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Abstract: The parameter bp in the tuo-omega (τ–ω) model is important for retrieving soil moisture data from passive microwave 

brightness temperatures. Theoretically, bp depends on the observation mode (polarization, frequency, and incidence angle) and vegeta-

tion properties and varies with vegetation growth. For simplicity, previous studies have taken bp to be a constant. However, to reduce the 

uncertainty of soil moisture retrieval further, the present study is of the dynamics of bp based on the SMAPVEX12 experimental dataset 

by combining a genetic algorithm and the L-MEB microwave radiative transfer model of vegetated soil. The results show the following. 

First, bp decreases nonlinearly with vegetation water content (VWC), decreasing critically when VWC becomes less than 2 kg/m2. Sec-

ond, there is a power law between bp and VWC for both horizontal and vertical polarizations (R2 = 0.919 and 0.872, respectively). Third, 

the effectiveness of this relationship is verified by comparing its soil-moisture inversion accuracy with the previous constant-bp method 

based on the HiWATER dataset. Doing so reveals that the dynamic bp method reduces the root-mean-square error of the retrieved soil 

moisture by approximately 0.06 cm3/cm3, and similar improvement is obtained for the calibrated SMAPVEX12 dataset. Our results 

indicate that the dynamic bp method is reasonable for different vegetation growth stages and could improve the accuracy of soil moisture 

retrieval. 
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1  Introduction 

Using passive microwave remote sensing to measure 
surface soil moisture requires consideration of several 
factors that influence the interpretation of the data, such 
as vegetation cover, soil texture, surface roughness, and 
pixel heterogeneity (Ulaby et al., 1986; Loew, 2008). Of 
these factors, vegetation cover is the most important 
because the surface microwave radiation depends on the 
amount and types of vegetation as well as the parame-
ters of the sensor system (e.g., wavelength, incidence 

angle, polarization) (Jackson and Schmugge, 1991). 
The canopy transparency (usually referred to as the 

transmissivity tv) can be expressed in terms of the vege-
tation optical depth τp (Jackson et al., 1982) as 

v pexp( / cos )t     (1) 

where θ is the incidence angle from the nadir. For cer-
tain frequencies and vegetation types, τp is usually re-
lated directly to the nadir optical depth τnad. Jackson et 
al. (1982) reported the following linear relationship be-
tween τnad and vegetation water content (VWC; units: 
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kg/m2) (Jackson et al., 1982): 

nad pb VWC     (2) 

where bp is a regression coefficient that depends on the 
frequency, polarization, and to a greater or lesser extent 
the canopy type (e.g., corn, grass). 

Previous studies have determined the values of bp for 
various canopies at different frequencies (Jackson et al., 
1982; Ulaby et al., 1986; 1987; Pampaloni and Paloscia, 
1986; Jackson and O’Neill, 1990; Wigneron et al., 
1995a; Van de Griend et al., 1996; Pardé et al., 2003). In 
those studies, for a given frequency, bp was assumed to 
be constant over the whole growth stage of most agri-
cultural crops for both horizontal (H) and vertical (V) 
polarizations. Jackson and Schmugge (1991) summa-
rized the values of bp for various canopy types and for 
different frequencies and validated the linear relation-
ship between VWC and τnad; they concluded that 
bp = 0.15 for both H and V polarizations represented 
most agricultural crops at longer wavelengths, with the 
exception of grasses (Jackson and Schmugge, 1991; 
Wigneron et al., 2004a). However, in the L band 
(1.4 GHz), Wigneron et al. (2007) found that bp = 0.12± 
0.03 was more representative of most agricultural crops 
for both H and V polarizations, and Pardé et al. (2003) 
found that bp = 0.12 also gave the best fitted results for 
wheat for both H and V polarizations. Indeed, the cur-
rent SMOS (Soil Moisture and Ocean Salinity) and 
AMSR-E (Advanced Microwave Scanning Radiometer- 
Earth Observing System) soil-moisture algorithms as-
sume bp to be a constant (Njoku et al., 2003; Kerr et al., 
2012). 

Le Vine and Karam (1996) showed the relationship 
τnad = bp·VWC to be reasonable by simulating the vege-
tation optical depth based on a discrete microwave ra-
diation model whose wavelength was large compared to 
the canopy components (e.g., leaves, stalks, stems, 
branches). However, it is also clear from numerical ex-
amples based on real canopies that bp can be a complex 
function of both frequency and VWC even at the lowest 
frequencies proposed for remote sensing (i.e., ~1 GHz). 
Based on datasets collected in 1985 at the U.S. Depart-
ment of Agriculture’s Beltsville Agricultural Research 
Center, Burke et al. (1999) and Wigneron et al. (1995b) 
calculated τnad for two growth stages (2.4 kg/m2 and 
5.2 kg/m2) using the τ–ω model and the discrete model, 
respectively, and found that the bp value differed be-

tween the two growth stages (bp = 0.138±0.017 for 
2.4 kg/m2 (p = H or V) and 0.087±0.01 for 5.2 kg/m2 (p 
= H or V)). Wigneron et al. (1996) obtained bp = 0.125 
for green vegetation and bp = 0.04 (p = H) for a senes-
cent crop just before harvest; Burke et al. (1999) ob-
tained similar results. These various results indicate that 
bp varies during the crop season of a single crop type 
(i.e., as the vegetation structure or VWC changes) even 
if the same observation mode (i.e., frequency, incidence 
angle, azimuth angle, and polarization) is maintained 
during data collection. Wigneron et al. (2004b) collected 
many experimental datasets, analyzed which factors 
influenced bp, and found that bp could vary significantly 
during one crop cycle. However, bp is typically assumed 
to be constant over the whole vegetation period because 
of the lack of ancillary information needed to compen-
sate for its dynamics (Pellarin et al., 2003). Therefore, a 
constant bp parameter has been used for soil moisture 
retrieval for the sake of simplicity (Loew, 2008). How-
ever, because bp actually varies with the canopy struc-
ture, a dynamic bp is needed while the vegetation can-
opy is growing. 

To determine the relationship between bp and vegeta-
tion properties, the aim of the present paper is to inves-
tigate the temporal dynamic characteristics of bp. First, a 
genetic algorithm is used to optimize bp based on the 
SMAPVEX12 experimental dataset and a microwave 
radiative transfer model. Second, a regression relation-
ship between bp and VWC is developed based on the 
optimized bp. Third, the newly proposed relationship 
between bp and VWC is validated by comparing its 
soil-moisture inversion accuracy against the HiWATER 
dataset. Finally, the conclusion of the rationality of the 
new relationship is analyzed and a brief overview is 
given of the factors that influence this relationship. 

2  Materials and Methods 

2.1  SMAPVEX12 Dataset 
The Soil Moisture Active Passive (SMAP) Validation 
Experiment 2012 (SMAPVEX12) was conducted in the 
Canadian Red River watershed for approximately six 
weeks in 2012 (from June 6 to July 17) and covered 
various soil and vegetation conditions, especially those 
in the early crop stage. An aircraft operated by Twin 
Otter International made 16 flights while carrying the 
Passive/Active L-band Sensor (PALS) instrument  
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Fig. 1  Experimental area of Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) airplane observations of mi-
crowave brightness temperature  
 

mounted at a 40° incidence angle (SMAP, 2012a). As 
shown in Fig. 1, the dominant annual crops were cereals 
(32.2% of area), canola (13.2%), corn (7.0%), and soy-
bean (6.7%); approximately 16.4% of the experimental 
area was occupied by perennial cover (grassland and 
pasture). 

Targeted for measurement were various soil and 
vegetation variables known to influence microwave 
emissions and scattering, namely soil moisture, surface 
and sub-surface temperature, surface roughness, vegeta-
tion biomass and water content, and parameters related 
to canopy structure. The details regarding measurement 
of these variables can be found in the SMAP (2012b). 

2.2  HiWATER dataset 
The Heihe Watershed Allied Telemetry Experimental 
Research (HiWATER) datasets included the airborne 
Polarimetric L-band Multi-beam Radiometer (PLMR) 
dual-polarized brightness temperature and WATERNET 
soil properties (Li et al., 2013; Fan et al., 2015). The 
middle sections of the Heihe River Basin form a key 
experimental area of the HiWATER campaign, and the 
land cover types within this region are characterized by 
grasslands, urban areas, forests, and bare land. The 
PLMR flights were made in 2012 from June 30 to Au-
gust 2. The incidence angles were ±7.5°, ±21.5°, and 
±38.5° for V and H polarizations. Over the observation 

dates, the flight height ranged from 0.3 to 3 km and the 
spatial resolution ranged from 0.1 to 0.75 km (Li et al., 
2014; Fan et al., 2015). Here, the Moderate-resolution 
Imaging Spectroradiometer (MODIS) 8-day 1-km Leaf 
Area Index (LAI) products were adopted to represent 
the effect of vegetation cover on upward L-band soil 
radiation. To facilitate comparison with the MODIS LAI 
products, the airborne PLMR brightness temperature 
was resampled to raster data with a spatial resolution of 
1 km, as shown in Fig. 2. For details of the PLMR 
brightness temperatures, please refer to Fan et al. (2015) 
and Yan et al. (2015). 

The observation dates of the WATERNET system 
ranged from June 9, 2012, to September 18, 2012. The 
observation parameters included soil temperature, soil 
moisture, soil conductivity, and dielectric constants at 
4 cm and 10 cm (Yan et al., 2015). Additionally, soil 
texture data of the Heihe River Basin were used to cal-
culate the soil complex dielectric constant (Ma et al., 
2013). Because the root-mean-square (rms) height of the 
soil surfaces was not measured during the experiment, 
an rms height of 1.5 cm was derived as a fitting pa-
rameter (Yan et al., 2015). 

2.3  L-MEB Model 
To simulate the L-band brightness temperature of the 
vegetated soil, we use the L-band Microwave Emission  
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Fig. 2  Airborne Polarimetric L-band Multi-beam Radiometer (PLMR) horizontal (H) polarization brightness temperature TB on July 
10, 2012 with a spatial resolution of 1 km at an incidence angle of ±38.5° 
 

of the Biosphere (L-MEB) model, which is based on a 
simple zero-order radiation transfer approach (τ–ω); 
many other researchers have used that model to retrieve 
surface soil moisture and to model brightness tempera-
ture (Le Vine and Karam, 1996; Loew, 2008; Wigneron 
et al., 2004a, 2007; Pellarin et al., 2003; Van de Griend 
et al., 2003). It is reasonable to use L-MEB for frequen-
cies below ~5 GHz (Wigneron et al., 2001), and there-
fore it is appropriate for simulating L-band emission. 
L-MEB is expressed as follows (Van de Griend et al., 
2003): 

up
b a a v C v C s v

s s v

[(1 )(1 ) (1 )(1 )

(1 ) ]

T T t t T t T R t

R T t

        


 (3) 

where Tb is the simulated brightness temperature [K], 
Ta

up is the upwelling atmosphere emission, ω is the sin-
gle-scattering albedo of the canopy, ta and tv are the 
transmissivities of the atmosphere and canopy, respec-
tively, Ts and Tc are the effective temperatures [K] of the 
soil and canopy, respectively, and Rs is the reflectivity of 
the rough soil surface. In the present study, we ignore 
atmospheric effects because of the relatively high trans-
parency of the L band and the relatively low heights at 
which the airborne brightness temperatures were ob-
tained (Li et al., 2014; Fan et al., 2015). 
2.3.1  Effective soil temperature 
The effective soil temperature Ts accounts for the con-
tribution of the soil temperature profile to the emissions. 

Based on radiative transfer theory (Ulaby et al., 1986), 
Choudhury et al. (1982) proposed a simple parameteri-
zation of Ts, namely 

s deep surf deep t( )T T T T C     (4) 

where Tdeep and Tsurf denote the deep soil temperature 
(that at 10 cm in the present study) and the surface tem-
perature (that at approximately 0–5 cm), respectively. 
Here, Ct is affected by the observation frequency and 
soil moisture and can be computed using the real and 
imaginary parts (εr, εi) of the soil complex dielectric 
constant (Holmes et al., 2006): 
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where ε0 and b0 are empirical parameters that depend on 
the specific soil characteristics; we set ε0 = 0.3 and 
b0 = 0.3 as the default values. The complex dielectric 
constant of the soil was derived from the Mironov 
model, which is also used in the SMOS soil-moisture 
algorithm (Mironov et al., 2009; Kerr et al., 2012). 
2.3.2  Soil reflectivity 
The soil reflectivity is calculated using the Q–h model 
proposed by Wang and Choudhury (1981): 

cos ( )
s p p p q( ,  ) [(1 ) ( ) ( )] e

Nh pR p Q R Q R            (6) 

where Rp(θ) and Rq(θ) are the Fresnel reflectance of a 
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smooth soil surface, θ is the incidence angle, and ‘p’ and 
‘q’ denote horizontal and vertical polarizations, respec-
tively. The semi-empirical parameters Qp and h quantify 
the effects of polarization mixing and roughness, re-
spectively. The parameter Np is an exponent that de-
pends on the polarization (p). Here, Qp, NH, and NV are 
set to zero, as indicated by recent studies based on large 
experimental datasets (Wigneron et al., 2001).The 
roughness parameter h is estimated based on a method 
proposed by Escorihuela et al. (2007): 

2
v v

2
v

2( ) 4.4( ),       

2( ) ,         

k m FC m FC
h

k m FC





    


  (7) 

where k is the wavenumber, σ is the rms height, mv is the 
soil moisture, and FC is the field capacity related to the 
soil texture. 
2.3.3  Vegetation effects 
The canopy transmissivity tv is derived from the vegeta-
tion optical depth τp and the incidence angle θ. The 
value of τp is influenced by vegetation type, the polari-
zation p, and the incidence angle θ and may also change 
with time to a certain extent because of the change of 
VWC and canopy structure (Loew, 2008; Van de Griend 
and Wigneron, 2004). Wigneron et al. (1995a) and Kerr 
et al. (2012) expressed the relationship between τp and 
τnad as 

2 2
H nad H( ) (sin ( ) cos ( ))tt        (8-1) 

2 2
V nad V( ) (sin ( ) cos ( ))tt        (8-2) 

where ttV and ttH are functions of the canopy type and 
account for the dependency of τH and τV on the inci-
dence angle θ. Values of ttV and ttH greater than unity or 
less than unity correspond to τp increasing or decreasing, 
respectively, with incidence angle for V and H polariza-
tions, respectively. ttV and ttH are generally set to unity 
in the case of an isotropic canopy, such as that of native 
grasses (Wigneron et al., 2007; Saleh et al., 2007), 
whereas values as high as ttV = 8 have been estimated 
for vertically dominated crops such as wheat and corn, 
with ttH generally closer to unity (Wigneron et al., 2007; 
Panciera et al., 2009). 

The vegetation optical thickness τnad is generally re-
lated linearly to VWC (kg/m2) as expressed in Eq. (2), 
and VWC is correlated with the LAI for crop-covered 
surfaces and can be expressed as (Wigneron et al., 2006) 

0.5VWC LAI    (9) 

In the L band, the value of ω in Eq. (3) has been found 
to be rather low. For specific crop types (such as corn), 
ω can reach almost 0.1, but for most low vegetation 
types (such as soybean), ω is typically below 0.05 and is 
neglected in most studies (Wigneron et al., 2004a). In 
previous studies, ω was fixed as either zero (Wigneron 
et al., 2004a) or 0.05 (Pellarin et al., 2003; Panciera et 
al., 2009), neglecting also its dependence on incidence 
angle θ and polarization p. Although a non-zero value of 
ω was obtained for a corn canopy with high VWC 
(Wigneron et al., 2004b; Kurum, 2013), the default 
value of ωP was set to zero because the airborne L-band 
radiometer footprint in the SMAPVEX12 and Hi-
WATER experiments usually contains a mix of various 
vegetation types. 

2.4  Optimization for estimating bp 
To derive a reasonable bp for various vegetation growth 
stages, we used the genetic algorithm in the MATLAB 
Toolbox (Goldberg, 1989) based on multiple measured 
brightness temperatures with similar VWC and various 
other surface conditions (e.g., soil moisture, soil tem-
perature, soil texture). The value of bp was optimized by 
minimizing the following cost function based on the 
genetic algorithm: 

2
air sim

21
air

( ( ) ( ))

( )

N

i

TB i TB i
CF

TB

 
   

 
   (10) 

where TBair denotes the airborne PALS brightness tem-
perature, TBsim is the simulated brightness temperature 
based on the L-MEB introduced in Section 2.3, and 
σ(TBair) is the standard deviation of the airborne PALS 
brightness temperature. Here, Eqs. (1) – (9) were used to 
model the brightness temperature of vegetated soil. The 
polarization effects were calibrated in the optimization 
scheme by Eq. (8). The other required L-MEB parame-
ters came from in situ data of the SMAPVEX12 dataset. 

2.5  Validation of dynamic bp 
After bp was optimized, we used VWC to parameterize 
its dynamics. As mentioned previously, bp is related to 
the canopy structure, whereas VWC represents the 
amount of vegetation affecting the canopy transparency. 
There are two reasons why we used VWC to parameter-
ize bp. First, VWC is more accessible from optical re-
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mote sensing imagery than are the structure variables 
(e.g., leaf inclination angle, size of vegetation compo-
nents). Second, VWC is related directly to the canopy 
structure, although what this relationship is remains un-
clear. Therefore, as a proxy for the vegetation structure, 
VWC was used to represent the dynamics of bp during 
various vegetation growth stages. To demonstrate the 
rationality of this newly proposed relationship between 
bp and VWC, surface soil moisture was retrieved by two 
bp parameterization methods based on the HiWATER 
dataset. The first method considered the constant value 
of bp = 0.12, which is the default value in the AMSR-E 
and SMOS soil-moisture algorithms. The second 
method proposed herein considered bp to vary with 
VWC. The effectiveness of the newly proposed bp 
parameterization method was validated by comparing its 
retrieved soil moisture with the in situ soil moisture. 

3  Results 

3.1  Dependence of bp on VWC 
The value of bp can be derived by minimizing the cost 
function through the genetic-algorithm method intro-
duced in Section 2.4. In Fig. 3, the change of bp in H 
polarization(bH) and V polarization(bV) is shown, it 
generally decreases with VWC for both H and V polari-
zations. In other words, bH and bV decrease as the vege-
tation canopy grows. The decrease in bp with VWC is 
relatively rapid for VWC < 2 kg/m2 but then slows 
thereafter. A power law was used to fit the relationship 
between bp and VWC. For both H and V polarizations, 
the degree of fit (R2) was nearly 0.9, with higher R2 for 
H polarization. 

 

Fig. 3  Relationships between vegetation water content (VWC) 
and bp parameter derived from airborne PALS brightness tem-
perature and ancillary soil and vegetation parameters of 
SMAPVEX12 dataset: (a) the change of bp in V polarization (bV); 
(b) the change of bp in H polarization (bH). The vertical axes are 
both logarithmic (base 10) axes  

The simulated brightness temperature (TBsim) was 
computed based on the optimized bp with time-varying 
characteristics and the default bp with a value of 0.12. 
Fig. 4 compares TBsim with the airborne PALS bright-
ness temperature (TBair); TBsim is positively correlated 
with TBair for both H and V polarizations. The statistical 
parameters for TBsim and TBair for both H and V polari-
zations are summarized in Table 1. The rms error (rmse) 
and bias of TBsim and TBair for bp = 0.12 are both higher 
than those for the dynamic bp for both H and V polariza-
tion, and conversely the R2 values for TBsim and TBair are 
both higher with the dynamic bp. These results show that 
when modeling the brightness temperature of vegetated 
soil, it is better to use a dynamic bp than to fix the value 
as bp = 0.12. 

3.2  Comparison of in situ mv and retrieved mv 
based on calibrated dataset 
To confirm the effectiveness of using the time- varying 
bp in the soil-moisture retrieval algorithm, three inver-
sion algorithms were used, namely SCA-H (Sin-
gle-channel Algorithm, Horizontal polarization), SCA-V 
(Single-channel Algorithm, Vertical polarization) and 
DCA (Dual-channel Algorithm). The details of these 
three algorithms can be found in the SMAP handbook 
(Entekhabi et al., 2014). The input dataset of these three 
algorithms was based on the calibrated SMAPVEX12 
dataset. Fig. 5 shows the results for retrieved volumetric 
soil moisture (mv) based on the three inversion algo-
rithms; it shows that better consistency exists between 
the in situ mv and the retrieved mv when using the dy-
namic bp than when using the fixed bp value of 0.12. All 
three inversion algorithms (DCA, SCA-H, and SCA-V) 
suffer from higher rmse and bias if the fixed bp is used, 
and the rmse and bias of the retrieved mv are reduced  

 

Fig. 4  Scatter of simulated brightness temperature (TBsim) and 
airborne PALS brightness temperature (TBair) for H and V polari-
zations: (a) H polarization; (b) V polarization 
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Table 1  Statistical parameters for TBsim and TBair for H and V polarizations  

bp bH = 0.12 bH = f(VWC) bV = 0.12 bV = f(VWC) 

rmse [K] 3.51 0.34 0.65 0.16 

bias [K] 0.91 0.09 0.14 0.05 

R2 0.978 0.999 0.998 0.999 

 

 

Fig. 5  Comparison of in situ volumetric soil moisture (mv) and 
retrieved volumetric soil moisture (mv) from calibrated datasets 
based on SMAPVEX12 experiments: (a)–(c) retrieved mv from 
Dual-channel Algorithm (DCA), Single-channel Algorithm, 
Horizontal polarization (SCA-H), and Single-channel Algorithm, 
Vertical polarization  (SCA-V), respectively, for fixed bp = 0.12; 
(d)–(f) retrieved mv from DCA, SCA-H, and SCA-V algorithms, 
respectively, when dependence of bp on VWC is included. 
 

greatly if the dynamic bp is used. The correlation coeffi-

cient r between the in situ mv and retrieved mv is 0.81, 
0.79, and 0.78 for DCA, SCA-H, and SCA-V, respec-
tively, if the dependence of bp on VWC is considered, 
decreasing to 0.57, 0.57, and 0.53, respectively, if the 
fixed bp is used. The statistical parameters for the in situ 
mv and retrieved mv are summarized in Table 2. The di-
vergence between the in situ mv and retrieved mv is re-
duced with enhanced consistency if the dependence of 
bp on VWC is considered. Of DCA, SCA-H, and SCA-V, 
the best results for the retrieved mv are obtained by DCA 
with low rmse (0.071 cm3/cm3) and low bias 
(0.007 cm3/cm3). 

3.3  Validation results with HiWATER dataset 
To further demonstrate the validity of the newly pro-
posed power-law relationship between bp and VWC, the 
HiWATER dataset was used to evaluate the error in the 
retrieved soil moisture. This work is similar to that in 
Section 2.3, but the dataset used to develop the relation-
ship between bp and VWC was not the SMAPVEX12 
dataset. Based on this purpose, soil-moisture inversion 
was carried out based on the refined L-MEB model and 
the HiWATER airborne PLMR dataset, and ground- 
sampled soil moisture was used to evaluate the per-
formance of the time-varying bp. 

Fig. 6 compares the in situ and retrieved mv under the 
two bp parameterization methods. The rmse and bias of 
the retrieved mv were 0.095 cm3/cm3 and 0.084 cm3/ 
cm3, respectively, for bp = 0.12, and those of the re-
trieved mv were 0.034 cm3/cm3 and 0.027 cm3/cm3, re-
spectively, for the time-varying bp scheme. These results 
show that the retrieved mv has good consistency with the 
in situ mv when the dependence of bp on VWC (or vege-
tation growth) is included, with the rmse of the retrieved 
soil moisture improving by around 0.06 cm3/cm3. 

 

Table 2  Statistical parameters (r, rmse, and bias) for in situ mv and retrieved mv  

bp=0.12 bp=f(VWC) 
 

r rmse bias 
 

r rmse bias 

DCA 0.57 0.190 0.058  0.81 0.071 0.007 

SCA-H 0.57 0.195 0.061  0.79 0.074 0.008 

SCA-V 0.53 0.157 0.062  0.78 0.071 0.012 
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Fig. 6  Comparison of in situ volumetric soil moisture (mv) and 
retrieved volumetric soil moisture (mv) based on a fixed value of 
bp = 0.12 (blue) and bp varying with VWC (red) for DCA 
(Dual-channel Algorithm) soil-moisture inversion method 

4  Discussion 

The canopy transmissivity in the L band can be affected 
by various factors, such as the VWC and canopy struc-
ture (inclination angle, shape, depth, leaf size). To sim-
plify the complexity of modeling the transmissivity of 
vegetation canopies, only two parameters (VWC and bp) 
were used in the τ–ω model. VWC describes the effects 
of canopy water content, and bp describes the effects of 
canopy structure. Previously when modeling the bright-
ness temperature of vegetated soil, the value of bp was 
considered to be a constant during the entire vegetation 
growth stage. As indicated by comparing the simulated 
brightness temperature TBsim and the airborne PALS 
brightness temperature TBair (Wigneron et al., 1995b; 
1996; 2004b; Burke et al., 1999), it is appropriate with 
certain vegetation types to use a time-varying bp during 
the crop cycle. However, that result had been verified 
only during the middle and late growth stages because 
of the limitation of implemented dataset. In the present 
study, we used the SMAPVEX12 dataset containing the 
early growth stage of vegetation, and a time-varying bp 
(as opposed to a fixed value) was again verified to be 
more accurate in modeling the microwave radiation of 
vegetated soil. The change in bp can be explained by the 
changes in leaf-angle distribution, the number of leaves, 
and the height of vertical stems at different growth 
stages. These structural changes of the vegetation can-
opy are very likely to change the ability of L-band signals 

to penetrate the vegetation canopy (related to bp or τp). 

4.1  Dependence of bp on polarization 
A key issue in soil-moisture retrieval is whether a polari-
zation dependence of bp is needed to improve the retrieval 
accuracy. Here, we discuss the polarization difference of 
bp. The present results show that bV is approximately 
equal to bH, being slightly greater than bH at high VWC 
(Fig. 7). This is inconsistent with the results of Wigneron 
et al. (2004b) that show that the dependence of bp on po-
larization is significant over several crops, especially 
those with a vertical stem structure (such as wheat and 
corn). This can be explained by the degree of inhomoge-
neity of the observed scene. The airborne PALS and 
PLMR brightness temperature used in the present study 
relates to a heterogeneous scene that includes various 
vegetation types, whereas the results of Wigneron et al. 
(2004b) obtained from ground-based brightness tempera-
ture are for a homogeneous scene. The footprint of satel-
lite observations covers tens of kilometers, and the foot-
prints of SMOS (~40 km) and SMAP (~36 km) are in-
homogeneous. Therefore, it can be inferred that the de-
pendence of bp on polarization is not strong, and this de-
pendence can by ignored in soil-moisture retrieval, as in 
the current SMOS and SMAP soil-moisture algorithms 
(Kerr et al., 2012; Entekhabi et al., 2014). 

 

Fig. 7  Polarization difference of bp over a range of VWC. Error 
bars represent standard deviation of bp. All axes are logarithmic 
(base 10) axes 

4.2  Uncertainty of retrieved mv based on dynamic 
bp 
Here, we analyze the rmse of the retrieved mv for the 
calibrated and validated datasets based on the two bp 

parameterization schemes. The rmse of the retrieved mv 
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was computed at given VWC intervals (i.e., 0–1, 1–2, 
2–3, 3–4, and 4–5), and the results are shown in Fig. 8. 
For both the calibrated and the validated dataset, the rmse 
of the retrieved mv is lower with the time-varying bp than 
with the fixed bp. From Fig. 8(a), the retrieved mv is 
greatly improved at high VWC, and a similar result is 
seen in Fig. 8(b) for the validated dataset. It was worth 
mentioning that for fixed bp and the VWC interval of 4–5, 
the high rmse (~0.7 cm3/cm3) of the retrieved mv might be 
attributed to non-convergence of the inversion algorithm. 
However, the inversion algorithm converged and the rmse 
of the retrieved mv decreased greatly once the dependence 
of bp on VWC was considered. Similar results can also be 
seen clearly in Fig. 5. For the validated dataset, although 
the inversion algorithm converged for the fixed bp 
scheme, the accuracy of the retrieved mv improved 
greatly once the dynamic bp scheme was used.  

 

Fig. 8  Comparison of rmse of retrieved volumetric soil moisture 
(mv) and in situ volumetric soil moisture (mv) under different 
VWC conditions based on two bp parameterization schemes, 
namely bp = 0.12 and bp = f(VWC): (a) calibrated dataset 
(SMAPVEX12); (b) validated dataset (HiWATER) 

5  Conclusions  

In this paper, the dynamic nature of bp in L-MEB was 
investigated based on the airborne PALS brightness tem-
perature and the HiWATER airborne PLMR dataset. By 
comparing the accuracies of the retrieved mv, better per-
formance was achieved when using a dynamic bp scheme 
than when fixing bp as 0.12. An uncertainty analysis 
showed that the rmse of the retrieved mv decreased at 
different vegetation growth stages for both the calibrated 
(SMAPVEX12) dataset and validation (HiWATER) 
dataset when the dynamic bp scheme was adopted. Here, 
bp decreased with increasing VWC for both H and V po-
larizations, especially in the earlygrowth stage of vegeta-
tion. A power-law relationship was used to fit the de-
pendence of bp on VWC with R2 ≈ 0.9 for both H and V 
polarizations. Furthermore, the derived bp results showed 

that bV was approximately equal to bH for the same VWC, 
and a slightly greater bV was observed for high VWC. 
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