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Abstract: Coastal depth is an important research focus of coastal waters and is also a key factor in coastal environment. Dongluo Island 

in South China Sea was taken as a typical study area. The band ratio model was established by using measured points and three multis-

pectral images of Landsat-8, SPOT-6 (Systeme Probatoire d’Observation de la Terre, No.6) and WorldView-2. The band ratio model 

with the highest accuracy is selected for the depth inversion respectively. The results show that the accuracy of SPOT-6 image is the 

highest in the inversion of coastal depth. Meanwhile, analyzing the error of inversion from different depth ranges, the accuracy of the 

inversion is lower in the range of 0–5 m because of the influence of human activities. The inversion accuracy of 5–10 m is the highest, 

and the inversion error increases with the increase of water depth in the range of 5–20 m for the three kinds of satellite images. There is 

no linear relationship between the accuracy of remote sensing water depth inversion and spatial resolution of remote sensing data, and it 

is affected by performance and parameters of sensor. It is necessary to strengthen the research of remote sensor in order to further im-

prove the accuracy of inversion. 
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1  Introduction 

The coastal waters are defined as waters within 20 nau-
tical miles of the beach, even if the coast is uninhabited 
or inaccessible (Johnson et al., 2017). Coastal waters are 
the interface between land and sea and have important 
ecological value because of their high productivity and 
system diversity (such as estuaries, coastal wetlands, 
coral reefs, mangroves, and upwelling areas). It is nec-
essary to investigate the coastal depth, water quality and 
water temperature, whether it is for reclamation, coastal 
tourism, shallow sea farming, or shallow sea energy 
exploration and other activities. Coastal waters have 
always been the focus of research at home and abroad 

because of it being most closely related to human activi-
ties. Coastal depth is an important research focus of 
coastal waters and is an important factor in coastal en-
vironment (Manessa et al., 2018). The measurement 
plays an important role in safety of shipping, research of 
ocean science, simulation of coastal storm surge, con-
struction of coastal facilities, monitoring of marine eco-
system, management of coastal zone, detection of shore-
line erosion, and so on (Poupardin et al., 2016). 

Bathymetry is mainly measured by shipborne plumb 
line in earlier times. This kind of operation mode is in-
efficient, measurement points are sparse, and it is sub-
ject to ocean currents. The echo detector based on sonar 
technology was invented in the 1920s (Li et al., 2016), 
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which marked the entrance of a new era in ocean map-
ping (Li, 1999; Zhao and Liu, 2008). The sonar sound-
ing system based on the ship is still the main method of 
coastal bathymetry now. However, it has the shortcom-
ing of time and labor cost and also cannot measure the 
area where the ship cannot sail. The method of coastal 
depth measurement based on remote sensing has been 
developed to make up for the defect of site measurement 
(Su et al., 2015; Poupardin et al., 2016).  

The development of remote sensing technology of 
water depth can be traced back to the early last century. 
In the 1930s, the characteristics of water spectrum were 
researched. Clarke and James (1939) first explored the 
relationship between absorption coefficient and wave-
length of pure water in a wavelength from 0.375 to 
0.800 μm. Curcio and Petty (1951) further investigated 
the relationship between absorption coefficient of 0.700 
to 2.500 μm pure water and wavelength. It was found 
that pure water had the weakest absorption in the blue 
band near the wavelength of 0.475 μm, and the absorp-
tion coefficient tends to increase with the increase of the 
wavelength. Researchers at the American Environ-
mental Research Institute of Michigan have been work-
ing on remote sensing sounding in the late 1960s. They 
used multi-spectral data such as multispectral scanners, 
thematic mapper (TM) scanner and aerial photo to study 
bathymetric model. Lyzenga (1978; 1981) proposed the 
quantitative analysis method of water depth measure-
ment based on the bottom reflection model. Clark et al. 
(1987) extracted water depth value from image data of 
Landsat TM1, TM2 band in the vicinity of Isla de 
Vieques through the linear multiband method. Mgengel 
and Spitzer (1991) conducted the multidate mapping of 
shallow seafloor nearby the Netherlands by using TM 
image. Bierwirth et al. (1993) assumed that when water 
quality and sediments are homogeneous, it is possible to 
extract water depth and information of bottom reflec-
tance using the visible spectrum of TM remote sensing 
image to build multiband model and applied the model 
to Shark bay. The result shows that there has a larger 
error when inversion of deeper water depth by using TM 
remote sensing image. Sandidge and Holyer (1998) es-
tablished the artificial neural network model using the 
correlation between bathymetric information and hyper-
spectral remote sensing images, and then used the model 
to invert the depth information of the study area. The data 
used in the study above is single, and lacking of the 

comparative study on multi-source remote sensing data.  
The research on water depth inversion using multis-

pectral remote sensing data has been rapidly developed 
(Flener et al., 2012; Abileah, 2013; Eugenio et al., 
2015). Three forms of models have been developed, 
theory interpretation model, semi-theoretical semi-          
empirical model, and statistical correlation model in the 
aspect of construction of remote sensing model for wa-
ter sounding (Jawak et al., 2015). Based on the radiation 
transfer equation in the water body, the theory interpre-
tation model calculates water depth by measuring the 
optical parameter inside the water body. Currently, the 
common theory interpretation model is two-stream ap-
proximation model (Lyzenga, 1979; Salama and Ver-
hoef, 2015). Two-stream refers that for any depth Z, 
water can be divided into two parts: above depth Z and 
below depth Z; thus, the light radiant flux of water body 
can be decomposed into upward component and down-
ward component. The radiation flux varies with the wa-
ter depth can be estimated by studying the value or ratio 
of upward component and downward component. Due 
to the participation of water depth variable Z in the ana-
lytical process, it is possible to calculate the distribution 
of water depth using this model. Based on the radiation 
damping of light in the water, the semi-theoretical 
semi-empirical model fulfills the remote sensing inver-
sion of water by using the combination of the theoretical 
model with empirical model, and it can be classified into 
single-band model (Benny and Dawson, 1983) and 
multi-bands model (Paredes and Spero, 1983) on ac-
count of number of bands to be used. Compared to 
theoretical interpretation model, semi-theoretical semi- 
empirical model is simplified by using the combination 
of the theoretical model with empirical value of research 
area. Taking advantage of the less required parameters 
during the calculative process and high accuracy of in-
version, it has been widely used in currently remotely 
sensed bathymetric technology (Su et al., 2008). As one 
of the widely used research technologies of remotely 
sensed bathymetric, the statistical correlation model de-
rives water depth data through building the correlativity 
between radiance of remote sensing image and meas-
ured water depth (Lyzenga, 1978; 1981; Figueiredo et 
al., 2016). As compared to the theoretical interpretation 
model and semi-theoretical semi-empirical model, sta-
tistical correlation model does not require optical pa-
rameters on the inner water body, and the simple calcu-
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lation makes it widely used. Nevertheless, due to the 
unique specific area of water in research, the factual 
correlation of measured water depth and radiance of 
remote sensing image cannot be guaranteed, thus lead-
ing to an undesirable result (Su et al., 2014). 

Not only is the implementation of the model a key 
factor to improve the accuracy of water depth inversion 
but also the quantity of remote sensing data can affect it. 
However, the previous research concentrated on com-
paring the accuracy of different inverse methods, paying 
less attention on analyzing error of different remote 
sensing data used for inverse water depth. 

The sea area of Dongluo Island is located in the South 
China Sea. Taking the sea area of Dongluo Island as an 
example, we established the band ratio models using 
three multispectral images of Landsat-8, SPOT-6 (Sys-
teme Probatoire d’Observation de la Terre, No.6), 
WorldView-2 and measured points. The band ratio model 
with the highest accuracy was selected for the depth inver-
sion. This study compares accuracy of inversion of remote 
sensing data that were acquired by three different sensors, 
and analyzes the inversion accuracy of three remote sens-
ing data in the range of water depths of 0–5, 5–10, 10–15 
and 15–20 m. On this basis, the remote sensing image with 
the highest accuracy of the water depth inversion is evalu-
ated. This provides reference for the selection of remote 
sensing data for coastal water depth inversion.  

2  Materials and Methods 

2.1  Study area 
Dongluo Island seas, located in the north of South China 
Sea (Fig. 1), have geographical coordinates between 
108°59′05.78″E and 109°06′47.94″E and between 
18°16′09.15″N and 18°22′54.30″N. They belong to 
Hainan Province, China, and experience tropical mon-
soon climate at low latitudes. The seawater in this area 
has strong penetrability and the maximum depth is about 
20 m. 

2.2  Model principles 
The spectral characteristics of the objects reflect their 
own attributes and status, so different objects have dif-
ferent spectral characteristics. The optical characteristics 
of water are determined by absorption and scattering 
properties of the optical active substance. The spectral 
proprieties of water derived by using remote sensing 
system to measure radiance of a range of wavelengths 
are the basics of inversion of water depth using remote 
sensing.   

The material compositions decide the spectral signa-
ture of water; it can also be affected by the statue of 
water. After a series of reflection and absorption of wa-
ter, the radiance of sunlight reaching the sensor can be 
divided into three parts: 1) the solar radiance scattered 

 

Fig. 1  Location of study area 
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by the atmosphere reaches the sensor; 2) the solar radi-
ance reflected by water reaches the sensor; 3) the back-
ward scattered light of water and reflected light of un-
derwater returns to the atmosphere and is intercepted by 
the sensor. This part is called water-leaving radiance 
which includes the information of water (Fig. 2). The 
reflectance of a range of wavelength usually has sig-
nificant differences due to the water depth, which is the 
theoretical basis of quantitative inversion of water depth 
of remote sensing. 

Band ratio model is developed on the basis of the 
single-band and dual-band models. It builds the linear or 
nonlinear statistical relation models between remote 
sensing data and synchronous measured depth based on 
the decay properties of light in water. This model com-
bines the intrinsic optical quantum and preventative op-
tical quantum of water according to the radiation trans-
fer theory (Li et al., 2008). Using some assumption con-
ditions to reduce the spatiotemporal differences of the 
unit intrinsic optical mass to invert the parameters of 
water, we simplify the model with approximate rela-
tionship, reducing the unknown value and interdepend-
ent relationship. Therefore, the band ratio model has 
certain physical significance and high inversion accu-
racy, thus can be used widely. 

According to Bouguer theorem (Lyzenga, 1978), the 
changes of light radiation flux as water depth fulfill 
exponential decay (Huang et al., 2017), namely: 

0( ) KZI Z I e     (1) 

In the formula, I0 and I(Z) represent the light on the wa-
ter surface and radiation flux of the water depth Z, 

 

Fig. 2  Schemata of optical dissemination in water 

respectively. K represents decay degree. Thus, we can 
obtain the simple model (Lyzenga, 1978; Clark et al., 
1987): 

2
E b We KZR R R         (2) 

In the formula, RE is the reflection received by sen-
sor; K is the decay coefficient of water; RW is the re-

flectance of water; Rb is the reflectance of underwater;  
is a comprehensive factor, which delivers the effects of 
solar radiance transmission in the water surface and at-
mosphere; and sunlight reflects on the water surface. 

According to the equation above:   

2
E W be KZR R R     (3) 

Through ratio operation on the bands 1 and 2, we can 
derive: 
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Further, it can be derived that: 
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Assuming bands 1 and 2 keep constant reflectances 

on different substrates, b1

b2

R

R
 is a constant. The differ-

ence in value of the decay coefficient of the two bands 
in the different types of water does not change. 

In Equation (5): 
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Then, Eq. (5) can be simplified as:   
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 
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 
    (6) 

Equation (6) is the band ratio model expression 
(Clark et al., 1987; Lu et al., 2016). 

To some extent, the band ratio model eliminates the 
attenuation coefficient due to uneven water body and the 
effect of different reflectances in the bottom due to the 
differences of sediments. In addition, the band ratio 
model can also impair the sun elevation angle, surface 
wave, and satellite attitude; the scan angle changes such 
difference effects on the version of water depth. 
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The mean relative error (MRE) was selected to 
measure the accuracy of the depth inversion. It is the 
average of the absolute values of the sample relative 
error: 

ˆ1 1
| | 100%

n n
i i

i
i i i

x x
E e

n n x


      (7) 

where E  is mean relative error, n is sample size, ˆix  

is water depth of inversion, xi is measured water depth, 
and ei is relative error. 

2.3  Data and preprocessing 
The study used three types of data, including the United 
States (US) Landsat-8, the French SPOT-6 and the US 
WorldView-2 satellite data. The acquisition time, spec-
tral values of the used band, and spatial resolution are 
listed in Table 1. Water depth-measured data used the 
single-point sonar data measured by Guangzhou Marine 
Geological Survey in November 2014. There are multi-
ple measured points in the same pixel due to the fact 
that the sounding points of the survey line are dense, 
which will cause the measured points at different depths 
of the pixel correspond to the digital number (DN) value 
of the same pixel and result in an increase in inversion 
error. Therefore, the number of sounding points be-
comes less in order to avoid increasing the inversion 
error. The distribution of measured points is shown in 
Fig. 3. Adopted satellite remote sensing data are applied 
in the fourth quarter of 2013. It can be applied because 
the image time is close to the measured data collection 
time. 

Generally, the remote sensing digital image shows 
the pixel DN value which is the dimensionless value. 
Using the DN value can only compare the same-scene 
image. Only by converting the image DN value into the 
radiation luminance value of the corresponding pixel 

 
Table 1  Remote sensing satellite parameters of different sen-
sors 

Parameters Landsat-8 SPOT-6 WorldView-2

Acquisition time 2013-10-16 2013-12-07 2013-10-07 

Spectral value (μm) 

Blue: 0.483; 
Green: 0.561; 
Red: 0.655; 
NIR: 0.865 

Blue: 0.485; 
Green: 0.560; 
Red: 0.660;  
NIR: 0.825 

Blue: 0.480; 
Green: 0.545; 
Red: 0.660; 
NIR: 0.833 

Spatial resolution (m) 30.0 6.0 1.8 

Notes: SPOT-6 is the Systeme Probatoire d’Observation de la Terre, No.6. 
NIR is the band of near infrared 

 

Fig. 3  Measured points distribution of study area 
 

can the remote sensing data obtained from different lo-
cations, at different times, and from different types of 
sensors be quantitatively compared and applied to meet 
the needs of the research. The process of conversion is 
called radiometric calibration. 

The geometric distortion of the original image is very 
large because it is affected by the sensor platform lati-
tude, height, and speed changes and by various factors 
such as panoramic distortion, Earth curvature, and the 
instantaneous field of view with a nonlinear characteris-
tic of the sensor in the scanning, which has brought dif-
ficulties to the quantitative analysis. Therefore, the im-
ages must be corrected in order to use remote sensing 
images for analysis and research work. Remote sensing 
data still need to do further geometric corrections after 
correction in the receiving sector. In the study, the geo-
metric correction of the remote sensing image is carried 
out by using the ground control point. Selecting the cor-
responding points as the control points to establish the 
correspondence between the distortion space and the 
correction space, all the pixels of the distortion space are 
transformed into the correction space, and the geometric 
correction of the remote sensing image is carried out by 
the correspondence between the two sets of coordinates. 

The purpose of remote sensing is using sensors to ef-
ficiently collect electromagnetic radiation from the 
ground. However, the measured value of the remote 
sensing sensor is not the same as the actual spectral 
emissivity of the object due to the transmission of elec-
tromagnetic waves affected by the remote sensing sen-
sor sensitivity analysis, the conditions of light condi-
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tions, and the role of human impact in the atmosphere 
and the sensor in the measurement process, so it is ra-
diation distortion in the measured value. Atmospheric 
correction is the process of converting radiance into the 
surface reflectance, the main purpose of which is to 
eliminate the effects of atmospheric scattering on radia-
tion distortion. 

Fast Line of Sight Atmospheric Analysis of Spectral 
Hypercube (FLAASH) is an atmospheric correction 
model of high spectral radiant energy image reflectance 
inversion, which can accurately compensate for atmos-
pheric effects. The applicable wavelength range in-
cludes visible-to-near infrared and short-wave infrared. 
In the study, atmospheric correction module FLAASH 
in the Environment for Visualizing Images was used to 
realize the atmospheric correction of the image. 

It can be seen from Fig. 4 that the image after atmos-
pheric correction has a significant absorption peak and a 
significant reflection peak in the visible light of 0.43– 
0.70 μm. Specifically, the absorption peak near 0.47 μm 
is mainly due to the presence of chlorophyll a in water 
(Gitelson, 1992), while the reflection peak near 0.56 μm 
is due to the weak absorption of chlorophyll and caro-
tene and the scattering effect of cells in water (Gordon, 
1979; Shu et al., 2000). The characteristics above in-
dicate that the image basically removes the influence 
of the factors such as water vapor particles in the air, 
and the spectral curve of the water body tends to be 
normal. 

3  Results 

The highest correlation coefficient of different band ra-
tio models for Landsat-8, SPOT-6 and WorldView-2 is 
selected as the depth inversion model. On this basis, the 
inversion accuracy of the three data in different depth 
ranges is analyzed. 

3.1  Model comparison based on different band 
ratios 
The reflectance values of the pixels that corresponding 
to the measured points shown in Fig. 3 at each band 
were extracted. 

In this study, we build six band ratio models with 
blue, green, red, and near-infrared bands. The parame-
ters of the band ratio model are regression analyzed by 
using the attribute information of measured points of the 
water depth which includes the reflectance value and 
water depth of each band of the image. Correlation co-
efficient is shown in Table 2. It can be seen from table 
that the correlation coefficient of blue-near-infrared 
band ratio model of Landsat-8 image is the highest, and 
R2 is equal to 0.5073; the correlation coefficient of 
green-red band ratio model of SPOT-6 is the highest, 
and R2 is equal to 0.7064; the correlation coefficient of 
blue-green band ratio model of WorldView-2 is the 
highest, and R2 is equal to 0.6679 (Fig. 5). Thus, we 
choose the above models as the final models to inverse 
the water depth. 

 

Fig. 4  Comparison of Landsat-8 spectra before and after atmospheric correction. (a): Image of radiance before atmospheric correction; 
(b): Image of reflectance after atmospheric correction 
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Table 2  Correlation coefficient of different band ratio models for different satellites 

Satellite B/G B/R B/NIR G/R G/NIR R/NIR 

Landsat-8 0.1698 0.0063 0.5073 0.0259 0.3163 0.2935 

SPOT-6 0.2656 0.6528 0.3201 0.7064 0.2221 0.7008 

WorldView-2 0.6679 0.3059 0.0110 0.0258 0.1261 0.2505 

Notes: B, G, R are the abbreviation for the band of blue, green and red, respectively. NIR is the band of near infrared 

 

Fig. 5  Scatter plots of band ratio and measured depth for Landsat-8, SPOT-6 and WorldView-2. B, NIR, G, R are the abbreviation for 
the band of blue, near infrared, green and red, respectively. SPOT-6, remote sensing satellite, is the abbreviation for the French for Sys-
teme Probatoire d’Observation de la Terre, No.6 
 

3.2  Accuracy analysis of depth inversion 
Putting the regression parameter derived from band ratio 
and values of corresponding water depth points into 
corresponding band ratio model, the inversion result is 
shown in Fig. 6. 

It can be seen that the inversion results of three dif-
ferent sensors overall have good consistency. The water 
depths in the ‘A’ box in Fig. 6 are deeper, and they are 
smaller in the ‘B’ box. The trend of water depth is con-
sistent along the direction of curve ‘C’ for three satellite 
data. It is verified that the reliability of water depth in-
version results from another aspect. 

Calculating mean relative error of water depth inver-

sion from remote sensing image in different depth 
ranges, the results are shown in Table 3. 

Mean relative errors of inversion water depth results 
are analyzed. The inversion errors of SPOT-6 image are 
the least in three ranges of water depths, 0–5, 5–10 and 
10–15 m, respectively, 30.99%, 13.62%, and 21.68%. 
The inversion error in 0–5 m is bigger because of the 
location of this area; it lies in the zone of wave breaking, 
where wave can increase the sediment in the water. This 
affects the reflection of light on the water surface and the 
scattering in the water and leads to the increase the inver-
sion error. The inversion error of the Landsat-8 image is 
the least (32.5%) in the range of 15–20 m water depth.  

 

Fig. 6  Depth inversion results of Landsat-8, SPOT-6 and WorldView-2 
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Table 3  Mean relative error of depth inversion and measured 
depth (%) 

Depth range (m) Landsat-8 SPOT-6 WorldView-2 

0–5 40.89 30.99 31.28 

5–10 22.72 13.62 22.31 

10–15 23.12 21.68 24.35 

15–20 32.50 33.65 33.22 

Average 29.81 24.89 27.54 

 
It can be seen from Fig. 7 that the order of errors of 

the inversion water depth array from small to large are 
SPOT-6, WorldView-2 and Landsat-8 in the range of 
0–5 and 5–10 m. However, the order changes in the 
range of 10–15 m. The inversion error of SPOT-6 image 
is still the least, but the inversion error of WorldView-2 
is a little bigger than the inversion error of Landsat-8. 
When the water depth is greater than 15 m, the inversion 
relative error of Landsat-8 is the least, followed by 
WorldView-2, and the inversion relative error of 
SPOT-6 is the most. 

4  Discussion 

The remote sensing technology of water depth devel-
oped rapidly. The nature of remote sensor has an im-
portant influence on the inversion accuracy of water 
depth. In order to improve the accuracy of remote sens-
ing inversion further, the research of remote sensor must 
be strengthened. 

As the important collector of water depth information 
in remote sensing inversion of water depth, the remote 
sensor noise has an important influence on the accuracy 

 

Fig. 7  Mean relative error (MRE) of depth inversion results for 
different satellites in different measured depth ranges.  

of inversion (Jay et al, 2017). The data obtained by dif-
ferent sensors have their own characteristics in spectral 
resolution and spatial resolution (Lee et al., 2012; 
Odermatt et al., 2012). Therefore, the results of water 
depth information show some differences. The final ef-
fective information of the depth information received by 
the remote sensor is to highlight the depth information 
in water depth remote sensing. The chlorophyll, sus-
pended sediment, chromophoric dissolved organic mat-
ter, and other information of the water body as the noise 
in water depth remote sensing must be suppressed or 
removed, so requirements for the spectral resolution of 
remote sensor are put forward. The experiences show 
that the image of SPOT-6 has the high accuracy in the 
range of 0–15 m water depths. The main reasons are 
analyzed, the remote sensor of SPOT-6 has high stabil-
ity and signal-to-noise because of SPOT-6 is a mature 
commercial satellite; the remote sensor can suppress the 
noise and highlight the useful information in water be-
cause of the high spectral resolution. Meanwhile, the 
accuracy of the inversion has reached the highest in the 
range of 5–10 m (Lu et al., 2016), in particular, the 
mean relative error of SPOT-6 reached 13.62%. The 
reason for this is that the water surface in the range of 
5–10 m is relatively stable and has a certain distance 
from coast. These make the water quality better, so the 
water body can be completely penetrated by the remote 
sensor (Di et al., 1999). The technology of water depth 
remote sensing is an important auxiliary means for con-
ventional bathymetry. The scope of engineering survey 
and the precision of the mapping are also certain re-
quirements for the spatial resolution of remote sensor. In 
the future of the inversion of remote sensing, improving 
the system stability and signal-to-noise ratio of the re-
mote sensor, using the hyperspectral remote sensing 
data to highlight the depth information, and the combi-
nation of remote sensing data with different spectral 
resolution and spatial resolution, which will be of sig-
nificance to improve the accuracy of remote sensing 
inversion, is necessary. 

In conclusion, the remote sensing of water depth has 
the advantages of being macroscopic, dynamic and ob-
jective. It has played a certain role in practical engi-
neering and has a wide application prospect as one of 
the emerging technologies in the field of remote sensing 
and is an important complement to conventional water 
depth measurements. It is necessary to strengthen the 
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research of remote sensor, the mechanism of water 
depth remote sensing, and the construction of model in 
future research (Li et al., 2016). The remote sensing 
spectral range and the band combination are scientifi-
cally selected to highlight the water depth information, 
and the influence of the water body and the material of 
the atmosphere on the water depth information are taken 
into account to further improve the accuracy and appli-
cation range of the remote sensing inversion. 

5  Conclusions 

In terms of the depth of coastal waters in tropical re-
gions, this study selected three different kinds of sensors 
to find out the inverse water depth of remote sensing 
image, and the results showed that the highest accuracy 
of water depth inversion is SPOT-6 image. The least 
accuracy of water depth inversion is in the range of 0–5 
m due to the effects of human activities offshore, which 
has a big decay coefficient; in addition, this area belongs 
to ocean crushed zone, thus surface roughness of the 
ocean is big and measurable depth is small. On the one 
hand, the accuracy of water depth inversion is highest in 
the range of 5–10 m, the error of inversion turns to pro-
gressive tendency with the increase of depth, which 
means that there is a negative correlation between water 
depth and inverse accuracy. On the other hand, there is 
no linear relationship between the accuracy of remote 
sensing water depth inversion and spatial resolution of 
remote sensing data, and it is affected by performance 
and parameters of sensor. Therefore, it is necessary to 
strengthen the research of remote sensor in order to fur-
ther improve the accuracy of inversion. In addition, 
many other factors such as suspended particle, yellow 
substance, and chlorophyll concentration also affect the 
accuracy of inversion. This study did not consider the 
above factors, which is the direction of follow-up re-
search. 
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