, 
and lies between 46°52′N to 47°32′N latitude and 
123°47′E to 124°37′E longitude (Fig. 1). The average 
altitude of the wetland region is 144.0 m, and it is in a 
temperate continental monsoon climatic zone. The mean 
annual temperature is about 3.9°C and the annual pre-
cipitation is approximately 402.7 mm. Marsh, lake and 
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Fig. 1  Location of Zhalong wetland, Heilongjiang Province, 
China 

 
paddy fields are the main land cover types in the natural 
reserve (Wang et al., 2006). Reed marshes comprise the 
main part of the central region and dense reeds cover 
80%–90% of the wetland’s ground surface. Emergent 
and shoreline plants such as common reed and Typha are 
the main components of the ecosystem within the wet-
land, while the peripheral farmland is mainly composed 
of maize (Cui, 2002; Tong et al., 2008; Wang et al., 
2009; Wo and Sun, 2010). These wetlands are important 
to the well-being of a number of wildlife species, espe-
cially endangered cranes (e.g., Grus japonensis and 
Grus vipio) and wading species (e.g., Ardea cinerea) (Li 
et al., 1998; 1999; Qiu et al., 2005). For conservation 
management, the Zhalong wetland is divided into a cen-
tral zone, a buffer zone and an experimental zone based 
on their ecological and environmental functionalities. 

2.2  Data sets 
Landsat 8 Operational Land Imager (OLI)/Thermal In-
frared Sensor (TIRS) images were selected for their im-
proved signal-to-noise performance over Thematic 
Mapper (TM) and Enhanced Thematic Mapper Plus 
(ETM+) images. All Landsat images used were at the L2 

level. The U.S. Geological Survey (USGS) offers on- 
demand production of Landsat 8 Operational Land 
Imager/Thermal Infrared Sensor (OLI/TIRS) Surface 
Reflectance data through EarthExplorer (https://earthex-
plorer.usgs.gov/). Surface Reflectance products provide 
an estimate of the surface spectral reflectance as it 
would be measured at ground level in the absence of 
atmospheric scattering or absorption. The Surface Re-
flectance products are generated at the Earth Resources 
Observation and Science (EROS) Center at a 30 m spa-
tial resolution. The EROS Science Processing Architec-
ture (ESPA) interface corrects satellite images for at-
mospheric effects to create Level-2 data products. 
Landsat 8 Surface Reflectance data are generated from 
the Landsat Surface Reflectance Code (LaSRC). LaSRC 
makes use of the coastal aerosol band to perform aerosol 
inversion tests, uses auxiliary climate data from MODIS 
and uses a unique radiative transfer model. Additionally, 
LaSRC hardcodes the view zenith angle to ‘0’, and the 
solar zenith and view zenith angles are used for calcula-
tions as part of the atmospheric correction. Details about 
LaSRC and Landsat 8 Surface Reflectance data products 
can be found in the Landsat 8 Surface Reflectance 
Product Guide. Descriptions of the Landsat 8 images 
used in this study are presented in Table 1. 

Four meteorological sites operated by the China 
Meteorological Administration (CMA) were selected 
for LST validation, corresponding to 6 scenes of 
Landsat 8 imagery (Fig. 1; Table 1). The meteorologi-
cal sites were Qiqihaer (abbreviated as QQHE), Du-
meng (DM), Fuyu (FY) and Lindian (LD), which can 
provide hourly ground meteorological data, such as 
land surface temperature, air pressure, relative humid-
ity and wind speed. 

3  Methods 

3.1  Classification of land use/land cover  
Improved and up-to-date land use/land cover (LULC) 
data sets that classify land use practices over extensive 
LULC areas in the Zhalong wetland are needed to en-
able a comprehensive analysis. A combination of an  

 

Table 1  Description of Landsat Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) scenes used in this paper 

Acquisition date 2017-04-16 2017-05-02 2017-06-19 2017-07-05 2016-09-20 2017-10-25 

Cloud cover (%) 0.09 5.39 5.24 0.23 0.01 0.03 

Season Spring Spring Summer Summer Fall Fall 
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unsupervised iterative self-organizing data analysis 
technique (ISODATA) and a hierarchical decision tree 
classification were employed using the six-month 
time-series of Landsat NDVI data filtered with the 
Savitzky-Golay algorithm (Savitzky and Golay, 1964). 
Savitzky and Golay (1964) proposed a simplified least 
squares-fit convolution for smoothing and computing 
derivatives of a set of consecutive values (a spectrum). 
The convolution can be understood as a weighted mov-
ing average filter with weighting given as a polynomial 
of a certain degree. The weight coefficients, when ap-
plied to a signal, perform a polynomial least-squares fit 
within the filter window (Chen et al., 2004). This poly-
nomial is designed to preserve higher moments within 
the data and to reduce the bias introduced by the filter. 
All the filtering was implemented in Interactive Data 
Language (IDL), and then the filtered NDVI time-series 
data were imported back to ENVI 4.3 for regional 
LULC classification. According to the Chinese national 
LULC classification scheme, and the situation in the 
study area, our land cover classification scheme using 
Landsat8-NDVI-30m data, includes forest, marsh, sa-
line-alkali land, resident, grassland, water body and two 
classes of croplands (paddy field and dry farmland). An 
unsupervised classification procedure (ISODATA) was 
used for image classification (ENVI 4.3), because it en-
ables the identification of all the important spectral 
groupings without the need to initially determine which 
are thematically significant. Finally, up to 50 training 
and validation samples for each of the six classes were 
extracted from a GF-1A scene acquired on July 17, 
2017. They were checked with 100 field samples col-
lected during the summer season of that year.  

3.2  Theoretical basis of the MW algorithm for 
Landsat 8 data 
The Landsat 8 thermal infrared (TIR) instrument de-
signed with two TIR bands is very suitable for the 
split-window algorithm for LST retrieval. Recently, 
Rosenstein et al. (2014) adapted the two-factor split- 
window algorithm of Qin et al. (2001) for Landsat 8 
Thermal Infrared Sensor (TIRS) data. Jiménez-Muñoz 
et al. (2014) also adapted their single-channel (SC) al-
gorithms and split-window algorithms to Landsat 8 
TIRS data for LST retrieval. However, several artifacts, 
including banding and absolute calibration discrepancies 
that violate the requirements in some scenes (Montanaro 

et al., 2014), had been observed in the TIRS data. The 
United States Geological Survey (USGS) issued a notice 
on its websites relating to the calibration of Landsat 8 
TIRS thermal bands (United States Geological Survey, 
2014). Prior to the early-2014 update, users might sub-
tract 0.29 W/(m2·sr·μm) from every TIRS Band 10 cali-
brated radiance value and 0.51 W/(m2·sr·μm) for every 
TIRS Band 11 calibrated radiance value to provide val-
ues closer (on average) to the actual radiances. The root 
mean square (RMS) variability in the required adjust-
ment was roughly 0.12 W/(m2·sr·μm) (0.8 K) for Band 
10 and 0.2 W/(m2·sr·μm) (1.75 K) for Band 11 (Price, 
1983; Barsi et al., 2014). Therefore, it is still necessary 
to develop a practical algorithm with detailed determi-
nation of the required parameters for LST retrieval from 
the single Landsat 8 TIRS Band 10 data. 

The theoretical basis of thermal remote sensing is that 
the thermal radiance observed by the remote sensor is 
mainly from the ground emittance, which, according to 
the blackbody theorem of radiance, can be determined 
as a function of temperature at a specific wavelength, 
i.e., the thermal range of the spectrum (Sobrino et al., 
1991). Assuming the land surface as Lambertian, Qin et 
al. (2001) developed a mono-window algorithm for LST 
retrieval from Landsat 5 TM data, which only has one 
thermal band (Band 6). Derivation of the algorithm was 
composed of several reasonable assumptions and ap-
proximations used to estimate LST. The upwelling and 
downwelling atmospheric emittances were computed as 
an integrative function of atmospheric emittance (ex-
pressed as the Planck radiance function with profile air 
temperature) at various altitudes and approximated 
through mean atmospheric emittance with an effective 
mean atmospheric temperature (Ta). Moreover, Planck’s 
radiance function was linearized through Taylor expan-
sion to approximate the radiance of the ground by the 
received radiance. 

Though Landsat 8 TIRS has two thermal bands (10 
and 11), only data from Band 10 are suitable at the mo-
ment for LST retrieva1 due to the larger uncertainty in the 
Band 11 values (Barsi et al., 2014; Montanaro et al., 
2014; United States Geological Survey, 2014). Therefore, 
we used the mono-window algorithm in the following form 
for LST retrieval from the Landsat 8 TIRS Band 10 data: 

10 10 10 10 10 10

10 10 10 10 10

[ (1 ) ( (1 )

) ]/
s

a

T a C D b C D

C D T D T C

      

 
 (1) 
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where Ts is the LST retrieved from the Landsat 8 TIRS 
Band 10 data; Ta is the effective mean atmospheric 
temperature; T10 is the brightness temperature of Land-
sat 8 TIRS Band 10; a10 and b10 are the constants used 
to approximate the derivative of the Planck radiance 
function for the TIRS Band 10 given in Table 2; C10 and 
D10 are the internal parameters for the algorithm, given 
as follows:   

10 10 10C  
 (2) 

10 10 10 10( )[ ( ) ]D I I I     
 (3) 

where τ10 is atmospheric transmittance of Landsat 8 
TIRS Band 10 and ε10 is the ground emissivity for the 
band. The improvement was mainly in the determination 
of the three required parameters (τ10, ε10 and Ta) in the 
mono-window algorithm for LST retrieval from Landsat 
8 TIRS Band 10 data, presented in the following sections.  

Retrieval of LST from Landsat 8 TIRS data is with the 
premise that brightness temperature can be computed for 
the pixels of Band 10 by the mono-window algorithm 
(Equation (2)). The USGS offers on-demand production 
of Landsat 8 Operational Land Imager/ Thermal Infrared 
Sensor (OLI/TIRS) brightness temperature data through 
EarthExplorer (https://earthexplorer.usgs.gov/). 

The upwelling atmospheric radiance is usually esti-
mated by the effective mean atmospheric temperature 
(Ta) (Sobrino et al., 1991). 

016.0110 0.92621aT T   (4) 

where T0 (K) is the observed station air temperature at 
the station elevation. The detail of the mono-window 
algorithm for LST retrieval from the Landsat 8 data was 
shown in Wang et al. (2015).  

4  Results and Discussion 

4.1  Land use and land cover classification 
For the validation of the LULC classification, 30 ho-
mogeneously covered Landsat pixels were visually ex-
tracted for each class from high resolution GF-1A data 
as validation samples. The overall accuracy was 87.47% 
and the Kappa coefficient was 0.85 (Table 3). Incorpo-
rating inhomogeneous pixels (dominated by more than 
one class) into the assessment decreased these accuracy 
indicators. 

The classification results showed clearly the distribu-
tion and patterns of current land use in the Zhalong wet-
land (Fig. 2). About 38.53% of the study area was classi-
fied as agricultural land. As expected, the dominant agri-
cultural land types were dry farmland (1700 km2, 35.21% 
of the Zhalong wetland) and paddy field (160 km2, 3.32% 
of the Zhalong wetland). The homogeneity of the agri-
cultural landscape, particularly paddy field, decreased 
with distance from the river. Wetland covered about 
38.49% of the study area. The main wetland types were 
marsh (1404 km2, 29.08% of the Zhalong wetland) and 
water bodies (294 km2, 6.09% of the Zhalong wetland). 
During post-classification, errors within the accumulated 
pixels were eliminated by using settlement polygons pro-
vided by the Data Center for Resources and Environ-
mental Sciences, Chinese Academy of Sciences. 

 
Table 2  Determination of coefficients a10 and b10 for the Land-
sat 8 TIRS Band 10 (Wang et al., 2015) 

Temperature range (℃) a10 b10 R2 

20–70 −70.1775 0.4581 0.9997 

0–50 −62.7182 0.4339 0.9996 

−20–30 −55.4276 0.4086 0.9996 

 
Table 3  Confusion matrix for land use and land cover classification measured by land cover classified by Landsat TM in 2006 (%) 

 Land cover classified using GF-1A images as ground truth 
Class 

Dry farmland Paddy field Marsh Forest Saline-alkali land Resident Water body 

Dry farmland 90.34 0.23 7.93 0.37 0 1.02 0.11 

Paddy field 3.86 95.07 0.83 0.11 0 0.13 0 

Marsh 5.43 0.59 90.91 0.52 1.86 0.09 0.6 

Forest 0.18 0.01 0.07 87.87 0 11.81 0.06 

Saline-alkali land 0 0.51 0 10.55 87.57 1.12 0.25 

Resident 0.19 3.56 0 0 10.57 85.67 0.01 

Water body 0 0.03 0.26 0.58 0 0.16 98.97 
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Fig. 2  Spatial distribution of land cover and agricultural land 
use in the Zhalong wetland in 2017 

4.2  Validation of LST 
Results for LST estimated from the Landsat 8 TIRS, 
using the MW algorithm are show in Fig. 3. There is a 
general underestimation for the four sites except Qiqi-
haer, as the bias is 0.95 K for this site. The bias for all 
sites is −1.01 K, suggesting an underestimation for al-
most all scenes. Absolute errors for Dumeng and Lin-
dian are 1.24 K and 0.82 K, while Fuyu is 1.02 K and 
average is 1.01 K for all sites (Fig. 3), suggesting that 
the MW algorithm has the potential for accurate LST 
inversion from TIRS imagery. Fig. 3 illustrates the 
comparison of ground and inverted LST, showing that 
they have a high correlation (R2 = 0.984). However, 
there is an underestimation trend in the LST range of 
300–310 K. It may result from an error in the estimation 
of water vapor content, which could also introduce ex-
ternal errors for LST inversion. Meanwhile, the absolute 
error for the Dumeng site is 1.24 K, higher than other 
sites. The landscape around Dumeng was checked from 
the high resolution image in GF-1A and is saline-alkali 
land and grassland, with several lakes surrounding it. 
Variations in the landscape lead to emissivity estimation 
errors, because we only considered soil and vegetation 

for  in this study. It may also be noted that the point 

 
Fig. 3  Comparison between MW inverted LST and ground LST 

 
scale ground measurement does not exactly correspond 
to the pixel area retrieved from the satellite. 

Fig. 4 shows the spatial distribution of the retrieved 
LST. LST in the region ranged from 274 to 326 K with a 
mean of 296 K. The wetland’s surrounding area has a 
very high LST, compared with wetland itself. Wetland in 
the region, especially open water, has the lowest LST 
due to the strong cooling process resulting from evapo-
ration over the water surface. The LST difference be-
tween the surrounding area and the wetland itself may 
be high, up to ~8 K on the imaging date, as will be seen 
below.  

The LST validation scheme outlined here is anchored 
to ground based observations. For most mixed vegetated 
landscapes composed of various land cover types and 
soils, the LST measured by a station at one specific lo-
cation (i.e. a point measurement) does not represent the 
surrounding area that is part of the coarser satellite sen-
sor pixel. For example, different land cover types have 
associated spatial and temporal variations of surface 
biophysical parameters, such as vegetation phenology, 
optical and thermal properties or soil moisture. These all 
affect the different components of the energy budget. In 
Guillevic et al. (2012)’s study, a surface energy model 
was used to estimate these components for a subpixel 
cell using commonly-measured surface and meteoro-
logical parameters. A cell was defined here as an area of 
homogeneous, or evenly-mixed heterogeneous, vegeta-
tion cover. The model was executed for each cell or tile, 
and then used to estimate the aggregate LST over all 
subpixel cells. Such a surface energy model would help 
to validate LST retrieval using meteorological data.   
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Fig. 4  The LST image retrieved by the mono-window algorithm with Band 10 in Zhalong wetland 

 
4.3  Impact of Zhalong wetland on neighboring 
LST distribution 
To recognize the influence of wetlands on the LST dis-
tribution, the mean LST at different buffer distances 
around Zhalong wetlands has been calculated with the 
buffer intervals set at 30 m. The static maps (Fig. 5) and 
the data on Table 4, show that LST is higher with the 
increasing distance away from the center of wetlands. In 
general, 500 m is a ‘milestone’, meaning the influence 
of wetlands on the LST distribution is obvious when the 
distance is less than 500 m, but minor when the distance 
is greater than 500 m. This influence may be due to the 
following reasons. Wetlands are ecosystems dominated 
by hydrological processes, which makes their thermo-
dynamics different from other land surfaces. Wetlands 
have greater thermal capacity and inertia, which de-
creases the thermal radiation and the exchange intensity 
between them and their surroundings, influences the 
surface heat transfer processes and causes local atmos-
pheric circulation. Local thermal abnormalities are ulti-
mately regulated and restrained, which impacts the 
thermal spatial distribution features and decreases 

LST around wetlands.  
To determine the effect of wetlands on the different 

LULC LST distributions, the mean LST figures for dif-
ferent LULC of different buffer zones around the Zha-
long wetlands have also been calculated, with the buffer 
interval again set at 30 m. The effect of wetlands on the 
different LULC LST distributions is shown in in Fig. 5 
and Table 4. The distances of influence varied with dif-
ferent surfaces. For saline-alkali land and grassland 
these distances were 660 and 565 m, while the values 
for resident, dry farmland and forest were 480, 375 and 
405 m respectively. This variation may occur because 
the vegetation on saline-alkali land and grassland is 
much shorter than on other surfaces, making aerody-
namic resistance lower, thus facilitating heat transfer 
and evaporation into the air above the canopy. The in-
fluence distance for different seasons also varied. 
Spring, summer and fall were 534, 513 and 444 m, re-
spectively, while the growing season was 497 m. This 
change may occur because the wind speed in spring is 
much high than other two seasons, which could magnify 
heat transfer in the horizontal direction. 
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Fig. 5  Land surface temperature of different land uses in the Zhalong wetlands at different buffer radius values 

 
Table 4  Comparison of the wetland cooling effect on different land use/land cover (m)  

Date/season Resident Dry farmland Forest Saline-alkali land Grassland Mean value 

2017-04-16 450 390 330 750 570 498 

2017-05-02 600 450 450 750 600 570 

2017-06-19 570 300 450 510 510 468 

2017-07-05 450 450 480 870 540 558 

2016-09-20 300 300 390 510 570 414 

2017-10-25 510 360 330 570 600 474 

Spring 525 420 390 750 585 534 

Summer 510 375 465 690 525 513 

Fall 405 330 360 540 585 444 

Growing Season 480 375 405 660 565 497 
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5  Conclusions 

Wetlands play a key role in regulating local climate as 
well as in reducing the impacts of climate change. Rapid 
observations of the LST are, therefore, important for 
understanding wetland systems. With the development 
of thermal remote sensing technologies, LST retrieval 
using satellite images is now a practical way to detect 
the thermal environment of a wetland and its surround-
ing area from a non-point visual angle rather than tradi-
tional detection from a point visual angle. The 
mono-windows method of retrieving LST has been 
validated here. On the basis of estimated LST, we used 
GIS technology to study the impacts of wetland recla-
mation on local temperatures at a regional scale, after 
which correlations between LST and wetlands was ana-
lyzed. 

It is feasible to retrieve the LST from Landsat 8 OLI 
satellite images with MW model. The model was vali-
dated with the land surface temperatures observed at 4 
meteorological stations when the satellite scanned the 
study region, the satellite retrieval error being approxi-
mately 1.01°C. The relationship between the spatial dis-
tribution of land surface temperatures and the Zhalong 
wetlands was analyzed based on GIS technology. Re-
sults show that LST is higher with increasing distance 
away from the center of the wetlands. The influence of 
wetlands on the LST distribution is significant when the 
distance is less than 500 m, but minor when the distance 
is more. This phenomenon can be explained by thermo-
dynamic features of wetlands which can influence the 
surface heat transfer process and cause local atmos-
pheric circulation. Our results also suggest that the in-
fluence distance varies for different land cover types. 
Because the vegetation on saline-alkali land and grass-
land is much lower than other surfaces, aerodynamic 
resistance is less, making transfer of heat and water va-
por from the evaporating surface into the air above the 
canopy easier. The influence distance varied according 
to season as well, perhaps because the wind speed in 
spring is much faster than other two seasons, an effect 
which could magnify horizontal heat transfer. 
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