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Abstract: To investigate the spatio-temporal and compositional variation of selected water quality parameters and understand the puri-

fying effects of wetland in Fujin National Wetland Park (FNWP), China, the trophic level index (TLI), paired samples t-test and correla-

tion analysis were used for the statistical analysis of a set of 10 water quality parameters. The analyses were based on water samples 

collected from 22 stations in FNWP between 2014 and 2016. Results initially reveal that total nitrogen (TN) concentrations are above 

class V levels (2 mg/L), total phosphorus (TP) concentrations are below class III levels (0.2 mg/L), and that all other parameters fall 

within standard ranges. Highest values for TN, pH, and Chlorophyll-a were recorded in 2016, while the levels of chemical oxygen de-

mand (CODMn) and biochemical oxygen demand (BOD5) were lowest during this year. Similarly, TN values were highest between 2014 

and 2016 while dissolved oxygen (DO) concentrations were lowest in the summer and TP concentrations were highest in the autumn. 

Significant variations were also found in Secchi depth (SD), TN, CODMn (P < 0.01), TP, and DO levels (P < 0.05) between the inlet and 

outlet of the park. High-to-low levels of TN, TP, and TDS were found in cattails, reeds, and open water (the opposite trend was seen in 

SD levels). Tested wetland water had a light eutrophication status in most cases and TN and TP removal rates were between 

7.54%–84.36% and 37.50%–70.83%, respectively. Data also show no significant annual changes in water quality within this wetland, 

although obvious affects from surrounding agricultural drainage were nevertheless recorded. Results reveal a high major nutrient re-

moval efficiency (N and P). The upper limits of these phenomena should be addressed in future research alongside a more efficient and 

scientific agricultural layout for the regions in and around the FNWP. 
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1  Introduction 

Wetlands perform a range of key ecological functions 
including flood protection (Adusumilli, 2015), ground-

water recharge (Katara and Dev, 2016), and water puri-
fication (Palma et al., 2010; Yu et al., 2015), and are 
also critical wildlife habitats (Smalling et al., 2015). The 
water purification function of wetlands has caused sub-
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stantial concern in recent years, because this phenome-
non is essential for biological growth and reproduction 
and also has direct effects on other key functions (Yu et 
al., 2015). The structure and ecological functions of 
wetlands have been seriously threatened (Zacharias et 
al., 2003) because of many years of ongoing water pol-
lution and unreasonable utilization (Qadir et al., 2008; 
Vörösmarty et al., 2010). The restoration of damaged 
wetland ecosystems has therefore received a great deal 
of research attention in recent years (Lu, 2008; 
McCauley et al., 2013). Indeed, wetland purification is 
now quite well understood (Solidoro et al., 2004; Ge, 
2008) and ecologists have been able to turn theories into 
practical research applications with regard to the purifi-
cation function of these habitats (Trebitz et al., 2007; 
Montgomery and Eames, 2008; Maassen et al., 2012). 
This phenomenon is mainly embodied by the fact that 
wetlands are able to intercept, transform, and remove 
nutrients such as nitrogen (N) and phosphorus (P) from 
water (Steinmann et al., 2003; Gunes et al., 2012). 
These research efforts mean that the treatment effects of 
artificial wetlands are now also very good. Studies have 
shown that the N and P purification effects of some arti-
ficial ecosystems can be higher than 50% in America 
and in some European countries (Vymazal, 2007; Guo et 
al., 2010).  

The Sanjiang Plain, located in the east of Heilongji-
ang Province, northeastern China, is an alluvial flood-
plain that includes one of the largest national areas of 
freshwater wetland (Zhao, 1999). In the past 50 years, 
wetlands have been extensively drained and used for 
agriculture in the Sanjiang Plain. In 1954, wetlands 
covered over half of the total land area but have de-
creased by 77% until 2003 (Wang et al., 2011). The rec-
lamation of natural wetlands remains one of the main 
threats to ecology on the Sanjiang Plain. With this in 
mind, the Heilongjiang Provincial Government pro-
posed banning large-scale reclamation in 2003, and also 
planned to restore 150 000 hr of farmland to wetlands 
across the region. Although a large amount of research 
has been carried out on natural wetlands and water qual-
ity surveys in the Sanjiang Plain (Gong et al., 2016; Li 
et al., 2017), little attention has been afforded to restored 
habitats of this type, especially in Fujin City (Ma, 2012). 
Several observational studies have been published that 
address changes in water quality over time (Li et al., 
2010). But long-term continuous restored wetland 

monitoring has not been undertaken even though sig-
nificant differences in sediment between farmlands, 
ditches, and areas of water within natural habitats of this 
type on the Sanjiang Plain have been reported (Su et al., 
2015). A number of previous researchers (2008; Khan et 
al., 2013) have concluded that farmland drainage pro-
vides the main explanation for wetland eutrophication, 
but the extent to which restored habitats of this type can 
remove nutrients in different seasons and years remains 
poorly understood. It is therefore vital to study the ef-
fects of agricultural activities on water quality as well as 
the nutrient removal efficiency of restored Sanjiang 
Plain wetlands.  

The Fujin National Wetland Park (FNWP) is the fo-
cus for this research as this region provides one example 
of a restored wetland on the Sanjiang Plain. Water qual-
ity dynamics were monitored seasonally within the 
FNWP between 2014 and 2016 in order to investigate 
spatio-temporal and compositional changes in major 
variables as well as to better understand the purifying 
capabilities of these habitats. The results of this study 
provide a series of criteria that can be utilized in the fu-
ture to evaluate the success of wetland restoration and 
also furnish a clear scientific basis for the restoration 
and management. 

2  Materials and Methods 

2.1  Study area 
The FNWP is located in the middle of the Sanjiang 
Plain (46°55′52.72″N, 131°44′51.33″E), to the south of 
the Songhua River, and is part of the town of Jinshan 
within Fujin City, Heilongjiang Province, China. This 
wetland area was restored from farmland in 2005 and 
encompasses an area of 1200 hr (Li and He, 2013) 
mainly composed of impact sediments and marshes 
across a low flood plain (Li, 2005). The entire wetland 
area is also relatively flat, although the southwestern 
region is a little more elevated than the northeast. It has 
been dammed outside the northeastern region and the 
dam is the only outlet of the wetland. Precipitation re-
charge from seasonal rainfall is one of the key water 
sources for this region and, alongside farm drainage 
from the southern wetland, exerts the greatest impact on 
the wetland. Drainage is controlled by just a single out-
let that is under the control of a flash board in the north-
ern wetland, and hydrological conditions are affected by 
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both climate change and farmland irrigation return water 
in different seasons. The FNWP falls in the warm tem-
perate zone of China and this area experiences a 
semi-humid continental monsoonal climate. Farmers 
drain wetland water in early July, in August, and before 
the harvest period that extends between late September 
and early October. Restored wetlands in FNWP are sig-
nificantly affected by these agricultural activities, and 
engineering construction work is also underway via the 
main park channel that aims to reduce the contaminating 
influence of farm drainage. The abundantly vegetated 
landscape of this region can be subdivided into reeds 
and cattail communities as well as open wetland water. 

2.2  Sample collection 
The water samples analyzed in this study were collected 
during spring (May), summer (August), and autumn 
(October) seasons each year between 2014 and 2016. 
Samples from all 22 sections across the wetland were 
collected on two consecutive days each season. We di-
vided the wetland survey area into seven components 
comprising irrigation ditch 1, irrigation ditch 2, the inlet 
for agricultural drainage, the area overgrown with cat-
tails, the area overgrown with reeds, deep waters, and 
the outlet side (Fig. 1). Three replicated samples were 
collected from each site. 

2.3  Water quality measurements 
We measured temperature, oxidation-reduction potential 
(ORP), total dissolved solids (TDS), dissolved oxygen 
(DO), pH, conductivity, salinity, Chlorophyll-a, Secchi 
depth (SD), and chloride using a YSI 6920 (YSI, Yellow 
Spings, USA) device.  

The parameters analyzed in the laboratory were total 
nitrogen (TN), total phosphorus (TP), NH4-N, NO3-N, 
Mercury (Hg), Iron (Fe), total organic carbon (TOC), 
biochemical oxygen demand (BOD5), and chemical oxy-
gen demand (CODMn). Tests for all of these variables were 
carried out based on China National Environmental Pro-
tection Agency standards-Standard Examination Methods 
for Drinking Water (SmartChem300, AMS, Paris, France; 
Ministry of Health of the People’s Republic of China, 
China National Standardization Management Committee, 
2006, GB5750-2006). 

2.4  Data analysis 
We evaluated water quality via five standard parameters 
(Chlorophyll-a, CODMn, TN, TP, and SD) and by utilizing 
the trophic level index (TLI), as first applied by Carlson 
(1977) and revised by Aizaki (1981) (Table 1). Water sam-
ple data were then statistically analyzed using a paired 
sample t-test and correlations between relational parame-
ters were assessed using the software SPSS20.0. 

 

Fig. 1  Sampling locations within the Fujin National Wetland Park 
 

Table 1  Trophic level index (TLI) and its corresponding eutrophication state 
TLI (Σ) Eutrophication state Category 

0 < TLI (Σ ) <30 Oligotrophic I 

30 < TLI (Σ ) <50 Mesotrophic II 

50 < TLI (Σ ) <60 Light eutrophication III 

60 < TLI (Σ ) <70 Medium eutrophication IV 

TLI (Σ ) > 70 Hyper eutrophication V 

Notes: TLI (Σ ), Comprehensive trophic level index of different water parameters 
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3  Results 

3.1  Spatio-temporal variation in water quality 
parameters 
The results of this study reveal significant spatio-       
temporal variance of temperature, pH, and Secchi depth 
(SD) as well as of TP, TN and NH4-N, of CODMn and 
BOD5, and of DO and Chlorophyll-a (Fig. 2). 

All the water samples considered here were alkaline 
(pH values between 7.75 and 8.93). Data show that the 
average pH value recorded in 2016 was higher than that 
in 2014 and 2015. Average SD values ranged between 
0.27 m and 1.27 m. All TN concentrations were signifi-
cantly higher than the standard (GB3838-2002) of class 
V (2 mg/L), and all TP concentrations were below the 
standard of class III (0.2 mg/L). Similarly, BOD5 values 
fell below, or within, desirable levels between 3 mg/L 
and 4 mg/L, and CODMn values met the standards 
(within 15 mg/L) of class I and class II water quality. In 
addition to the inlet, samples from all sites (including 
wetland, and outlet) in 2016 had good water quality, 

with the values of Chlorophyll-a below 10 μg/L. 
We analyzed ten water quality parameters using a 

paired sample t-test to compare differences in water 
quality between inlet and outlet of the FNWP (Table 2). 
Although the results of this analysis revealed no re-
markable spatial variations among the five sampling 
locations in terms of water temperature, pH, TDS, BOD, 
and Chlorophyll-a, highly significant variations in SD, 
TN, and COD (P < 0.01) were found alongside signifi-
cant variations in TP and DO (P < 0.05). 

Data show that several parameters exhibited signifi-
cant seasonal variation over the course of this analysis 
within the FNWP (P < 0.05) (Table 3). Most impor-
tantly, DO concentration reached a maximum of 
9.99 mg/L during spring and a maximum of 7.35 mg/L 
in summer, while TN, TDS, CODMn, and Chlorophyll-a 
also reached maximum levels in summer (6.83 mg/L, 
410.73 mg/L, 6.25 mg/L, and 7.66 mg/L, respectively) 
and fell to their lowest levels in either the autumn or 
spring (1.98 mg/L, 377.67 mg/L, 5.17 mg/L, and 3.11 
mg/L, respectively). 

 

Fig. 2  Spatio-temporal variability of ten water quality parameters in FNWP (Chl-a on the figure is Chlorophyll-a) 
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Table 2  Mean sample values including standard deviations (in parentheses) for different water quality parameters measured at five 
locationsin FNWP between 2014 and 2016 

Sampling 
site 

T 
( )℃  

pH 
SD 
(m) 

TN 
(mg/L) 

TP 
(mg/L) 

TDS 
(mg/L) 

DO 
(mg/L) 

CODMn 

(mg/L) 

BOD5 

(mg/L) 

Chloroph-yll-a
(μg/L) 

NH4-N 
(mg/L) 

Irrigation 
ditch 1 

18.57 
(2.48) 

8.04 
(0.35) 

0.43 
(0.11) 

3.84 
(2.74) 

0.07 
(0.03) 

300 
(40) 

9.01 
(0.99) 

6.38 
(0.69) 

2.53 
(0.37) 

3.23 
(0.57) 

0.21 
(0.18) 

Irrigation 
ditch 2 

18.27 
(1.79) 

8.34 
(0.57) 

0.42 
(0.12) 

5.15 
(2.34) 

0.16 
(0.04) 

320 
(40) 

8.79 
(0.91) 

5.98 
(1.39) 

2.30 
(0.51) 

7.19 
(6.16) 

0.21 
(0.13) 

Inlet 
18.03 
(2.07) 

8.30 
(0.57) 

0.39 
(0.12) 

4.73 
(2.07) 

0.14 
(0.02) 

300 
(40) 

8.56 
(0.74) 

5.86 
(1.39) 

2.63 
(0.44) 

6.87 
(4.43) 

0.21 
(0.11) 

Cattails 
17.96 
(2.30) 

8.23 
(0.62) 

0.44 
(0.05) 

4.60 
(2.13) 

0.11 
(0.01) 

280 
(20) 

8.57 
(0.61) 

5.66 
(0.96) 

2.28 
(0.14) 

7.70 
(8.22) 

0.20 
(0.11) 

Reeds 
17.94 
(2.44) 

8.22 
(0.47) 

0.65 
(0.12) 

3.29 
(2.53) 

0.07 
(0.02) 

270 
(20) 

9.13 
(0.71) 

6.13 
(1.45) 

1.95 
(0.49) 

8.11 
(4.11) 

0.17 
(0.11) 

Open water 
18.41 
(2.70) 

8.22 
(0.35) 

0.59 
(0.14) 

3.21 
(1.60) 

0.04 
(0.02) 

250 
(20) 

9.45 
(1.01) 

6.00 
(0.22) 

1.98 
(0.42) 

2.98 
(0.75) 

0.17 
(0.15) 

Outlet 
17.98 
(2.19) 

8.28 
(0.60) 

0.95 
(0.42) 

2.99 
(1.89) 

0.06 
(0.02) 

260 
(30) 

9.06 
(0.66) 

4.93 
(0.81) 

2.00 
(0.30) 

5.69 
(6.51) 

0.16 
(0.12) 

P 0.854 0.645 < 0.01 < 0.01 < 0.01 0.110 < 0.05 0.080 < 0.01 0.509 < 0.05 

 
Table 3  Mean sample values including standard deviations (in parentheses) for different water quality variables measured in different 
seasons and years in FNWP between 2014 and 2016 

 
T 

( )℃  
pH 

SD 
(m) 

TN 
(mg/L) 

TP 
(mg/L) 

TDS 
(mg/L) 

DO 
(mg/L) 

CODMn 

(mg/L) 

BOD5 

(mg/L) 

Chloroph-yll-a
(μg/L) 

NH4-N 
(mg/L) 

Spring 
13.35 
(2.04) 

8.03 
(0.22) 

0.64 
(0.36) 

2.24 
(1.86) 

0.06 
(0.03) 

409.67 
(123.6) 

9.94 
(0.70) 

5.95 
(0.94) 

3.04 
(1.16) 

3.11 
(1.56) 

0.17 
(0.06) 

Summer 
26.55 
(1.76) 

8.18 
(0.40) 

0.57 
(0.31) 

6.83 
(3.66) 

0.07 
(0.03) 

410.73 
(323.0) 

7.35 
(1.22) 

6.25 
(1.77) 

1.21 
(0.46) 

7.66 
(8.47) 

0.29 
(0.22) 

Autumn 
14.56 
(3.94) 

8.45 
(1.15) 

0.52 
(0.31) 

1.98 
(0.81) 

0.12 
(0.06) 

377.67 
(168.0) 

9.71 
(1.36) 

5.17 
(1.66) 

2.17 
(1.20) 

5.04 
(3.64) 

0.11 
(0.10) 

2014 
19.08 
(0.77) 

8.17 
(0.10) 

0.59 
(0.30) 

1.93 
(0.56) 

0.08 
(0.04) 

396.6 
(106.3) 

8.18 
(0.23) 

6.22 
(0.54) 

2.55 
(0.28) 

3.12 
(0.92) 

0.14 
(0.08) 

2015 
15.58 
(0.50) 

7.80 
(0.05) 

0.54 
(0.07) 

3.28 
(0.65) 

0.07 
(0.04) 

380.8 
(125.0) 

9.53 
(0.56) 

6.23 
(0.76) 

2.09 
(0.38) 

3.31 
(1.93) 

0.09 
(0.05) 

2016 
19.79 
(0.47) 

8.69 
(0.28) 

0.67 
(0.39) 

5.83 
(1.01) 

0.09 
(0.02) 

421.0 
(262.9) 

9.29 
(0.15) 

4.91 
(0.69) 

1.79 
(0.25) 

9.39 
(4.54) 

0.34 
(0.19) 

 
3.2  TLI values of wetland water in FNWP 
As discussed, we evaluated the water quality of FNWP 
using five standard parameters (i.e., Chlorophyll-a, 
CODMn, TN, TP, and SD) in addition to the TLI. Results 
show that wetland water was mostly within the light 
eutrophication category, with the exception of two 
mesotrophic time periods in springs of 2014 and 2015, 
and one medium-level eutrophication period during 
summer of 2016 (Table 4). 

3.3  Nutrient removal rates 
The data assembled in this study show that nutrient re-
moval rates varied over both seasons and years (Table 5). 

In particular, during 2014 to 2016, TN removal rates 
ranged between 7.54% and 84.36% with the two lowest 
values (below 10%) recorded in the summers of 2015 
and 2016 (Table 5). Recorded TP removal rates ranged 
between 37.50% and 70.83% between 2014 and 2016, 
with the exception of the lowest value (–22.22%) in the 
summer of 2016 (Table 5). 

4  Discussion  

4.1  Seasonal and spatial variability in water qual-
ity parameters 
The pH level influences the solubility of heavy metals, 
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Table 4  TLI values of wetland water in FNWP between 2014 and 2016 

 TLI (Σ) Eutrophication status Category 

2014 spring 49.6 Mesotrophic II 

2014 summer 50.9 Light eutrophication III 

2014 autumn 54.6 Light eutrophication III 

2015 spring 48.5 Mesotrophic II 

2015 summer 58.2 Light eutrophication III 

2015 autumn 52.6 Light eutrophication III 

2016 spring 53.6 Light eutrophication III 

2016 summer 61.3 Medium eutrophication IV 

2016 autumn 54.0 Light eutrophication III 

 
Table 5  Nutrient values in outlet and nutrient removal rate in different years in FNWP 

TN TP 
Time 

Water outlet content (mg/L) Removal rate (%) Water outlet content (mg/L) Removal rate (%) 

2014 spring 1.08 39.66 0.05 37.50 

2014 summer 0.81 84.36 0.04 66.67 

2014 autumn 1.60 31.62 0.07 70.83 

2015 spring 0.74 59.34 0.03 70.00 

2015 summer 6.39 9.23 0.04 63.64 

2015 autumn 1.49 54.15 0.07 66.67 

2016 spring 2.58 56.64 0.04 42.86 

2016 summer 10.18 7.54 0.11 –22.22 

2016 autumn 2.03 52.01 0.12 40.00 

Note: Nutrient removal rates = (Values inlet – Values outlet) / Values inlet 
 

and is one of the most important indicators of water 
quality in aquatic ecosystems (Khan et al., 2013; Wang 
et al., 2017). All of the samples analyzed here fell within 
the recommended range of pH values, between pH 6.5 
and pH 8.5 (World Health Organization, 1997) with the 
exception of two values for 2016. Data also show that 
pH values of wetland water in FNWP were higher than 
that in QiXinghe wetland, a natural wetland around 
FNWP (Li et al., 2007), probably because of the pres-
ence of less humus and an increase in algae photosyn-
thesis which led to the production of more hydroxyl. 
High transparence levels generally indicate cleaner wa-
ter or better quality. The data presented in Table 2 reveal 
that water quality around the outlet was superior to that 
around the inlet, which implies excellent purification 
processes within the wetland park. It is also well known 
that N and P are both nutrients that can promote the 
growth of nuisance aquatic plants and can cause algal 
blooms when they occur at within a certain concentra-
tion range (Girija et al., 2007). The main source for 
these increased concentrations is likely fertilizer runoff 

from farmland drainage as the values of nutrients around 
the outlet and within the wetland was lower than those 
in the inlet. Data also show that the average value for 
Chlorophyll-a in summer was greater than in other sea-
sons. Values of BOD5 and CODMn also fall below, or 
within, desirable levels (3–4 mg/L). That phenomenon-
can probably be attributed to the higher levels of nutri-
ents and temperature during this season. This result in-
dicates that the water was not polluted by organic com-
pounds and conforms to National Standards of Envi-
ronment Quality (State Environmental Protection Ad-
ministration,the People’s Republic of China, State Ad-
ministration for Quality Supervision and Inspection and 
Quarantine, 2002, GB3838-2002).  

Analysis of certain areas within the wetland also 
showed that the SD value in open water was higher than 
average values in reeds and cattails. Values of TN, TP, 
and TDS in open water were also all lower than in the 
surrounding reeds, as well as lower in this environment 
than in the cattails. These results therefore show that 
water quality was better in the open than around the 
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reeds and cattails. That might be because although the 
direct source for the open water was the wetland, the 
source for the latter was farmland drainage. The open 
water is also located farther away from the inlet, which 
was less influenced by farmland drainage. And it is also 
possible that FNWP reeds possessed better nutrient re-
moval efficiency than cattails. 

At higher temperatures, DO concentration declined 
while Chlorophyll-a and TN reached maximum levels 
(Fig. 3a). Data show that DO concentration is negatively 
correlated with water temperature across the wetland 
(Fig. 3b), but that other parameters had no significant 
correlation. This latter result might be due to the geo-
graphic location and climate of the FNWP which result 
in obvious variations in temperature and landform fea-
tures. Elevated water temperature and TN concentra-
tions from farmland drainage create advantageous con-
ditions and abundant nutrients for the growth of photo-
plankton and zooplankton (Pinto-Coelho et al., 2005; 
Caron et al., 2017; Tian et al., 2017). The DO concentra-
tion is reduced to some extent in warmer seasons, how-
ever, as plankton reproduction rate is elevated (Ahmed et 
al., 2016; Wu et al., 2016; Rivaro et al., 2017). 

We evaluated the water quality in the restored wet-
land using five parameters. And a comparison of eutro-
phication states among years is presented in Table 6. 
The eutrophication state of this environment was light 
overall, although this value slightly increased in 2016 
and a different level was recorded in 2009. Diversity 
indices for both phytoplankton and zooplankton were 
also used to evaluate contamination over the time period 
of this analysis, but no TLI was determined in 2009. It is 
therefore important to address the question of why eu-
trophication was slightly higher in 2016. One potential 
reason might be that extremely high concentrations of 
nutrients from farmland drainage canals resulted in an 
increased load within the wetland. Another might be that 
engineering construction work dried out the main 
drainage and caused mass waste water inflow. The tro-
phic levels in other similar water bodies have also been 
assessed efficiently and accurately using the same ana-
lytical methods. Both Taihu Lake and Xixi National 
Wetland Park have been shown to exhibit similar eutro-
phication potentials as discussed here. While Dayanghan 
Wetland showed no sign of eutrophication in 2011. Re-
search on the Shifosi Constructed Wetland within  

 

Fig. 3  Seasonal variations in DO, Chlorophyll-a (Chl-a on the figure), and TN with respect to temperature (a) and the relationship 
between DO and temperature (b) 
 

Table 6  Comparison of FNWP eutrophication levels with those from other water bodies 

Region Sampling year TLI (mean or range) Eutrophication status Reference 

FNWP 2014 51.7 Light eutrophication This study 

FNWP 2015 53.1 Light eutrophication This study 

FNWP 2016 56.3 Light eutrophication This study 

FNWP 2009 No data Mesotrophic Ma (2012) 

Taihu Lake 2008–2010 (51.3–55.6) Light eutrophication Sun et al. (2013) 

Dayanghan Wetland 2011 35.2–45.5 Mesotrophic Zuo et al. (2014) 

Xixi National Wetland Park 2009–2010 53.9–60.0 Light eutrophication Li et al. (2010) 

Shifosi Constructed Wetland, Liaohe River 2009–2014 No data Mesotrophic or light eutrophication Guo et al. (2016) 

Lake Idku, Egypt 2012–2013 71.5–84.7 (High drain) High eutrophication Ali and Khairy (2016) 
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Liaohe River revealed that this area also purified water 
from high eutrophication to mesotrophic or light eutro-
phication as reported here. Another chemical analysis 
carried out in Lake Idku, Egypt, revealed excessive nu-
trient influx into the water from four main discharging 
drains, again leading to high eutrophication levels. 

4.2  Nutrients removal efficiency in different sea-
sons and years  
Wetland restoration projects generally aim to restore lost 
biodiversity and enable ecological functions such as 
flood protection, water purification, and wildlife habitats 
(Ahmed et al., 2016; Rivaro et al., 2017). It is notewor-
thy that the FNWP was converted from cultivated land. 
So its ecological functions are significant, especially 
with regard to water purification. The essence of nutri-
ent removal is an integrated mixture of sedimentation, 
filtration, adsorption, biological absorption, and bio-
chemical transformation processes with the assistance of 
wetland soils, microorganisms, and plants (Wang et al., 
2009; Zuo et al., 2014). There are various removal rates 
in different seasons and years in the FNWP (Table 5). It 
exerts overall good degradation effects on certain major 
nutrients compared with other constructed wetlands but 
is not as efficient as natural examples (Table 7). This 
may be due to the fact that vegetation and sediment in 
natural wetlands are more efficient at purifying agricul-
tural non-point pollution (Zhu et al., 2009). 

The overall processes of N removal and retention in-
clude adsorption and filtration of soils, ammonia vola-
tilization, absorption by plants, and nitrification and de-

nitrification by microorganisms (Gray et al., 2000). Just 
a handful of processes ultimately remove total N from 
waste water and most can only convert this element into 
one of its various forms (Luederitz et al., 2002). Re-
search has shown that the removal of TN from con-
structed wetlands ranged between 40% and 55%, de-
pending on type and inflow loading (Vymaza, 2007). 
Other research (Whitehead et al., 2006; Krause et al., 
2008) has also shown that the removal of N declines due 
to increasing soil release of this element at high tem-
peratures. The removal of TN demonstrated here was 
not correlated with temperature. We nevertheless infer 
that one reason for the two low values less than 10% 
might be due to high concentrations of TN in the water 
inlet. 

The soil P cycle is fundamentally different from its N 
counterpart due to removal processes of sorption, pre-
cipitation, plant uptake, and peat/soil accretion. Re-
search has indicated that TP removal ranges between 
40% and 60% in wetlands, depending on type and in-
flow loading (Vymazal et al., 2007). Efficient P removal 
by wetlands has mainly been attributed to sorption and 
precipitation by soil particles (Farzadkia et al., 2015). 
The fact that concentrations of TN and TP were high 
and water quality was poor adjacent to the inlet in this 
case might be because large quantities of nutrients 
flowed off the fields, far beyond the removal capacity of 
the wetland. This might also explain why nutrient re-
moval efficiencies in the summer of 2016 were the low-
est recorded throughout this analysis (i.e., TN, 7.54%; 
TP, –22.22%). 

 
 

Table 7  Comparison of the FNWP nutrient removal rate with other water bodies 

Region Sampling year Removal rate Reference 

FNWP 2014–2016 
TN, 43.84% 
TP, 48.44% 

This study 

Four Constructed Wetlands 2005–2007 
TN, 44.44%–58.50% 
TP, 87.82%–95.97% 

Li et al. (2015) 

Constructed Wetlands 2007 
TN, 40%–55% 
TP, 40%–60% 

Vymazal (2007) 

Deyeuxia angustifolia simulated wetland on the 
Sanjiang Plain, China 

2004 
TN, 53.11% 
TP, 58.95% 

Xu et al. (2005) 

Hamatong River basin on the Sanjiang Plain, China 2006 
TN, 80.36% 
TP, 61.90% 

Zhu et al. (2009) 

Porewater from drainage ditches on the Sanjiang 
Plain, China 

2012 
NH4-N, 71.7%–87.6% 
NO3-N, 38.4%–51.0% 
PO4-P, 52.6%–78.3% 

Zhang et al. (2013) 
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5  Conclusions  

The analyses presented in this study show that all TN 
values were well above the class V limit of 2 mg/L, TP 
values were all below the class III limit of 0.2 mg/L, and 
all other parameters were normal within the FNWP. Re-
sults show that water was mostly of light eutrophication 
status within the FNWP. Highly significant variations 
were found between the inlet and outlet of the park for 
SD, TN, and COD, and significant variations were 
found for TP and DO. This wetland therefore has a good 
overall degradation effect in the case of certain major 
nutrients. It will be necessary to conduct further re-
search in this region to investigate the upper nutrient 
removal capacity limit of the FNWP as well as to ap-
propriately plan agricultural layouts. There was no sig-
nificant annual change in water quality was reported 
here. But the water quality was obviously affected by 
surrounding agricultural drainage. Additional research 
should therefore emphasize the positive impacts and 
status of the FNWP as engineering construction work 
within the main channel is concluded. 
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