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Abstract: Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by 

vegetation, extracted mineral information has mostly been small targets bearing little information. In this paper, we present a new 

method for mineral extraction aimed at solving the difficulty of mineral identification in vegetation covered areas. The method selected 

six sets of spectral difference coupling between soil and plant (SVSCD). These sets have the same vegetation spectra reflectance and a 

maximum different reflectance of soil and mineral spectra from Hyperion image based on spectral reflectance characteristics of meas-

ured spectra. The central wavelengths of the six, selected band pairs were 2314 and 701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 

and 681 nm, 2183 and 671 nm, and 2072 and 548 nm. Each data set’s reflectance was used to calculate the difference value. After band 

difference calculation, vegetation information was suppressed and mineral abnormal information was enhanced compared to the scatter 

plot of original band. Six spectral difference couplings, after vegetation inhibition, were arranged in a new data set that requires two 

components that have the largest eigenvalue difference from principal component analysis (PCA). The spatial geometric structure fea-

tures of PC1 and PC2 was used to identify altered minerals by spectral feature fitting (SFF). The collecting rocks from the 10 points that 

were selected in the concentration of mineral extraction were analyzed under a high-resolution microscope to identify metal minerals 

and nonmetallic minerals. Results indicated that the extracted minerals were well matched with the verified samples, especially with the 

sample 2, 4, 5 and 8. It demonstrated that the method can effectively detect altered minerals in vegetation covered area in Hyperion im-

age. 
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1  Introduction 

Remote sensing imagery of mineral characteristics has 
been widely applied to investigate geological landforms 
in arid, semi-arid and vegetation covered areas. For in-
stance, hydrothermal alteration zoning can be mapped 
using clay minerals and individual iron using the spe-

cific absorption features of the minerals found on hy-
per-spectral images (Sabins, 1999). In the mineral spec-
tra, the position of the diagnostic absorption features 
was largely determined by electron-transition following 
ions of transition metals like Fe, Ti, Cr and vibrational 
courses in hydroxyl and H2O (Hunt, 1977; Pour et al., 
2013). As a result, hydrothermal alteration minerals can 
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be identified with absorption features (Clark, 1999; van 
der Meer, 2004), especially in arid and semi-arid areas. 
Spectral information from soil and rock is particularly 
useful as it can be imaged directly from large exposures 
of geologic materials (El Desouky et al., 2008; Massi-
roni et al., 2008; Pour and Hashim, 2011; 2013; Rajen-
dran et al., 2012). 

Alteration mineral signatures can be extracted using 
mineral absorption characteristics in arid and semi-arid 
regions. Sabins (1999) applied a spectral unmixing pro-
gram to process images showing spectral end-member 
abundances of alteration minerals with Airborne Visible 
Infrared Imaging Spectrometer (AVIRIS) images. They 
successfully extracted illite, alunite and kaolinite. Ab-
sorption at 2200 nm due to Al-hydroxyl, reveals the 
presence of clay minerals and sericite, whereas absorp-
tion at 2260 nm is due to Fe-hydroxyl (Di Tommaso and 
Rubinstei, 2007). Gabr et al. (2010) developed a mineral 
extraction method based on images with divergent band 
ratios (4/8, 4/2, and 8/9 in RGB) and n-dimensional 
spectral feature space. Their results indicated that this 
was a useful tool for identifying auriferous alteration 
zones and showing promise for alteration zones explora-
tion in similar areas elsewhere. Pour and Hashim (2011; 
2012a; 2012b; 2013) selected copper mining districts by 
PCA, minimum noise fraction transformation (MNF) 
and band ratio from Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) data. 
Based on distinctive shortwave infrared (SWIR) proper-
ties of the ASTER data, these techniques discriminated 
hydrothermal alteration mineral zones related to por-
phyry copper mineralization at a regional scale and pre-
dicted of porphyry copper mineralization. Results indi-
cated that the integration of image processing tech-
niques has the ability to reveal significant information 
for porphyry copper exploration at a regional scale. 
Vaughan et al. (2003) generated mineral maps using 
automatic pixel classifications and found key mineral 
components of geologic units in Spatially Enhanced 
Broadband Array Spectrograph System (SEBASS) hy-
perspectral thermal infrared images. Sillitoe and He-
denquist (2003) showed that alunite has unique spectral 
features that can be associated with high sulphidation 
epithermal gold. Mapping of hydrothermal alteration 
minerals, such as kaolinite, pyrophyllite and alunite, 
from hyperspectral data resulted in an improved under-
standing of alteration patterns of geological units (Mi-

kucki and Ridley, 1993). 
However, in vegetation covered areas, the application 

of remote sensing for mineral extraction has been much 
more limited (Carranza and Hale, 2002; Galvão et al., 
2005; Blouin et al., 2009; Vicente and de Souza Filho, 
2011; Yang et al., 2017). Two band ratio images of 
Landsat Thematic Mapper (TM) were generated to map, 
using PCA, hydrothermal alteration zones in heavily 
vegetated covered areas based on published reflectance 
spectra (Carranza and Hale, 2002). Based on the diag-
nostic spectral features of altered minerals, SWIR bands 
of ASTER data have been used to identify the spectral 
discrimination of hydrothermally altered materials. The 
classification angles of spectral angle mapper (SAM) for 
identification of hydroxyl-bearing minerals were a slight 
improvement due to the presence of sparse grass cover 
in the alteration zone. As a result, the extraction of hy-
droxyl-bearing minerals using ASTER images was lim-
ited to a small number of pixels from exposed areas 
(Galvão et al., 2005). Based on the multiple linear re-
gression method of composite spectral mixtures, in-
cluding quartz, aluminum hydroxyl minerals and vege-
tation, a genetic programming was applied to mineral 
classification in areas of dense vegetation. Surface 
vegetation vaporization can be offset by the vegetation 
corrected continuum depth (VCCD) method when 2200 
nm continuum removed band depth (CRBD) was found 
(Blouin et al., 2009). ASTER images and reflectance 
spectra were used to detect mineral components of soils 
covered with vegetation in Brazil indicating the possi-
bility to distinguish between iron-rich and iron-poor 
soils (Vicente and de Souza Filho, 2011). The extraction 
and remote mapping of minerals such as montmorillo-
nite, gibbsite and kaolinite was also shown to be feasible 
(Vicente and de Souza Filho, 2011). 

The hyperspectral sensor data product is a ‘cube’ of 
data or a three-dimensional array, in which the length 
and width is correspond to spatial dimensions while the 
spectrum of every point is in the third dimension 
(Landgrebe, 2002). This provides the possible benefit of 
collecting more detailed information than previously 
(Pour and Hashim, 2014) with the corollary that high 
dimensional hyperspectral data could challenge current 
data processing methods (Pour et al., 2014).  

The earth surface is a consistent set of characteristic 
ground materials with relatively stable spectra, includ-
ing grass, soil, water and shadow. The occurrence, loca-
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tion and characteristics of a certain percentage of these 
members causes most spectral changes of surface scenes 
(Ju et al., 2003). The spatial geometric-structure features 
of alteration information, background and interference 
in characteristic space was investigated by the analysis 
of two-dimensional and three-dimensional scatter dia-
grams based on the statistical features of remote sensing 
data. The results demonstrated that the anomalous point 
groups, including alteration information, usually disso-
ciated out of the hyperplane (Yang et al., 2009). Zhang 
et al. (2010) analyzed the spatial geometric-structure 
features of the two-dimensional scatter plots generated 
by different histograms and the positioning in abnormal 
information space. They demonstrated the importance 
and practicality of spatial structure analysis using re-
mote sensing data in altered mineral information extrac-
tion (Zhang et al., 2010; Hu et al., 2011). 

Reflectance spectroscopy is an alternative technique 
that used spectral absorption features between visi-
ble/near infrared (VNIR) and SWIR wavelengths 
(300–2500 nm) for determining mineralogy. A common 
method is to map mineral formations using remotely 
sensed spectral reflectance, particularly in arid and 
semi-arid landscapes. But where vegetation covers ar-
eas, these methods can not be effectively applied be-
cause of the lack of exposed bedrock, prompting a de-
sire for new algorithms to map rock types and extract 
minerals using soil and vegetation spectra in vegetation 
covered areas. In this paper, spectral difference coupling 
between soil and plant (SVSCD) was applied to mineral 
extraction from Hyperion images in a vegetation cov-
ered area. The difference between soil and vegetation 
was used for suppressing vegetation information. The 
extracted minerals matched well with field verification 
points and demonstrated that the method can effectively 
extract altered minerals in vegetation covered areas. 

2  Geological Setting 

The study area is located in Huma, at the northwest 

corner of Heilongjiang Province, China (50˚51– 

51˚40N, 126˚06–126˚55E). This is the northern edge 
of the temperate zone with a cold-temperate, continental 
monsoon climate. The soil is dominated by both 
dark-brown forest and brown-coniferous forest soils 
with minor components of bog and meadow soils. For-
est vegetation is typical of cold belt, temperate conifer-

ous. Vegetation coverage of study area is more than 
95%; a mix of grasslands, shrubs and trees (Fig. 1). 
Vegetation species mainly included Betula platyphylla, 
Carex rigescens, Lespedeza bicolor, Pinus koraiensis, 
Quercus mongolica and Larix gmelinii without obvious 
zonal characteristics.  

The study area is tectonically dominated by two frac-
tures (northeast and northwest) and folds that play an 
important role in the formation and distribution of me-
tallic minerals and magmatic activities. The northeast 
folded belt belongs to the early folding system of Varis-
cian under the influence of early Variscian orogeny. The 
terrain is also controlled by lithology with granites 
strongly spheroidally weathered and mountain slopes 
long and gentle. Mountains in the area consist of high 
and steep volcanic cones. The study area mainly consists 
of Ordovician, Silurian, and Devonian layers. They are 
composed of volcanic-flysch formations of the Tong-
shan Group and volcanic-sedimentary rocks formation 
of the Duobaoshan Group and accumulate rich 
ore-forming materials (Wei et al., 2011). Volcanic rocks 
composed of marine terrigenous clastic rocks were 
formed during the Silurian System. In the lower Creta-
ceous period, the Guanghua Group consisted of 
gray-green rhyolitic tuff, acid pyroclastic rocks and rhy-
olite, which was in parallel, unconformable contact with 

 

Fig. 1  The vegetation cover map of study area 
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the Longjiang Group with unclear boundary. The Long-
jiang Group of lower Cretaceous consisted of gray-black 
andesite and andesitic tuff. Gray-black basalt, stomatal 
basalt, tuff and sandy mudstone composed Ganhe Group 
in the lower Cretaceous. The Quaternary Holocene con-
sisted primarily of depositional sand, sand gravel, sandy 
clay and silt. Principally defining the shape of the intru-
sive rocks are batholiths and stocks, followed by small 
rock bodies in veins. The major rock types are interme-
diate-plutonic intrusive rocks, consisting of monzo-
granites, granodiorites, plagiogranites, alaskite-granites 
and peridotites in upper Permian (Wei et al., 2011). 
Granodiorites were closely related to ore-formation. 
Acidic, volcanic rocks consisted of rhyolite, dacite and 
tuffolava in the Longjiang Group, while intermediate 
basic volcanic rocks were composed of basalt, andesitic 

porphyrite, and tuffolava in the Ganhe Group, Variscan 
granite, as well as Yanshan granites. Sedimentary rocks 
with small distribution area are exposed widely in study 
area (Fig. 2). Commercial mineral resources are found 
in the important metallogenic belt, Sankuanggou-          
Duobaoshan tectonic magmatic active belt, including, 
among others, copper, gold, molybdenum and iron. 
They form many deposits with high production value 
including large porphyry Duobaoshan copper and mo-
lybdenum deposits, small skarn type Sankuanggou cop-
per and iron deposits, and medium-sized zhengguang 
gold deposits. Regional mineral resources are equally- 
spaced, zoned, multiphased and multistaged. The 
hydrothermal alteration of resources is the result of tec-
tonism and magmatism from the Variscan to the Yan-
shan periods.  

 

Fig. 2  The geological map of study area 
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3  Data 

3.1  Hyperion Image 
For nearly two decades, most of the information on the 
composition of surface materials has been provided by 
airborne hyper-spectral sensors. Based on the success of 
the Hyperion platform, the first spaceborne imaging 
spectrometer aboard Earth Observing 1 (EO-1) satellite, 
important milestones in remote sensing research have 
been achieved. Hyperion covers the spectral range from 
400–2500 nm with 30 m spatial resolution, 242 spectral 
bands and about 10 nm of spectral resolution from a 705 
km high orbit. Hyperion scenes are a narrow strip of 
about 7.7 km of the earth’s surface across-track, 42 km 
or 185 km on the along-track direction. The Hyperion 
system had two grating spectrometers; a VNIR spec-
trometer (400–1000 nm) and a SWIR spectrometer 
(900–2500 nm).  

The study area image was acquired by the EO-1 in 
September 2001 and was L1B-level data. Preprocessing 
was needed to convert radiance into spectral reflectance 
of terrestrial materials and reduce sensor error influence. 
Before atmospheric correction, un-calibrated and wa-
ter-affected bands were removed. Then the remaining 
176 bands were converted into absolute radiance values. 
Bad lines due to sensor calibration errors were repaired 
after calibration. Atmospheric correction was done with 
water vapor content, the aerosol model, atmospheric 
model and other parameters (see below). The resulting 
radiance data were converted into surface spectral re-
flectance for the identification of altered minerals. 

3.2  Spectral Measurements 
Rock outcropping composition, vegetation species, rock, 
soil, and vegetation samples were collected over a wide 
range of study area using local information. Rock and 
soil samples were collected from non-vegetated areas 
and rock outcrops as were the spectral characteristics of 
the ground-measured. On satellite image, the rock sam-
ple was covered by the upper canopy. In order to ana-
lyze how to obtain the rock and mineral information 
under vegetation cover on the image, the characteristics 
of the ground measured spectra were analyzed. 

Simultaneous spectral reflectance of these samples 
was also measured locally. Soil samples were collected 
at 10–20 cm, 20–30 cm and 30–40 cm depths from the 
ground surface. Mixed soil samples from different 

depths were used to represent average soil conditions in 
the study area. Leaves of five plant species that were 
ecologically dominant were collected (Betula platy-
phylla, Carex rigescens, Lespedeza bicolor, Pinus 
koraiensis, Quercus mongolica and Larix gmelinii). 
Spectral reflectance was measured using an ASD Field-
Spec Pro field portable spectrometer with the spectral 
range of 350–2500 nm. Spectral resolution was 3 nm in 
the 350–1000 nm range and 10 nm at 1000–2500 nm. To 
ensure the uniformity and effectiveness of spectral 
curves, all spectra were measured in cloudless condi-
tions from 1000–1400 h. For each sample, 10 spectra 
were collected and pooled, with their average used as 
the sample reflectance spectrum. Sample type, test time, 
longitude and latitude were recorded in detail for each 
measurement. Due to instrument instability, variation in 
illumination conditions, atmospheric water vapor inter-
ference, large reflectance fluctuations exist in spectral 
ranges 1350–1420 nm, 1800–1970 nm, and 2308–2500 
nm (Fig. 3). To accurately characterize soil and vegeta-
tion spectral features, least squares polynomial smooth-
ing was applied to the whole curve. 

4  Methods 

4.1  Spectral characteristic of soil, minerals and 
vegetation 
The spectrum between 1200 and 2500 nm is usually 
dominated by the characteristics of a clay mineral 
(Hubbard et al., 2003), whereas the spectrum with the 
wavelength range less than 1200 nm is dominated by the 
characteristics of a few iron-bearing minerals. The ab-
sorption band of iron bearing minerals such as goethite 
and hematite are 500 nm and 900 nm (Hubbard and 
Crowley, 2005) (Fig. 4A). The absorption bands of 
Al-OH-containing minerals such as montmorillonite are 
at the 2170–2210 nm (Crowley et al., 2003). The ab-
sorption bands of Mg-OH containing minerals such as 
chlorite and epidote are at 2315–2335 nm (Fig. 4B). 
Some of the spectral features of alteration minerals oc-
cur near 1400 nm and 1900 nm (Curran et al., 2001) are 
obscured by atmospheric absorption, so they have no 
use for conventional remote sensing techniques that use 
solar energy as the radiation source. Spectra reflection 
of carbonate minerals after 2000 nm is similar to the 
clay minerals, but the decreased extent of the reflection 
between 1800–2000 nm is smaller than clay minerals 
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(Sabins, 1999). Carbonate minerals spectra near 2300nm 
and 2450nm has strong absorption because of the 
CaCO3 (Fig. 4C). 

Soil is a mixture of many substances whose reflec-

tance is influenced by minerals, organics and water 
dominated by the soil parent materials. Soil parent ma-
terials contain hematite, pyrite and trace amounts of car-
bonate and clay minerals, all of which have an impact 

 

Fig. 3  Soil and vegetation spectra from study area. A) Spectra of soil from three sampling points; B) spectra of Betula platyphylla, 
Carex rigescens, and Lespedeza bicolor. The gray area in Fig. 3A were the water vapor absorption bands 

 

 
Fig. 4  Spectra of typical minerals from the USGS Mineral Spectral Library. A) Spectra of iron oxide minerals including goethite, side-
rite, hematite and jarosite, B) spectra of clay minerals including kaolinite, montmorillonite, illite and chlorite, C) spectra of carbonate 
minerals including calcite and domolite 
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on radiation spectra (Stoner and Baumgardner, 1981). 
The spectral reflectance is negatively related to iron 
content, which enhances the absorption of soil spectra in 
VNIR bands depending upon the associated environ-
ment. All else being equal, spectral reflectance also 
tends to decrease with an increase of the water content. 
Organics influence the spectrum between 600–800 nm. 
Therefore, the spectra of different soil sampling points 
A, B, C that were randomly selected, are quite different 
(Fig. 3A). 

Characteristics of leaf tissue, structure, plant health 
and growth phase confer identifiable reflectance pat-
terns. Spectral features at 450 nm and 650 nm are af-
fected by chlorophyll (Gong et al., 2003). Between these 
two bands, chlorophyll absorption is low with a reflec-
tance peak near 540 nm; a basic characteristic of vegeta-
tion in the VNIR bands (Fig. 3B). Lutein and carotene 
also have absorption at 450 nm, but they are weaker 
than chlorophyll. Therefore, the spectrum shows chlo-
rophyll absorption features in the healthy vegetation 
(Sims and Gamon, 2003). In the near-infrared bands, 
vegetation spectra show high reflectance, high transmit-
tance and low absorption characteristics. Spectral re-
flectance rises rapidly near 760 nm and forms a distinc-
tive ‘red edge’. The presence of water can be detected at 
four absorption bands; 960 nm, 1100 nm, 1400 nm and 
1900 nm (Fig. 3B). 

4.2  The choice of spectral difference coupling 
To identify minerals under dense, vegetation cover we 
proposed a method based on spectral differences be-
tween field-measured soil and vegetation that uses their 
spectral differences calculation to suppress vegetation 
information. The spectral difference equation is: 

1 2b bR R R        (1) 

where R is the reflectance at different bands. b1 and b2 
are bands with the same vegetation reflectance but the 
difference of soil reflectance is large. This algorithm is 
more effective (contains more information) when b1 and 
b2 are selected for minerals that have a characteristic 
absorption (e.g., 900 nm for iron-bearing minerals, 2200 
nm for hydroxyl minerals and 2350 nm for carbonate 
minerals; Crowley et al., 2003). The soil, vegetation and 
mineral spectra collected from the same sampling point 
were selected for spectral analysis. 

Using the vegetation inhibition method, we found six 
data sets with obvious differences between soil and 
vegetation reflectance. Based on this, we selected these 
for vegetation suppression: 2314 and 701 nm, 1699 and 
721  nm, 1336 and 742 nm, 2203 and 681 nm, 2183 
and 671 nm, and 2072 and 548 nm (Fig. 5). The reflec-
tance of each data set is used to calculate the difference 
value while the vegetation spectral information is inhib-
ited through the difference calculation, while soil and 
rock information is highlighted. 

4.3  Principal Component Analysis (PCA) 
By analyzing eigenvector values, principal components 
(PCs) that include spectral information of specific min-
erals can be found. The contribution of the principal 
components from each original band has a relationship 
with the spectral response of interested materials (Ek-
lundh and Singh, 1993). Information in data variance is 
maximized by finding a unique suit of orthogonal axes 
that originate at and rotate from the data mean. The lin-
ear combinations of original spectral bands compose the 
PC bands that can be calculated as input spectral bands. 
The first PC band includes the largest percentage of data 
variance with progressively less data variance explained 
by subsequent PC bands (Chen and Qian, 2011). In this 
paper, PCA was applied to all spectral difference cou-
pling bands that were selected to suppress vegetation 
information. PC1 and PC2 with higher values and oppo-
site signs plotted to get results of anomalous distribu-
tions, because they contained more mineral information 
(Table 1).  

 

Fig. 5  Spectrum diagram of soil and vegetation. Three couples 
of spectral difference including 1699 nm and 721 nm, 1336 nm 
and 742 nm, and 2072 nm and 548 nm 
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Table 1  Principal components for six bands. Band1 is the difference between 2314 nm and 701 nm, Band2 is the difference between 
1699 nm and 721 nm, Band3 is the difference between 1336 and 742 nm, Band4 is the difference between 2203 and 681 nm, Band5 is 
the difference between 2183 and 671 nm, Band6 is the difference between 2072 and 548 nm 

Eigenvector Band1 Band2 Band3 Band4 Band5 Band6 

PC1 –0.4648 –0.1131 –0.2478 –0.2900 –0.3096 –0.7278 

PC2 0.1082 0.7121 0.3305 0.2568 0.2415 –0.4974 

PC3 –0.3725 0.6696 –0.2109 –0.3023 –0.2802 0.4453 

PC4 0.7813 0.1602 –0.3988 –0.3786 –0.1932 –0.1549 

PC5 –0.1495 0.0241 –0.44111 –0.2594 0.8455 –0.0144 

PC6 0.0245 –0.0725 0.65665 –0.7401 0.1221 0.0149 

 

4.4  Analysis of spatial geometric structure fea-
tures 
The scatter diagram of spectral image projects the pixel 
information of two or more bands onto a plane to ana-
lyze their distribution and clustering structure 
(Manolakis et al., 2003). This permits a large amount of 
data to be processed for its distribution and clustering 
independent of time. The scatter diagrams of two dif-
ferent remote sensing image’s DN values have different 
graphic features that reflect change rules from a variety 
of ground objects. According to abnormal information 
delimited by the two-dimension scatter diagrams, their 
distribution should be available on the Hyperion image 
after pre-processing as similar objects dispersed in space 
should cluster together. Of interest, weak, alteration in-
formation was concentrated on the edge of the subject 
ellipse. The abnormal information was defined as Level 
1 around its boundaries and Level 2 in the interior (Fig. 
6), from which the average curves of abnormal informa-
tion are calculated. The mean spectrum of every pixel in 
the red ellipse of the scatter plot (Fig. 6) was the test 
spectrum in Spectral Feature Fitting (SFF). When the 
matching degree of average curves was over 90%, the 
abnormal information was classified as the same type. 

4.5  Spectral Feature Fitting (SFF) 
SFF is used to match the spectra of images to the refer-
ence spectra from a field or spectral library. It tests spe-
cific absorption features after continuum removal for the 
reference spectra and the image (van der Meer, 2004). 
The absorption depth has the definition: 

1 b

c

R
D

R
       (2) 

where D is the spectral absorption depth. Rb is the re-
flectance at the band bottom and Rc is the reflectance of 
the continuum at the same wavelength as Rb (Green and  

 

Fig. 6  Scatter diagram of PC1 and PC2. The green and red pix-
els in red ellipse are two different kinds of abnormal information 

 
Craig, 1985). The degree to which the reference spec-
trum and the test spectrum match is expressed by the 
mean square error (RMS). The image spectrum matches 
well with the reference spectrum when the RMS value is 
small. An image of scale and RMS (scale/RMS) is gen-
erated for every reference spectrum. The scale/RMS 
image shows absorption characteristic depth, which is 
connected with material abundance. In the scale image, 
brighter pixels with low RMS errors demonstrate that 
they matched well with reference spectra. But if the in-
correct reference end-members are entered or an incor-
rect wavelength range is applied, the result can be a 
large-scale value (> 1). Reference and image spectra are 
compared at each wavelength by least-squares and we 
can simultaneously calculate the RMS error for every 
reference spectrum and dark pixel on the RMS error 
image that represents low error. Locations that matched 
well with reference spectra are obtained by the scale 
image and RMS errors.  
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Reference spectra of alteration minerals were selected 
from the USGS spectral library. Test spectra were the 
mean spectrum of every pixel in the red ellipse of scat-
tered plot. The reference spectra and test spectra needed 
a continuum removal process to enhance the spectral 
absorption features before SFF. 

5  Results 

Test spectra and reference spectra were matched by SFF 
to identify the abnormal minerals on the images. Pyrite, 
chlorite, calcite, dolomite, magnetite, hematite, sericite 
and muscovite were extracted from Hyperion data (Fig. 7). 
Verified sampling points were located in the area where 
altered minerals extracted. Sampling points were dis-
tributed in the area of mineral extraction with accessible 
transportation (Fig. 2). Rock samples were collected in 
the area where mineral concentrated as well as where 

rock outcrops existed. To avoid human bias during rock 
sample collection, rocks that were dug out by tools in 
the natural outcrops and on the surface were collected at 
the same time. Rock samples were sliced in the labora-
tory and metallic minerals and nonmetallic minerals 
were identified under a high-resolution microscope. The 
comparison of identified results and extracted results for 
sample2, sample4, sample5, and sample8 are shown in 
Fig. 8–Fig. 11. 

Ten validation samples were selected in the extracted 
mineral concentration area. Each point was found to 
contain magnetite, which indicates that the extraction of 
iron ore information was better in the images. A com-
parison of the extracted and identified results among the 
10 samples indicated that the metallic minerals and 
non-metallic minerals extracted from seven verification 
points were consistent with the identified results (Table 
2, Table 3). 

 

Fig. 7  Result of minerals extraction of Huma. SVSCD extraction result of pyrite (brownness), chlorite (ginger pink), calcite (green), 
dolomite (yellow), magnetite (blue), hematite (medium coral), sericite (cyan), and muscovite (red), overlain on Hyperion band 51 



966 Chinese Geographical Science 2018 Vol. 28 No. 6 

Table 2  The better comparison of mineral extraction results and identification results, the gray area is the verified sampling points 

 Sample point Metallic mineral Nonmetallic mineral 

Sample 2 Pyrite, magnetite, hematite Dolomite, sericite 

Sample 3 Pyrite, magnetite Sericite, dolomite 

Sample 4 Pyrite, magnetite Chlorite 

Sample 5 A little magnetite Calcite, sericite, muscovite 

Sample 6 Siderite, magnetite Muscovite 

Sample 8 Magnetite, a little pyrite Sericite 

Mineral extraction 
results 

Sample 10 Magnetite, hematite Muscovite, dolomite 

Sample 2 Magnetite, pyrite, hematite Iddingsitization olivine, clay minerals, amphibole 

Sample 3 Pyrite, magnetite Partially particle sericitization , iddingsitization olivine, olivine 

Sample 4 Magnetite, pyrite, Chlorite, actinolite, albite 

Sample 5 Magnetite Sericitization staurolite, garnet, muscovite, quartz 

Sample 6 Magnetite Muscovite, quartz, albite 

Sample 8 Magnetite Carbonatation, sericitization feldspar 

Mineral  
identification results 

Sample 10 Magnetite, hematite Quartz, muscovite, biotite, feldspar particle sericitization 

 
Table 3  The worse comparison of mineral extraction results and identification results 

 Sample point Metallic mineral Nonmetallic mineral 

Sample 1 Magnetite Dolomite 

Sample 7 Magnetite, pyrite Sericite, dolomite 

Mineral extraction 
results 

Sample 9 Pyrite, magnetite, siderite Sericite 

Sample 1 Magnetite Iddingsitization olivine 

Sample 7 Magnetite Iddingsitization olivine，plagioclase partially particle sericitization

Mineral identification 
results 

Sample 9 Metallic mineral content at about 3%-5%, magnetite, pyrite Plagioclase partially particle sericitization 

 
The microscopic examination of sample 2 shows that 

detrital minerals are quartz and feldspar and that clay 
minerals have been transformed into crystalline biotite. 
Metallic minerals contain magnetite and 1% or less py-
rite. The area of sample 2 contains clay minerals like 
dolomite, sericite with some properties of clay minerals, 
pyrite, magnetite and hematite. Clay minerals, magnet-
ite, hematite and pyrite conform to the identification 
result (Fig. 8). The identified result of sample 4 contains 
chlorite, actinolite and albite. Metallic minerals magnet-
ite and pyrite are approximately 1% of the sample. 
Chlorite, magnetite and pyrite are extracted from the 
sample 4 site according to the mineral map, which con-
forms to the identification results (Fig. 9). The identified 
result of rock sample 5 shows that nonmetallic mineral 
compositions including garnet, sericitization staurolite, 
muscovite and quartz. Metallic mineral (magnetite) 
content is about 1%–2%. The extracted results at the 

sample 5 site contain magnetite, calcite, sericite and 
muscovite. The garnet and sericitization staurolite in the 
identified result are the products of muddy rocks that 
contain iron ions and aluminum ions transformed by 
regional metamorphism. This indicates that the region 
around sample 5 has abundant aluminum and iron min-
erals. Magnetite, sericite and muscovite in the extracted 
map conform to the laboratory identification (Fig. 10). 
The identified result of rock sample 8 under the micro-
scope shows that mineral compositions including pla-
gioclase and augite. The alteration is mainly carbonata-
tion and feldspar sericitization. Magnetite content is 
about 2% and has a disseminated distribution. The min-
eral extracted result at sample 8 contains magnetite, 
some pyrite, sericite and dolomite (Fig. 11). Sericite and 
dolomite conform to the alteration of carbonatation and 
sericitization. Magnetite is also extracted at the sample 8 
site. 
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Fig. 8  The validation of sample 2: A) mineral extracted result of sample 2, including magnetite, hematite, pyrite, dolomite and sericite, 
B) rock sample, C) microscope photo: biotitization debris containing clay minerals, D) microscope photo: magnetite and pyrite 

 

Fig. 9  The validation of sample 4: A) mineral extracted result of sample 4, including pyrite, magnetite and chlorite, B) rock sample, C) 
microscope photo: chlorite, D) microscope photo: pyrite 
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Fig. 10  The validation of sample 5: A) mineral extracted result of sample 5, including a little magnetite, calcite, sericite and muscovite, 
B) rock sample, C) microscope photo: muscovite, garnet, sericitization staurolite, D) microscope photo: magnetite 

 

Fig. 11  The validation of sample 8: A) mineral extracted result of sample 5, including magnetite, some pyrite, sericite and dolomite, B) 
rock sample, C) microscope photo: carbonatation, feldspar sericitization, D) microscope photo: magnetite 
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6  Discussion 

The scatter diagram of the wave band (after calculating 
the spectral difference) and the primitive wave band of 
images are shown in Fig. 12. Fig. 12A consists of band 
192 and band 119 whose central wavelength is 2072 nm 
and 1336 nm. Contrasting Fig. 12A to Fig. 12B, shows 
that some information in the red ellipse has disappeared 
because band 192 is replaced with the spectral differ-
ences of 2072 nm and 548 nm. Fig. 12C is the scatter of 
two bands after applying a traditional vegetation sup-
pression method from ENVI. After vegetation suppres-
sion and data preprocessing, Hyperion bands were rear-
ranged. The band 192 with a center wavelength of 2072 
nm changes to band 130, and band 119 changes to band 
91. Fig. 12D is the scatter of two couples of spectral 
difference; one at 2072 nm and at 548 nm, the other is at 
1336 nm and at 742 nm. Contrasting Fig. 12C to Fig. 

12D, we also find that some information is inhibited 
because band 91 is replaced with pairs of spectral dif-
ference, 2072 and 548nm. Fig. 12C is similar to Fig. 
12A. This shows that the ENVI vegetation suppression 
method is not effective. Fig. 13 shows that the correla-
tion coefficient of the two plotted spectra is 0.9, indi-
cating that SVSCD is an effective method to suppress 
vegetation information for mineral extracted in vegeta-
tion covered area. 

7  Conclusions 

SVSCD selected six pairs of bands centred at 2314 and 
701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 and 
681nm, 2183 and 671 nm, and 2072 and 548 nm, to de-
tect altered minerals in vegetation covered areas. After 
band difference calculations from each data set, the 
vegetation information was suppressed and mineral  

 

Fig. 12  Scatter plot of different band combination. A) Band 192 and band 119, B) spectral difference of 2072 nm and 548 nm and band 
119, C) band 130 and band 91 (EVS is ENVI vegetation suppression method), D) two couples of spectral difference, one is 2072 nm and 
548 nm, the other is 1336 nm and 742 nm  
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Fig. 13  Comparison of the suppressed information of Hyperion 
image and vegetation spectrum from study area 
 

abnormal information was enhanced compared to the 
scatter plot of the original band. The spatial geometric 
structure features of PC1 and PC2 that have the largest 
difference of eigenvalues were used to identify the al-
tered minerals by SFF. 

Ten verified rocks samples from Huma study area of 
Heilongjiang Province were selected in the concentra-
tion of mineral extraction and analyzed under a high- 
resolution microscope to identify metal minerals and 
nonmetallic minerals. Results indicated that the ex-
tracted minerals, such as pyrite, magnetite, hematite, 
muscovite and chlorite, matched well with the compo-
nent of verified samples, especially in sample 2, sample 
4, sample 5 and sample 8. 

The extracted minerals were consistent with identi-
fied minerals in sample 4 and sample 8, which indicated 
the extracted results of chloritezation and sericitization 
alteration are better than others. Sericitization staurolite 
was found in sample 5. This is a product of muddy rocks 
that contain iron and aluminum ions transformed by 
regional metamorphism. The main metallic minerals in 
the study area were magnetite and pyrite. Mica contain-
ing aluminum ion was also distributed around sample 5. 
This was consistent with the formation conditions of 
sericitization staurolite. After analyzed extracted results 
and identified results comprehensively, the extracted 
results of iron oxides, muscovite, chlorite and sericitiza-
tion alteration minerals matched well with identified 
results. All these demonstrated that SVSCD can effec-
tively identify altered minerals in vegetation covered 
area in Hyperion images. 
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