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Abstract: It is of paramount importance to have sustainable agriculture since agriculture is the backbone of many nations’ economic 

development. Majority of agricultural professionals rarely capture the cropping patterns necessary to promote Good Agricultural Practises. 

Objective of this research is to explore the potential of mapping cropping patterns occurring on different field parcels on small-scale 

farmlands in Zimbabwe. The first study location under investigation are the International Maize and Wheat Improvement Center 

(CIMMYT) research station and a few neighboring fields, the second is Middle Sabi Estate. Fourier time series modeling was 

implemented to determine the trends befalling on the two study sites. Results reveal that Sentinel-1 synthetic aperture radar (SAR) time 

series allow detection of subtle changes that occur to the crops and fields respectively, hence can be utilized to detect cropping patterns on 

small-scale farmlands. Discrimination of the main crops (maize and soybean) grown at CIMMYT was possible, and crop rotation was 

synthesized where sowing starts in November. A single cropping of early and late crops was observed, there were no winter crops planted 

during the investigation period. At Middle Sabi Estate, single cropping on perennial sugarcane fields and triple cropping of fields growing 

leafy vegetables, tomatoes and onions were observed. Classification of stacked images was used to derive the crop rotation maps repre-

senting what is practised at the farming lands. Random forest classification of the multi-temporal image stacks achieved overall accuracies 

of 99% and 95% on the respective study sites. In conclusion, Sentinel-1 time series can be implemented effectively to map the cropping 

patterns and crop rotations occurring on small-scale farming land. We recommend the use of Sentinel-1 SAR multi-temporal data to 

spatially explicitly map cropping patterns of single-, double- and triple-cropping systems on both small-scale and large-scale farming areas 

to ensure food security. 
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1  Introduction 

Sustainability of agricultural systems in both developing 
and developed countries can benefit a lot from Cropping 
Systems Analysis (Sharma et al., 2011). Endeavoring to 
guide the production systems towards sustainable agri-
culture, Good Agricultural Practices (GAP) are crucial. 
Proper GAP contribute to food security by generating 
income through the access to market and improve the 
working conditions of producers and their families. 

Therefore, GAP are everyone’s responsibility and enable 
provision and attainability of harmless agricultural 
products of high quality. At the bottom of the chain 
commences with good cropping practices. It is funda-
mental to determine and understand the cropping prac-
tices to map croplands precisely (Bégué et al., 2018). 
Nevertheless, Bégué et al. (2018) gave a detailed typol-
ogy of cropping practices and their definitions, since 
agronomic-related vocabulary sometimes lacks preci-
sion in the remote sensing literature. 
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An important indicator of the performance of an ag-
ricultural system and the adaptivity of an agricultural 
society is the measure of cropping systems diversity 
(Dimov et al., 2016). Crop diversification is a crucial 
instrument for economic growth (Bharati et al., 2015). 
Diversity of crops can be examined using several meth-
ods. Several crops cultivated and proportion of area un-
der various crops can be used as a simple measure of 
diversity (Bharati et al., 2015). Since the determination 
of crop diversity indices requires a long-term inventory 
of crop maps, remote sensing can be the best tool to 
provide this kind of information. 

Remote sensing is ubiquitous and contributes im-
mensely to the mapping of both small and large regions 
of land under agricultural crop production. Jackson 
(1984) and Moran et al. (2012) highlighted that farm 
management could be enhanced by utilizing satellite im-
agery since it has a unique and crucial role in monitoring 
crops. Satellites have an advantage of their ability to gen-
erate synoptic, systematic, and repetitive coverage of a 
large area within a short period and provide information 
about the crops. Yan et al. (2014) utilized MODIS EVI 
(Enhanced Vegetation Index) time series data to delineate 
the dynamics of double- and triple-cropping practices. 
However, MODIS data is available at a moderate spatial 
resolution of 500 m, which might not be suitable to map 
small fields at small farming scales.  

Remote sensing is a useful tool for providing updated 
information about agricultural cropping patterns, inten-
sity, and land use. Precise agricultural information is of 
vital importance in monitoring changes in cropping sys-
tems and measure reactions of farmers to climate change 
issues (Forkuor et al., 2014). Conversely, discrimination 
of crops can be a considerable challenge when this in-
formation is being derived from optical systems that rely 
on Sun’s energy since consistent image acquisition in 
hazy or cloudy conditions can be erratic despite the 
wide availability of an increased number of satellites 
with high temporal resolution. Synthetic Aperture Radar 
(SAR) systems possess acquisition capabilities that are 
independent of weather conditions and daylight, hence 
they can offer more reliable, dependable, and usable 
radar images compared to optical images. Moreover, to 
avert clouds from lowering accuracy, microwave images 
produced by SAR have been used for crop classification 
in many scenarios (Hütt and Waldhoff, 2018). 

Although radar imagery is almost or entirely not af-

fected by cloud coverage and atmospheric conditions, it 
is influenced by speckle noise. When detecting specific 
materials and surfaces, the presence of speckle can be 
advantageous, when supported by the analysis of noise 
patterns and disturbances. In most cases, however, 
speckle noise is desired to be reduced through filtering 
to derive more precise information from the SAR image 
(Dimov et al., 2016). Many spatial filters have since 
been developed which aim to effectively reduce speckle 
in radar images without eliminating the fine details, 
namely the Lee Filter, the Frost Filter and the popular 
Lee Sigma Filter (Portnoi, 2017). It is crucial to apply a 
polarimetric speckle filter before analysis to achieve 
reliable results (Portnoi, 2017). 

The acquisition of SAR imagery at intervals during 
the growing season, can facilitate accurate crop dis-
crimination (Foody et al., 1994). The structure of a can-
opy is different among crops and inescapably change as 
crops grow. SAR responds very well to the structural 
differences, and that is how these sensors can accurately 
detect crop type and have proven sensitive to several 
crop biophysical parameters (McNairn and Shang, 
2016). SAR data have great potential and can be utilized 
by different agricultural professionals that deal with 
day-to-day decision making in agricultural management. 
Upon fully realizing the potentials offered by SAR, it 
will immensely improve the administration of activities 
in the agricultural sector. 

There is a research conducted utilizing Sentinel-1 by 
Mattia et al. (2015), but the mapping was done at high 
spatial resolution (e.g., 100–500 m). Results indicated a 
good agreement with the actual distribution of cereal 
crops in the area but of the cereal’s class, wheat, barley, 
and oats could not be separated/distinguished. Contrari-
wise, authors such as Martínez and Martín (2003) and 
Jackson (1984) believed that there was an underutiliza-
tion of remote sensing data in agricultural applications in 
map long term cropping patterns and crop rotations. Ac-
cording to a detailed literature analysis done by Bégué et 
al. (2018), less than 10% of the publications on remote 
sensing and agriculture focus on cropping practices.  

Agriculture is the backbone of Zimbabwe’s economy 
where small-scale farmers are the significant players in 
agricultural production. Most of the Zimbabwean culti-
vated fields are small and heterogeneous fields on a 
fragmented landscape that require high spatial resolution 
imagery to map them accurately. There is a lack of spa-
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tially explicit information regarding cropping patterns 
crucial for inventory purposes. The cropping patterns 
can be derived from the spatial distribution and 
phenological characteristics of crops. Due to an inexo-
rable cloud problem, the use of optical imagery hinders 
their application in mapping. Therefore the use of radar 

SAR imagery becomes apparent. Therefore, this paper’

s main objective is to explore the potential of utilizing 
Sentinel-1 SAR data to map cropping patterns at two 
sites namely International Maize and Wheat Improve-
ment Center (CIMMYT) research institute and a few 
neighboring fields in Harare and Middle Sabi Estate in 
Chipinge District, Zimbabwe. The spatially explicit 
mapping of cropping patterns can assist in preparing an 
inventory of what was grown, where and when, and is 
vital for the tracking of land and water resources neces-
sary for crop production over space and time. Double- 
and triple-cropping per year is crucial in meeting the 
escalating food demand (Yan et al., 2014) all over the 
world. Knowledge of cropping intensities is crucial to 
understand water requirements necessary for water re-
sources management (Heller et al., 2012). 

2  Study Area and Data 

2.1  Study area 
Two study sites were chosen for this research, the first 
location is CIMMYT research station and a few 
neighboring fields situated in Harare, Zimbabwe 
bounded by 17°43′14″E and 17°44′16″E, 30°59′40″S 
and 31°15′00″S with an average altitude of 1489 m (Fig. 
1a). It is situated in agro-ecological zone IIA, meaning 
that it receives moderately high rainfall during summer 
ranging between 750 and 1000 mm/yr (Mukwada and 
Manatsa, 2013). CIMMYT generally works throughout 
the developing world to improve livelihoods and foster 
more productive sustainable maize and wheat farming. 
It targets critical challenges, including food insecurity 
and malnutrition, climate change, and environmental 
degradation (CIMMYT, 2016). Generally, at this site, 
they grow seasonal crops mainly maize, soybean, and 
wheat. 

The second study site is Middle Sabi Estates in 
Chipinge district, Zimbabwe, bounded by latitudes of 
20º08′12″E and 20º23′38″E and longitudes 32º18′07″S 
and 32º23′58″S (Fig. 1b). It is situated in agro-ecological 
region zone IV, which is a semi-intensive farming re-

gion. It receives relatively low rainfall totaling between 
450 and 650 mm/yr (Mukwada and Manatsa 2013). The 
farming system in this region is mostly based on live-
stock production, but it can be intensified to some extent 
by the growing of drought-tolerant fodder crops. Pre-
cisely, the vast land at this site, there is mono-cropping 
of sugarcane. The sugarcane grown at Middle Sabi Es-
tate is mainly used to produce the best performing fuel 
from anhydrous ethanol with less than 0.04% water 
content (http://www.greenfuel.co.zw/). 

Zimbabwe is a landlocked country in the Southern 
part of Africa and is generally an agricultural based 
country with a well-developed and diversified agricul-
tural sector producing food crops and cash crops. As of 
2015, agriculture accounted for 18% of Zimbabwe’s 
gross domestic product (GDP) (Dzirutwe, 2015). Zim-
babwe has two distinct seasons, namely summer and 
winter. Usually, a typical long rainy season generally 
falls between October and April, whereas winter season 
falls between June and August. However, the dry season 
begins from April until September. Zimbabwe has a 
temperate climate. 

Major crops grown in summer are usually planted 
around October or November, depending on the onset of 
the rains. These include maize, soybean, cotton, and 
tobacco. Wheat is the major winter crop grown in Zim-
babwe. Small-scale farmers are the backbone of the 
country’s food security and provide about 70 percent of 
maize (Toringepi, 2016), which is the country’s staple 
food. Small-scale sugarcane producers team up and 
grow the crop on the same area since it requires full ir-
rigation to grow. The small-scale farmers usually prac-
tice crop rotation of their farms necessary for conserva-
tion agriculture (Marongwe et al., 2011). Due to eco-
nomic hardships, most farmers tend to grow cash crops 
often. 

2.2  Data  
2.2.1  Sentinel-1 SAR Data 
Sentinel-1 (S1) is a modern C-band imaging radar constel-
lation of two satellite, S1A, and S1B that were launched in 
2014 and 2016 respectively with dual-polarization ca-
pability (HH+HV or VV+VH) for earth observation. It 
is representing the first sensor designed for the EU/ESA 
Copernicus Project initiated by the European Union. 
The Sentinel-1 SAR imagery is available in four exclu-
sive imaging modes, namely Wave-Mode (WM), Extra- 
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Fig. 1  Locations of study sites (a) CIMMYT, Harare showing training and validation data and corresponding UAV images collected on 
3rd December 2016 and 9th of February 2018 (where 1 represent soybean fields, 2, 5, 7 are maize fields, 3 are fields of mixed crops, 4 
are fallow fields, and 6 are areas for pasture), (b) Middle Sabi Estate in Chipinge showing training and validation samples and UAV 
images showing center pivot irrigation and sprinkler irrigation on rectangular fields (where 1 represents banana field, 2, 3, 6, and 8 are 
sugarcane fields, 4 and 9 are fallow fields, 5 is a vegetable field, 7 is orchard, 10 is a tree plantation, and 11 is a waterbody), (c) Eco-
logical regions map of Zimbabwe 
 

Wide Swath Mode (EW), Interferometric Wide Swath 
Mode (IW) and Strip Map Mode (SM). It provides free 
data access and unprecedented high temporal resolution, 
which enables new possibilities to capture the dynamics 
in agricultural areas using multi-temporal classification 
approaches that include information about the crops’ 
phenology (Bargiel, 2017). S1 SAR mission is that the 
satellite is mainly operated in the Terrain Observation 
with Progressive Scans (TOPS) mode (Wegmüller et al., 
2016). 

Level-1 Ground Range Detected (GRD) Sentinel-1 
C-band (5.405 GHz) images in Interferometric Wide 
swath (IW) mode, are downloaded from the Sentinel 
data hub, scihub.copernius.eu website. IW mode allows 

the combination of a large swath width (250 km) with a 
moderate geometric resolution (10 m). The provided 
GRD products contain amplitude and intensity images 
in each polarization (VH and/or VV) with level 1 proc-
essing which includes data projected to ground range 
using an Earth ellipsoid model, elevation antenna pat-
tern and range spreading loss corrections and thermal 
noise removal (Suresh et al., 2016). The IW image with 
incidence angle varying from 30° to 45° and pixel spac-
ing of 10 m in both range and azimuth.  

At CIMMYT and surrounding fields, a total of 30 
SAR images with dates ranging from October 2016 up 
to February 2018 were used for time series to investi-
gate the multi-temporal backscatter properties. At Mid-
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dle Sabi Estate, 33 SAR images from January 2016 to 
January 2018 were used. 
2.2.2  Reference samples and ancillary data 
Reference data for CIMMYT site were availed to au-
thors in the form of georeferenced, mosaicked UAV 
images by the personnel at the research station. Fig. 1a 
shows UAV images captured on the 3rd December 2016 
and 9th February 2018. At Middle Sabi Estate, the UAV 
images (Fig. 1b) were obtained from Green Fuel’s web-
site http://www.greenfuel.co.zw/gallery/.  

Ancillary data comprised of farm records from both 
study sites, which was availed to the authors by authori-
ties of the organizations. The farm records contain at-
tribute information regarding the crop(s) planted on 
each field/parcel/section for each season but did not 
provide planting dates nor harvest dates. Training and 
validation samples shown in Figs. 1a, 1b were selected 
using the information extracted from both farm records 
and UAV images of research site and estate. The farm 
records are very critical for this research to assist in the 
classification or analysis. 

3  Methodology 

3.1  SAR Image pre-processing  
Pre-processing of SAR imagery takes a significant part 
because the aim is to derive the actual intensity of the 
emitted microwave signal that is received by the sensor 
(Dimov et al., 2016). The image processing steps were 
performed in ESA’s Sentinel Application Platform 
(SNAP) starting with radiometric correction, speckle 
filtering, geocoding and geometric terrain correction. 
SRTM 3sec was used as the Digital Elevation Model. 
All the images were then co-registered into WGS84/ 
UTM Zone 36S coordinate system. 
3.1.1  Speckle filtering 
Pixels contain many point scatterers (Lopes et al., 1993) 
that alter reflected backscatter into different phases, and 
it cascades to interference and the noise-like effect 
known as speckle. Speckle filtering suppresses the noise 
to allow better interpretation and backscatter analysis. 
However, speckle filters do not only suppress the noise 
but also remove observations that are not affected by 
noise and contain valuable land surface information 
(e.g., soil moisture, biomass, hence resulting in a loss of 
spatial resolution since it is carried out with moving 
windows. Speckle in SAR reduces classification accu-

racy (Geetha et al., 2016). Therefore, the selection of 
filter to use is an important step, a filter that reduces 
speckle in radar images without eliminating the fine 
details. For this paper, Lee filter (Lee et al., 1994; Ny-
oungui et al., 2002; Ozdarici and Akyurek, 2010) was 

chosen with a moving window of 3  3 kernel since the 
study areas are relatively small. 
3.1.2  Conversion from intensity to decibel 
A SAR system records the echo received from a trans-
mitted electromagnetic signal in the form of intensity 
per pixel (Portnoi, 2017). The intensity values have to 
be converted to a physical quantity known as the back-
scattering coefficient. To get better constraints, conver-
sion from intensity σ0 to σ0 (dB) is a crucial step. Thus, 
the σ0 values of the SAR image are then converted to 
Decibels (dB) (σ0 is the radar backscatter per unit area.) 
The images in dB were then georeferenced to UTM 
zone 36S. The linear conversion formula (radar equa-
tion) presented by Crawford and Ricard (1998) is as 
shown by Equation (1): 

0 0 1010log
m

n

  


  (1) 

where 0 is scattering coefficient, 0
m  is the maximum 

value for the scattering coefficient (usually measured at 

vertical incidence),  is the angle of incidence and 0 is 
a constant dependent on terrain type frequency and po-
larization. 

A linear correction is applied at each frequency and 
polarization to generate uniform backscatter statistics 
for a given class (Crawford and Ricard, 1998). 

3.2  Post-processing 
The post-processing stage involves subset, co-registration 
and data stacking, visualization of data, and calculation of 
image statistics. Creation of subset images, co-registration, 
and stacking were performed in SNAP. 

Co-registration refers to the spatial alignment of a series 
of images. Stacking is a component of co-registration 
where two or more spatially overlapping products are 
collocated. No resampling method was implemented 
since the master image’s extent is adopted for the output 
image. The collocation algorithm iterates over all the 
pixels in the master products and tries to find the closest 
pixel in the slave product. The pixels in slave images are 
moved to align with the master image to sub-pixel ac-
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curacy (Veci, 2016). The time series images are 
co-registered into a stack in order of their acquisition 
dates, thus creating a multilayer image from a set of in-
dividual subset images from the step above. 

3.3  Crop types discrimination and cropping pat-
terns using Fourier time series 
Crops typically exhibit a temporally varying backscatter 
signal due to their phenological interaction with the mi-
crowave signal (Nguyen et al., 2015). Time series plots 
are ideal for understanding the changes that occur within 
and between seasons (permanent, summer and winter 
crops), and between classes within the various classes. 
Various fields or sections at the farms were chosen. The 
random selection of sample pixels and the collection of 
their statistical values was done in SNAP. Average 
backscatter values of the various fields corresponding to 
various dates were exported to Matlab and used for time 
series analysis.  

Fourier series was implemented for curve fitting and 
smoothing purposes (de Oliveira et al., 2009). One of 
the advantages of Fourier series is that it deals with 
time series of irregularly spaced observations. Fourier 
series is a sum of sine and cosine functions that de-
scribes a periodic signal. It is represented in either the 
trigonometric form of the exponential form. Trigono-
metric Fourier series function equation as shown by 
Equation (2). 

0 cos( ) sin( )
n

i i
i a

y a a iwx b iwx


    (2) 

where a0 models a constant (intercept) term in the data 
and is associated with the i = 0 cosine term, w is the 
fundamental frequency of the signal, n is the number of 
terms (harmonics) in the series and 1 ≤ n ≤ 8. Fourier 
series modeling was implemented in Matlab. 

3.4  Image classification 
Both single date and stacked S1 SAR images were clas-
sified using both K-means and Random Forest (RF) 
classification algorithms in SNAP. K-means clustering 
algorithm (Doukkali, 2017) is an unsupervised classifi-
cation method that requires identification of cluster  

 

Fig. 2  Fourier series performance when smoothing the back-
scatter 

 
centroids, depending on the points involved. Therefore, 
it aims at assigning n observation into k clusters 
whereby each point belongs to a cluster with the nearest 
mean. For this research, for CIMMYT images, 10 
classes were randomly assigned as the initial number of 
classes (k = 10), after taking into consideration that the 
training samples have an average of seven classes. There 
exist initialization methods such as Random partition 
and Forgy methods which can also be implemented to 

choose the initial number of classes.① The value of k is 

reduced after every run until k = 5. Depending on the 
results obtained, the setup with the highest classification 
accuracy was adopted.  

For Middle Sabi Estate images, initial k = 15 was 
chosen, and value of k was reduced after every run until 
k = 6. Setup with the highest classification accuracy was 
adopted. 

RF (Breiman, 2001) is a supervised ensemble classi-
fication method that considers a forest of randomized 
trees in a random composition of single decision trees 
that try to find the best fit between the original and the 
sampling data (Dimov et al., 2016). RF utilizes boot-
strap aggregation (iterative bagging) operation where 
the number of trees (ntree) are independently built using 
a random subset of samples from the training data. For 
all datasets, 300 trees were employed. 

Overall classification accuracies and kappa coeffi-
cients were obtained from the confusion matrices. F1 
scores were calculated from producer’s and user’s accu-
racies. 

                                       

① https://www.cse.iitb.ac.in/~shivaram/teaching/old/cs344+386-s2017/resources/la-5/lab-assignment-5.html 
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3.5  F1 test 
F1 test was conducted to determine the F1-score values 
calculated from producer’s and user’s accuracies of each 
class as obtained from the confusion matrices. F1-score 
reveal the error distribution between/among classes. The 
F1-score value is directly related to the degree of the 
representation accuracy of each class. The best F1-score 
a class can achieve is 1, the worst is 0. It was calculated 
using Equation (3). 

1 2
PA UA

F score
PA UA


 


 (3) 

where PA is producer’s accuracy and UA is user’s accu-
racy. 

4  Results 

In order to better identify, explore and understand the 

changes occurring on the agricultural areas, several sta-

tistical spatio-temporal observations of the polarized 

backscatter from the different fields or sections were 

extracted. Fourier time-series were created using mean 

backscattering coefficients. This was to increase the ef-

fectiveness of feature set consideration.  

4.1  Time series analysis  
4.1.1  Relationship between VV and VH 
To better identify the crop types on the agricultural fields, 
the mean backscattering values were used to increase the 
effectiveness of feature set consideration. Figs. 3a–3f il-
lustrate the trend variations in backscatter observed since 
the beginning of the period under investigation on the 
different fields for both VV and VH polarized backscatter. 
The profiles for each field were plotted, and the channel 
graphs reveal very similar patterns for all the VH polar-
ized backscatter σ0

VH (dB) values are lower than VV po-
larized backscatter σ0

VV (dB) values. Each field reveals a 
unique trend dependent on the crop canopies and 
phenology, water content, and soil types. The activities 
reflected by both the polarized backscatter are very much 
comparable. Nevertheless, there are sometimes when the 
rate of changes from one date to another are not con-
senting to the same degree. However, no two fields are 
exhibiting the same profile. Crops planted on two fields 
at the same time, do not have identical profiles, the po-
larized backscatter trend captured is distinct. The scat-
tering effects from the crops are different. 

Generally, the σ0
VV and σ0

VH are positively correlated 
(Table 1); hence either of the profiles can be considered 
in the time series analysis to determine the trends.  

 

Fig. 3  Plots of both VV and VH polarized backscatter at selected fields at CIMMYT of Zimbabwe 
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Table 1  Correlation coefficients VV and VH polarized back-
scatter on fields 

Field Number Description R2 

1 Soybean 0.8099 

2 Maize 0.8647 

3 Mixed 0.7172 

4 Fallow 0.8039 

5 Pasture 0.8361 

6 Maize 0.7260 

 
4.1.2  Fourier time series at CIMMYT 
Fig. 4a illustrates selected smoothed time series plots of 
VV polarized backscatter on the different field parcels 
using Fourier series modeling. Fig. 4b shows time series 
plots of VH polarized backscatter on the field parcels. 
On both polarization backscatter profiles, the peak σ0 
(heading times) are between day 100 and day 200 of the 
investigation period and the second heading times (peak 
σ0 values) are between day 450 and day 550. Crops are 
exhibiting different growth cycles on the time series. 
Unfortunately, during the period under investigation, 
there was no winter wheat grown. 

For fields 1 and 2, in the first summer season, maize 
was planted, in winter, their corresponding troughs on 
the profiles are the lowest compared to the other fields 
which had a different crop. On Field 2 during the first 
summer, there was a late crop planted, but in the second 
summer, an earlier crop was planted. Profile of Field 6 
is not similar to profiles of other cropping fields. It 
represents pasture/paddock, and the highest VV polar-
ized backscatter values are around –12 dB and lowest 
are about –16 dB, the average becomes around –14 dB. 
There are not many fluctuations in the profile suggesting 
that irrigation is practiced. There exist some farm man-
agement be practiced in trying to maintain the same 
condition for the cattle feed. 

Fig. 4 shows the multiple smoothed graphs using 

Fourier series modeling. The profiles using VV polar-
ized backscatter are unique, hence the varying back-
scatter patterns represent characteristics of each field. It 
is possible to detect and differentiate the crops from 
each other at whatever growth stage unlike when using 
VH polarized backscatter. The VV polarized backscatter 
time series clearly shows plants in fields grown earlier 
or later than the others. Growth cycles are also clear 
enough to determine.  
4.1.3  Fourier time series at Middle Sabi Estate 
There are trend variations in the cropping patterns and 
crop cycles in different fields on a estate. Fig. 5 
represents Fourier time series showing the multi- 
temporal dynamic patterns occurring within the estate 
for a 2-year period commencing January 2016 until 
January 2018. 

Banana field (field 1) has the highest backscatter co-
efficients throughout, higher than all the sugarcane at 
different growth stages. Banana is a permanent crop and 
there is minimal fluctuation in the backscatter recorded. 
Fields 2, 3, 4, and 8 are sugarcane fields with different 
cropping cycles. Leafy vegetable-Tomato-Onion crop 
rotation is practiced on field 5. Water ponds have the 
lowest backscatter properties of the crops. Field 9 
represents fallow fields for the whole duration under 
investigation. An increase in the backscatter at some 
point in time probably correspond to wind-pollinated 
plants, weeds, grass growing on the field, also wa-
ter/moisture content influence the backscatter. Field 10 
shows a tree plantation. 

Sugarcane heading times/dates are distinct peaks on 
the smoothed time series as well as the growing cycles 
of sugarcane on different fields. Field 5 has a unique 
wave, with cycles lasting ±120 d. The crops being 
grown there are leafy vegetables, tomatoes, and onions. 
Thereby having more than triple-cropping intensity sys-
tem per year. 

 

Fig. 4  Average polarized backscatter profiles of fields at CIMMYT of Zimbabwe. (a) VV and (b) VH  
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Fig. 5  Fourier series curve fitted VV polarized backscatter from fields at Middle Sabi Estate of Zimbabwe 
 

4.2  Cropping calendar 
Due to the crop rotation practiced at both sites, we di-
vided the seasons into summer 1 and summer 2. Sum-
mer 1, planting is started around November up to Feb-
ruary and harvesting is after day 200 (thus around early 
April) at CIMMYT. Summer 2 commences soon after 
day 400. There were no winter crops grown during the 
period under investigation. By the time this research 
was conducted, the second summer season was still 
on-going, hence the March 2018 imagery are not in-
cluded since they were not yet available.  

At Middle Sabi Estate, sugarcane has different har-
vesting times depending on their growing cycle. The 
leafy vegetables, tomato, and onion are grown and har-
vesting one after the other within a year. The banana 
growing cycle does not show much variation hence 
showing their perennial nature. During the period under 
investigation, the banana plants did not die, they were 
still growing and repeated their same cycle. 

Trends on the different fields show different crop 
growth stages which makes it easier to differentiate 
them from each other. S1 time series allow crop type 
discrimination and development of cropping calendar at 
the various fields. Fewer images are required if the im-
age acquisition is synchronized with the crop calendar 
(Toan et al., 1989; Ban and Howarth, 1999; Satalino et 
al., 2009; Moran et al., 2012). S1 SAR time series have 
great potential to produce cropping calendars on smaller 
scale farmlands. Crop type separability, C-band radar 
multiple images produce more accurate results than 
those achieved with a single C-band radar image (Sata-
lino et al., 2009; Moran et al., 2012; Wang et al., 2010). 
The time series of σo (dB) can offer reliable information 

about crop cycles. The seasonal, temporal variations of 
backscatter can be considered as a function of crop 
growth.  

4.3  Single date image classification 
RF and K-means classification methods were applied on 
the 2 channels VV and VH polarized bands endeavoring 
to determine the various classes on some individual im-
ages collected on the different dates that have corre-
sponding reference data. The RF classification results on 
single images were very poor with the highest overall 
accuracy of 46% obtained on image dated 9th February 
2018 (Fig. 6a). The UAV reference image used was ob-
tained on the 9th of February 2018 to rule out the fact of 
having used outdated reference samples.  

K-means classification results on the same image 
dated 9th February 2018 achieved an overall accuracy of 
40% (Fig. 6b). Both supervised and unsupervised classi-
fication did not produce satisfactory results. The SAR 
image contains information only in the form of intensity 
and texture (Chamundeeswari et al., 2007) but could not 
be segmented successfully into classes with accurate 
homogeneous properties. Nevertheless, both speckle and 
variation in the scattering coefficient with the incidence 
angle can affect the accuracy of pixel-based classifiers 
(Crawford and Ricard, 1998). Consequently, reasonable 
compensation procedures for these sources of variation 
in backscatter statistics are crucial to enable the produc-
tion of an accurate classified map. The fewer the bands, 
the difficult it is to classify heterogeneous smallholder 
farming fields. Fewer polarization bands limit the ability 
to do pixel-based classification of single date SAR im-
ages. 



 USEYA Juliana et al. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using… 635 

 

 

Fig. 6  Classified map of CIMMYT in Zimbabwe on 9th February 2018. (a) Random Forest (b) K-means 
 

4.4  Crop rotation mapping 
Each image contains vital information pertaining to the 
crop type but could not be fully retrieved by the classi-
fication of single date images since they have only two 
polarization bands. To overcome this limited ability to 
do digital classification on single date images with 
fewer polarization bands, we hereby classified the spa-
tio-temporal image stacks to extract the spatio-temporal 
information embeded in the images based on the train-
ing and validation samples, and ancillary data.    

The multi-temporal image stacks were classified us-
ing both K-means and RF algorithms. The overall accu-
racies obtained were 82% and 99% with kappa coeffi-
cients of 0.80 and 0.99, respectively at CIMMYT. 
Therefore, the RF classified image was adopted as the 
final map representing the crop rotation on the different 
fields. Fig. 7a shows crop rotation practiced on various 
fields. Since this site is a research and experimental lo-
cation, the fields labeled mixed have different partitions 
with different crops under experiment hence why we 
considered them as mixed crop fields. There was no 
winter crop grown during the time of the investigation. 

The Middle Sabi Estate’s corresponding stacked im-
ages were also classified using both K-means and RF 
classifiers. The overall accuracies obtained were 65% 
and 95% with kappa coefficients of 0.53 and 0.95, re-
spectively. Therefore, the RF classified image as 
adapted to be the final map representing the crop rota-
tion determine on the different fields. Fig. 7b shows 
crop rotation practiced on the different fields as revealed 
by the classification process. The boundaries of the dif-
ferent fields are visibly distinct on the classified map. 
The fields are substantially larger than the fields at 
CIMMYT. 

Post classification of combining classes was per-
formed to have single classes of the same class type 
(sugarcane and fallow). And renaming of classes, the 
class name garden was changed to the crop rotation be-
ing practiced at the fields, thus leafy vegetable- to-
mato-onion. 

4.5  F1 Test 
Table 2 shows the producer’s and the user’s accuracies 
obtained from classifying the stacked images using RF 
algorithm. All classes performed well with F1 values 
higher than 99% for classes at CIMMYT. At Middle 
Sabi Estate, the classes also performed well with the 
least value of F1-score of 87%.   

5  Discussion 

This research aims at exploring the potential of mapping 
cropping patterns using C-band of S1 SAR data at small 
scale farming lands. The advantages of S1 SAR data are 
the fine spatial resolution best applicable to small fields, 
hence allowing the discovery of backscatter characteris-
tics of the fields’ pixels. Time series permits the detec-
tion of subtle changes that occur to the crops and fields, 
hence can be used to produce cropping calendars and 
detection of cropping patterns. The spatial distribution 
of cropping patterns makes it easier to understand the 
meaning of the land-use changes on the farmland at the 
different parcels growth rate, senescence and harvest 
rates can be determined using the multiple-temporal 
backscatter trend. There is an improved ability to dif-
ferentiate crops type as well as differentiate crop 
phenologies. Crops grown at different times are exhib-
ited in time series by waves lagging behind the earlier 
planted crops. The durations the growing period of crops  
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Fig. 7  Crop rotation classified maps at (a) CIMMYT and (b) Middle Sabi Estate of Zimbabwe 
 
Table 2  F1-scores calculated from producer’s and user’s accuracies for random forest classified image for CIMMYT of Zimbabwe 

Study location Class Producer’s accuracy (%) User’s accuracy (%) F1-score (%) 

CIMMYT Pasture 100.00 100.00 100.00 

 Other-Fallow-Fallow 98.63 99.31 99.00 

 Mixed 100.00 99.93 99.90 

 Soybean-No winter crop-Maize 100.00 99.93 99.90 

 Maize-No winter crop-Soybean 99.58 99.93 99.80 

 Maize-No winter crop-Maize 100.00 100.00 100.00 

Middle Sabi Estate Banana 100.00 99.46 99.70 

 Sugarcane 1 90.18 84.03 87.00 

 Fallow 1 98.99 99.84 99.40 

 Sugarcane 2 93.88 97.63 95.70 

 Trees 98.68 99.17 98.90 

 Orchard 99.38 87.35 93.00 

 Leafy-vegetable-Tomato-Onion 99.59 99.64 98.60 

 Sugarcane 100.00 100.00 100.00 

 Fallow 3 100.00 85.27 92.00 

 Fallow 4 88.82 99.62 93.90 

 Water 99.28 95.87 97.50 

 Fallow-No winter crop-Maize 99.28 100.00 99.60 

 

can be detected on the time series. High backscatter 
values correspond to the greatest volume scatter caused 
by the canopy and branches of crops. Whereas the 
planting and germination of crops can be estimated from 
the time series. High deviations in backscatter suggest 
seasonality in agriculture activities. Temporal variations 

of polarized backscatter are regarded as a function of 
crop growth. 

Upon classifying the stacked time series images, crop 
rotation maps are created and determined swiftly since 
each pixel provides a combination of characteristics 
contained by each pixel for the corresponding images 
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within the time series. Using Random forest, at 
CIMMYT, an overall accuracy of 99% was obtained, 
whereas at Middle Sabi Estate and overall accuracy 95% 
has been achieved. The high accuracy was achieved de-
spite the size of the fields and farming area, environ-
mental conditions or type of crops under investigation as 
long as the overall field size is bigger than the image 
pixel size. To produce a good classified map, the choice 
of classification algorithm must be dependent on the 
available training and validation samples one has re-
garding the area under investigation. The conclusion is 
based on the difference in sizes of study sites examined 
in this paper. The CIMMYT site is very small similar to 
an ordinary vegetable garden setup whereas Middle Sabi 
Estate is an intensive farming project for a group of 
small-scale.  

The main limitation is in classifying single date im-
ages. The two channels considered could not provide 
enough complementary band information to derived a 
distinctive pattern necessary to produce a good classi-
fied image. Classification accuracy provided by single 
Synthetic Aperture Radar (SAR) data is generally con-
sidered not sufficient for operational crop mapping, 
hence a strong argument supporting the combined use of 
optical and SAR data is that the latter can provide addi-
tional and complementary information in terms of the 
canopy (Mattia et al., 2015). Conversely, there is also a 
need to determine the best time(s) of image acquisition 
for crop discrimination. The main advantage of classi-
fying single date imagery is that it can capture the time 
when changes in field structures and arrangement oc-
curred, which is a limitation of time series. Over the 
long term, rearrangements can be done on the ground 
due to various decisions by management. Some field 
boundaries are not permanent, the field parcels can be 
changed.   

Nevertheless, good timing is crucial when choosing 
and classifying single date images. Proper planning of 
the dates of image acquisition and finding the optimal 
acquisition windows for the region of interest are, 
therefore crucial (Hütt and Waldhoff, 2018). Useful in-
formation can be missed when one uses the image cap-
tured on a particular day with less or more information 
than necessary, which may be misleading hence, not 
providing accurate information as required. According 
to Lin and Liu, (2016), the use of single imagery in 
classification might omit the information of some for-

ests with short leaf-fall periods.  
With the knowledge gained in this analysis, we rec-

ommend the application of mapping cropping patterns 
on both small-scale and large-scale farming areas. The 
next step will focus on determining how feasible it is to 
capture subtle changes in field boundaries as well as 
capturing the exact time the changes occurred from the 
time series data. 

6  Conclusions 

The main objective of this study was to explore the po-
tential of mapping cropping patterns on smallholder 
scale farming land using Sentinel-1 SAR imagery. Two 
study locations, namely CIMMYT and Middle Sabi Es-
tate of Zimbabwe were chosen due to the availability of 
data. Fourier time series was implemented to enable the 
detection of cropping patterns (cropping calendars and 
cropping systems) on the field parcels on the two loca-
tions. Random forest and K-means algorithms were used 
to classify stacked images to determine the crop rota-
tions.  

S1 SAR data can offer great potential when mapping 
cropping patterns on smallholder scale farming areas 
when working with multi-temporal images (time series). 
Fourier time series (spatio-temporal) profiles could be 
used to map cropping patterns on different small-scale 
agricultural fields since the multi-temporal observations 
can enable distinction of crop types and estimate the 
crop growth stages. CIMMYT practices a single crop-
ping growing either maize or soybeans in summer. Mid-
dle Sabi Estate practices a single cropping on sugarcane 
whereas a triple cropping was observed on fields where 
leafy-vegetables, tomatoes, and onions are grown. 
However, there were subtle differences exhibited by 
crops of the same type but on different fields. The yearly 
sequential arrangement of both crops and fallow on each 
field could be identified. Crop planting dates and har-
vesting dates could also be estimated, patterns of early 
planted crops or late planted crops were exhibited by 
time series. Fourier time series permit identification of 
subtle changes occurring. 

Random forest classification on respective multi-    
temporal image stacks comprising the time series en-
abled the identification and mapping of crop rotations 
on the small fields. High overall classification accura-
cies were achieved at CIMMYT attained 99%, and 95% 
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was obtained at Middle Sabi Estate. The classified maps 
synthesized are adopted as the crop rotation maps. High 
accuracy was achieved despite the size of the area, en-
vironmental conditions or type of crops under investiga-
tion. Classification of single date SAR image did not 
produce satisfactory results. The highest overall classi-
fication accuracy of 46% was obtained on the 9th Feb-
ruary 2018 subset image when RF classification algo-
rithm was implemented. K-means cluster method 
achieved an overall accuracy of 40% on the same image. 

We, therefore, recommend the utilization of Senti-
nel-1 SAR multi-temporal data to spatially explicitly 
map cropping patterns of single-, double- and tri-
ple-cropping on both small-scale and large-scale farm-
ing areas to assist decision-makers pertaining to the food 
security and resource management issues. 
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