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Abstract: Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the 

world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand 

Source Region (BTSSR) from 2000 to 2010 based on the rain use efficiency (RUE) trend in relation to the land cover. More than half of 

the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indi-

cators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity (NPP, 51.30%) 

instead of the accumulated normalized difference vegetation index (59.30%). The short-term variation in the precipitation and in-

tra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual 

trends method (RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation 

distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics 

was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based 

on growing season accumulated normalized difference vegetation index (ΣNDVI) residuals was the most effective, showing that 47.39% 

of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed 

for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland 

showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grass-

land showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more 

future effort should be put in restoring degraded land. 
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1  Introduction 

Land degradation in the Beijing-Tianjin Sand Source 
Region (BTSSR) (Wu et al., 2012) caused several envi-
ronmental problems in two large cities (Beijing and 

Tianjin) in northern China. Aiming for the restoration of 
degraded ecosystems, some ecological engineering pro-
jects have been performed in recent years, such as the 
Beijing and Tianjin Sandstorm Source Controlling Pro-
gram (Wu et al., 2013), the Grain for Green Project 
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(Stokes et al., 2010), and the Three-North Shelterbelt 
Project (Ma, 2004). Considering the strong disa-
greement regarding the effectiveness of ecological en-
gineering projects (Cao, 2008; Liu et al., 2008; Yang 
and Ci, 2008; Wang et al., 2010) and the major invest-
ment in manpower, material, and financial resources 
(Wang et al., 2007), there is an urgent need for the as-
sessment of the effectiveness of ecological engineering 
projects in the BTSSR with objective, consistent, and 
spatially explicit measures.  

Vegetation restoration has always been a primary goal 
in ecological engineering projects in the BTSSR, with 
measures such as enclosure of grassland, cropland 
change to grassland or forest, afforestation and refores-
tation, and grazing prohibition. Therefore, the assess-
ment of the effectiveness of ecological engineering pro-
jects on vegetation restoration should be given a high 
priority. Trend analysis of coarse resolution vegetation 
indicators based on remote sensing, such as the normal-
ized difference vegetation index (NDVI) and the net 
primary productivity (NPP), have been widely used to 
monitor vegetation restoration or degradation (Zhang et 
al., 2012; Huang et al., 2013; Wu et al., 2013). How-
ever, this approach faces two major challenges regarding 
the effectiveness assessment of ecological engineering 
projects on vegetation restoration. First, the vegetation 
dynamics involves human and climatic factors, with 
high correlations between precipitation and vegetation 
indicators (Tucker et al., 1991; Du Plessis, 1999; 
Herrmann et al., 2005; Wu et al., 2013). Since the aim is 
to detect vegetation changes caused by ecological engi-
neering projects, the confounding effect of the precipita-
tion must be eliminated. Second, the increase or de-
crease in the vegetation productivity does not necessar-
ily represent vegetation restoration or degradation. For 
example, when changing cropland to grassland, as in the 
Grain for Green Project, the vegetation productivity de-
creased, while representing vegetation restoration.  

In this paper, we attempted to solve these challenges and 
investigate the effectiveness of ecological engineering pro-
jects on vegetation restoration in the BTSSR during 
2000–2010 (coincident with the first phase of the Beijing 
and Tianjin Sandstorm Source Controlling Program) using 
remote sensing. We assessed the vegetation productivity 
change in the BTSSR during 2000–2010, determined how 
much of this productivity change resulted from precipita-
tion changes, and explored the differences in the results 

when using different vegetation productivity indicators. In 
addition, we assessed if a combination of the rain use effi-
ciency (RUE) trend and land cover dynamics could evaluate 
better the effectiveeness of ecological engineering projects 
on vegetation restoration or degradation and if the ecological 
engineering projects were effective on vegetation restoration, 
was there any difference between different subareas of the 
BTSSR? These questions are very important for ecosystem 
restoration through ecological engineering. 

2  Materials and Methods  

2.1  Study area 

The Beijing-Tianjin Sand Source Region in China (3850– 

4640N, 10930–12030E) (Fig. 1) includes 75 coun-
ties in Beijing, Tianjin, Hebei, Shanxi, and Inner Mongo-
lia. It has a total area of 458 000 km2, of which approxi-
mately 101 200 km2 is desertified, mainly in the Otindag 
and Horqin Sandy Lands, where land degradation has 
been attributed to overgrazing, excessive reclamation, 
deforestation, and climate change (Wu et al., 2006). 

 

Fig. 1  Location of study area, Beijing-Tianjin Sand Source Re-
gion (BTSSR), China. DGUP: degraded grassland on the Ulanqab 
Plateau; DGNXP: degraded grassland on the North Xilingol Pla-
teau; DOSL: desertified areas in the Otindag Sandy Land; 
DWHSL: desertified areas in the western Horqin Sandy Land; 
WWEBYP: wind and water eroded areas in the Bashang and 
Yanbei plateaus; WEYM: water eroded area in the Yanshan 
Mountains. Land cover obtained from the ChinaCover 2010  
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Study area includes arid, semi-arid, dry sub-humid 
and semi-humid climates, with an annual precipitation 
ranging from 200 mm in the northwest to 600 mm in the 
southeast. The topography includes plateaus, mountains, 
and plains. The Beijing-Tianjin region includes the flood 
plain in the south of the Yanshan Mountains and a large 
part of the Inner Mongolian Plateau in the north of the 
mountains. The northwest corresponds to an arid steppe, 
mainly typical and desert steppe, mostly of pedocal 
soils. The southeast includes plateaus and mountains, 
with mainly temperate deciduous forests and temperate 
deciduous shrubs, and leached soil. Distinctive vegeta-
tion and soil types have developed in these regions un-
der the influence of specific climatic conditions and to-
pography. 

The BTSSR was divided in six rehabilitation areas 
according to the climate zone, land cover type, and deg-
radation characteristics (Wu et al., 2006) (Table 1). De-
tailed information on the rehabilitation divisions is 
given in Table 1. Since the ecological engineering pro-
jects were scheduled for different rehabilitation divi-
sions, this study uses these divisions to evaluate and 
compare the effectiveness of ecological engineering on 
vegetation restoration.  

2.2  Data and processing 
2.2.1  NDVI  
The MOD13Q1 vegetation index product (250 m), from 
the Earth Observation System (EOS) (Huete et al., 
2002), was used to determine the vegetation productive-
ity changes in 2000–2011. This product was a 16-day 
composite, in which daily data were selected based on 
quality factors such as the cloud cover and viewing ge-
ometry. To remove any residual cloud effect or other 
outliers, the harmonic analysis of the normalized differ-
ence vegetation index (NDVI) time-series (HANTS) 
algorithm (Julien and Sobrino, 2010) was adopted to  

smoothen and reconstruct the NDVI time-series (de 
Jong et al., 2011). The HANTS-reconstructed data for 
2000–2011 were then used in this research. 
2.2.2  Meteorological data 
A high temporal and spatial resolution meteorological 
dataset from the Institute of Tibetan Plateau Research, 
Chinese Academy of Sciences (ITPCAS), validated by 
740 China Meteorological Administration stations (Chen 
et al., 2011), were used to match the NDVI charac-
teristics as closely as possible. The use of Tropical 
Rainfall Measuring Mission (TRMM) 3B42 precipita-
tion products compensated for the lack of meteoro-
logical stations. Additionally, the datasets considered the 
impact of elevation on the spatial variation of climatic 
factors, producing a higher accuracy. The spatial resolu-
tion of the meteorological data was 0.1° × 0.1°, with a 
temporal resolution of 3 hours. Mainly precipitation, 
temperature, and solar radiation data were used for the 
NPP and RUE calculation. The original meteorological 
data for 2000–2011 were summed to a 16-day value and 
resampled to 250 m to match the Moderate Resolution 
Imaging Spectroradiometer (MODIS) NDVI datasets. 
2.2.3  Land cover maps  
Land cover maps for 2000 and 2010 were obtained from 
the ChinaCover dataset, mainly developed by the Insti-
tute of Remote Sensing and Digital Earth, Chinese 
Academy of Sciences (http://www.chinacover.org.cn/). 
This product used an automatic object-oriented classifica-
tion based on 30 m Landsat and Chinese Huanjing (HJ) 
1A/1B satellite data. The classification system consisted 
of 6 classes in level I and 38 classes in level II, derived 
from 19 criteria regarding the composition, structure, 
pattern, phenology, etc. (Zhang et al., 2014). Level I 
classes included woodland, grassland, wetland, cropland, 
settlement, and bare land. The ChinaCover datasets were 
well validated, with an accuracy above 85% for 2000 and 
2010 (Zhang et al., 2014).  

 

Table 1  Rehabilitation divisions in Beijing-Tianjin Sand Source Region (BTSSR) 

Name Area (km2) Climate zone Dominant land cover Erosion type 

Degraded grassland on Ulanqab Plateau (DGUP) 91 775 Arid Desert steppe Wind 

Degraded grassland on north Xilingol Plateau (DGNXP) 101 884 Semi-arid Steppe Wind 

Desertified areas in Otindag Sandy Land (DOSL) 54 543 Semi-arid Steppe Wind 

Desertified areas in western Horqin Sandy Land (DWHSL) 75 157 Dry sub-humid Meadow steppe Wind and water

Wind and water eroded areas in Bashang and Yanbei plateaus (WWEBYP) 70 628 Dry sub-humid Steppe Wind and water

Water eroded area in Yanshan Mountains (WEYM) 63 674 Semi-humid Woodland Water 
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2.2.4  Actual observed NPP 
In order to validate the simulated NPP, the biomass was 
obtained at 32 grassland sites in the BTSSR. The obser-
vations were made in late August, 2011, when the 
above-ground biomass reached the maximum. Consi-
dering the spatial resolution of simulated NPP (250 m), 
all sites were flat homogeneous grasslands and the areas 

were not less than 500 m  500 m. Each site had three 

30 m  30 m plots, and each plot had three 1 m  1 m 
samples, the location of plots and samples were de-
signed evenly distributed in order to ensure the repre-
sentativeness. For all the samples, the above-ground 
biomasses were obtained. The ratio of below-ground 
biomass and above-ground biomass and the carbon con-
tent were 2.8 and 47.0% in semi-arid grassland, respec-
tively as recommended by IPCC (2006), based on 
which, the below-ground biomass was acquired, and 
then the total dry weight of biomass was converted to 
weight of carbon. Finally, the average weight of carbon 
of 9 samples was used as the actual NPP for each site. 

2.3  Methods 
2.3.1  Measurement of vegetation productivity 
The vegetation productivity, i.e., growth in vegetation 
biomass, can be measured using remote sensing (Tucker 
et al., 2001; Ludwig et al., 2007; Zhao et al., 2009; 
Zhang et al., 2011). There are several methods to obtain 
the NPP from satellite data, mostly depending on the 
relation between the vegetation indices and the light 
absorbed by the vegetation photosynthetic part. In this 
study, the NPP was computed by using the Carne-
gie-Ames-Stanford approach (CASA) (Potter et al., 
1993) with the maximum light use efficiency for each 
vegetation type referencing to Zhu et al. (2005). Base on 
which, the simulated NPP has been prove to be highly 
consistent with actual observed NPP in northern China, 
with an R2 ranging from 0.4545 to 0.8582 (Zhu et al., 
2005; Zhu et al., 2006; Long et al., 2010; Mao et al., 
2014). Since the input data sources were not completely 
consistent with earlier studies, the simulated NPP in this 
study were validated through comparing with actual 
observed NPP of 32 sites. The NPP in the growing sea-
son (April–September) (hereafter refer to as NPP) was 
aggregated from the 16-day NPP datasets for 2000–2010 
(n = 11).  

Except for the CASA-modeled NPP, the growing 
season-accumulated NDVI (ΣNDVI) was adopted as a 

surrogate because of the strong linear correlation be-
tween the ΣNDVI and NPP for arid and semi-arid vege-
tation (Prince, 1991; Wessels et al., 2007). The CASA 
model used the NDVI but also other variables, such as 
precipitation, temperature, and solar radiation. However, 
its more mechanistic approach does not necessarily im-
prove the accuracy (Fensholt et al., 2006) and can actu-
ally reduce it because of errors in the additional input 
variables. Therefore, both the NPP and ΣNDVI were 
used and compared in this study. 
2.3.2  Calculation of rain use efficiency 
The per-pixel Pearson correlation coefficient (r) was 
used to analyze the correlation between the ΣNDVI, 
NPP and precipitation for the 11 year datasets. The RUE 
was calculated using both the NPP and the ΣNDVI. The 
RUE was only used for regions where the vegetation 
productivity was positively related with the precipita-
tion. The residual trends (RESTREND) method pro-
posed by Wessels et al. (2007) was used for calculating 
the RUE. A linear regression of the ΣNDVI (or NPP) 
with the annual precipitation was performed, after which 
the residuals (difference between the modeled ΣNDVI 
(or NPP) and the remote sensing-based ΣNDVI (or 
NPP)) were calculated for each pixel. 
2.3.3  Trend estimation 
The Sen′s slope (β), a robust non-parametric estimation 
of the trend magnitude (Sen, 1968; Topaloglu, 2006), 
especially effective for small and noisy series, was used 
for the temporal trend analyses of the precipitation, 
ΣNDVI, NPP, ΣNDVI residuals (RUEΣNDVI), and NPP 
residuals (RUENPP) datasets. A positive β represented an 
increasing trend, while a negative β indicated a decreas-
ing trend. The Mann-Kendall test was used to detect the 
significance of the trend (Kendall, 1938). When the 
Mann-Kendall statistic ′z′ was equal to or larger than 
1.64, the trend was considered significant at a 90% con-
fidence level. 
2.3.4  Evaluation of ecological engineering effectiveness 
The effectiveness of the ecological engineering pro-
jects was determined by analyzing the land cover con-
versions and vegetation productivity trends between 
2000 and 2010. The effect of the short-term precipita-
tion variation on the productivity was normalized using 
the RUE for the pixels where the NPP and ΣNDVI 
were positively correlated with the precipitation. The 
analysis consisted of four steps. Because of their weak 
relation with ecological engineering projects, the water 
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bodies, cropland, and settlement regions in 2010 were 
excluded from the effectiveness evaluation. Then, 
based on the land cover characteristics, the cropland 
areas converted to grassland were defined as positive 
in effectiveness, while for the other regions, if the NPP 
or ΣNDVI were positively correlated with the precipi-
tation, the RUE time-series determined if the pixel 
vegetation productivity had increased with time, sug-
gesting an effective vegetation restoration, or vice 
versa for zero and negative trends. For regions with a 
negative correlation between the NPP and the precipi-
tation, only the NPP or ΣNDVI temporal trends were 
examined to evaluate the effectiveness. Caution was 
needed in the interpretation of the vegetation produc-
tivity or RUE trends, since the temporal distribution of 
the precipitation or other climatic factors could also 
affect the vegetation productivity. 
2.3.5  Validation  
To validate the performance of the proposed approach 
for the effectiveness evaluation of ecological enginee-
ring projects on vegetation restoration, 28 regions (of 
7–293 km2), characterized by significant vegetation de-
gradation or restoration from 2000 to 2010, were used 
(Fig. 1). Among them, 11 were clearly degraded areas 
identified by the land cover conversion analysis based 
on the ChinaCover, while the other 17 regions were 
managed small watersheds, which received thorough 
ecological engineering measures in 2002 and 2003 un-
der the Planning for Sustainable Utilization of Water 
Resources in Beijing in the early 21th century and have 
been acknowledged and reported as significantly re-
stored areas (http://www.gov.cn/ztzl/slgz/content_543529. 
htm). Each region was considered positive or negative 
regarding effectiveness, with the proportion of the pixels 
with the same effectiveness used as a validation region 
to evaluate the performance of the proposed effective-
ness evaluation method.  

3  Results and Analyses 

3.1  Validation of NPP estimation 
Compared with field data, the R2 between observed NPP 
and simulated NPP was 0.8032 (P < 0.0001), showing a 
significant linear relationship between them (Fig. 2). 
Therefore, the simulated NPP based on CASA could be 
well used to reflect the temporal and spatial difference 
of NPP in the BTSSR, which was the foundation of our 

analysis later. Despite the highly correlation, it could be 
found that the simulated NPP tended to underestimate 
the NPP of grassland with relative high biomasses to 
some extent. Considering the scale difference and mul-
tiple uncertainties in field investigation, some difference 
like this was inevitable. In general, the simulated NPP 
was considered as reliable and can be used to support 
research. 

3.2  Relationship between NPP, ΣNDVI, and pre-
cipitation 
The per-pixel Pearson correlation coefficient (r) of the 
ΣNDVI and NPP for the BTSSR from 2000 to 2010 is 
shown in Fig. 3. An overall high positive linear relation 
existed between the ΣNDVI and the NPP (higher than 
0.8 in brown), which differed spatially in strength. In 
general, an increase in the humidity index (from arid to 
sub-humid conditions) resulted in a decreasing trend in 
the ΣNDVI and NPP correlation. In particular, most low 
r values (< 0.4) and all negative r values were located in 
sub-humid regions (WEYM). The ΣNDVI and NPP re-
lationship was also clearly related with the land cover 
type, with most low r values located in woodland and 
bare land, while high r values (> 0.8) spread over other 
vegetation types. 

According to the correlation between the vegetation 
productivity (ΣNDVI in Fig. 4A and NPP in Fig. 4B) 
and the precipitation, the relationships between the 
ΣNDVI and NPP and the precipitation differed in 

 

Fig. 2  Comparison between simulated and observed NPP for 
Inner Mongolia grassland in 2011 
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Fig. 3  Accumulated normalized difference vegetation index 
(ΣNDVI)/net primary productivity (NPP) correlation per-pixel 
based on annual observations (2000–2010). BTSSR is study area, 
Beijing-Tianjin Sand Source Region, China   
 

strength, but had similar spatial patterns. The relation-
ship between precipitation and ΣNDVI was generally 
stronger and significant (α = 0.1) in 44% of the area, 
while the precipitation-NPP relationships were signifi-
cant (α = 0.1) in 38% of the study area. On average, the 
vegetation productivity was significantly and positively 
related with the precipitation, except in the sub-humid 
region (WEYM) with woodland cover, where insignifi-
cant positive and negative relationships were dominant. 

The strongest vegetation productivity and precipitation 
relationships were found in the northwestern BTSSR, 
covering most of the DGUP, the central and western 
DOSL, and the northern WWEBYP. Summarizing, the 
vegetation productivity in the BTSSR was strongly in-
fluenced by precipitation, whose effect must be elimi-
nated for an objective assessment of the effectiveness of 
ecological engineering projects on vegetation restora-
tion. 

3.3  Spatial and temporal variability of precipita-
tion, vegetation productivity and RUE 
The vegetation productivity trends based on the ΣNDVI 
(Fig. 5A) and NPP (Fig. 5B) in the BTSSR for 
2000–2010 exhibit three northeast to southwest stripes. 
The northern and southern stripes are mainly character-
ized by increasing trends, while the middle stripe is 
dominated by decreasing trends. The statistical analysis 
revealed that 59.30% of the BTSSR increased in ΣNDVI 
during 2000–2010, with 12.59% corresponding to a sig-
nificant increase at a 90% confidence level, while 40.7% 
decreased, with 4.95% being significant. For the NPP, 
51.30% increased (with 7.03% being significant), while 
48.7% decreased (with 6.91% being significant) (Table 
2). Overall, increasing vegetation productivity was 
dominant in the BTSSR from 2000 to 2010, with a clear 
tendency for smaller areas showing increasing trends 
when using the NPP. The ΣNDVI and NPP trends 
showed very similar spatial patterns for arid, semi-arid, 

 

Fig. 4  Correlation between precipitation and accumulated normalized difference vegetation index (ΣNDVI) (A) and net primary pro-
ductivity (NPP) (B) in study area during 2000–2010. BTSSR is study area, Beijing-Tianjin Sand Source Region, China   
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and dry sub-humid regions, while clearly differing for 
sub-humid areas (WEYM), where large areas of signifi-
cantly increasing ΣNDVI trends were characterized by 
decreasing NPP trends. The difference was consistent 
with the negative relationship between the ΣNDVI and 
NPP (Fig. 3), showing that, in the BTSSR, the interac-
tion between the precipitation and the NPP was more 
complex for woodlands. 

The temporal trends in the ΣNDVI (RUEΣNDVI) and 
NPP residuals (RUENPP) are shown in Figs. 5C and 5D, 
respectively. Comparing with the ΣNDVI and NPP 
trends, the regions with significantly increasing trends 
widely decreased, especially between the DGUP and 

DGNXP, suggesting that, in spite of their significantly 
increasing trends in vegetation productivity, it was lower 
than the predicted by the precipitation. Consequently, 
the regions with decreasing trends expanded to some 
extent, especially in the DGUP and DOSL, where some 
originally increasing trends changed to decreasing 
trends, meaning that precipitation fluctuations explained 
some of the decrease. The statistical analysis showed 
that 50.33% of the BTSSR increased in terms of 
RUEΣNDVI trends from 2000 to 2010, with 10.86% in-
creasing significantly at a 90% confidence level, while 
49.67% decreased, with 9.47% being significant. Re-
garding the RUENPP trends, 43.66% increased (with  

 
Fig. 5  Linear trends of vegetation productivity from 2000 to 2010 based on accumulated difference vegetation index (ΣNDVI) (A), net 
primary productivity (NPP) (B), ΣNDVI residuals (RUEΣNDVI) (C), and NPP residuals (RUENPP) (D). Sig. is significant and Insig. is not 
significant. BTSSR is study area, Beijing-Tianjin Sand Source Region, China   
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5.46% being significant) and 56.34% decreased (with 
12.03% being significant) (Table 2). 

3.4  Evaluation and validation of ecological engi-
neering effectiveness 
Based on the proposed methodology and regardless of 
the difference between the RUEΣNDVI and RUENPP, the 
ecological engineering projects proved to be effective on 
vegetation restoration in the south and central-north of 
the BTSSR, while being ineffective in the remaining 
study region (Fig. 6). Based on the RUEΣNDVI, 47.39% 
of the BTSSR experienced vegetation restoration (with 
9.59% being significant) from 2000 to 2010. When the 
RUENPP was used, this proportion decreased to 41.7% 
(with 4.42% being significant). Regardless of the vege-
tation productivity indicator chosen, nearly half of the 
BTSSR benefited from ecological engineering in terms 
of vegetation restoration. 

The effectiveness of the ecological engineering was 
validated for 28 regions and the performance using dif-

ferent indicators was compared (Table 3). Results based 
on RUEΣNDVI and RUENPP were both consistent with the 
validation regions, with contrary effectiveness trends 
seldom existing. The statistical results showed that 
96.4% (RUEΣNDVI) and 94.7% (RUENPP) of the vegeta-
tion restoration regions had a positive effectiveness, 
while 93.4% (RUEΣNDVI) and 92.9% (RUENPP) of the 
vegetation degradation regions had a negative effec-
tiveness. Not all validation regions were identified by 
our approach, regardless of using the RUEΣNDVI or the 
RUENPP, which was expected since the validation re-
gions only assured that most of the area was improving 
or degrading, but not all pixels.  

Since all validation regions were clearly degraded or 
recovered regions, it was necessary to compare the dif-
ference in significant effectiveness. For vegetation res-
toration regions, 52.7% of the total pixels were assessed 
as significantly positive using the RUEΣNDVI, while only 
33.5% were significantly positive when the RUENPP was 
used. This large difference (19.2%) was consistent with 

 
Table 2  Statistical results of vegetation productivity and rain use efficiency (RUE) trend from 2000 to 2010 

Indicators Pixels analyzed Significantly decrease (%) Insignificantly decrease (%) Insignificantly increase (%) Significantly increase (%)

ΣNDVI 7 322 378 4.95 35.75 46.71 12.59 

NPP 7 322 378 6.91 41.79 44.27 7.03 

RUEΣNDVI 7 322 378 9.47 40.20 39.47 10.86 

RUENPP 7 322 378 12.03 44.31 38.20 5.46 

Note: ΣNDVI is accumulated difference vegetation index; NPP is net primary productivity; RUEΣNDVI is ΣNDVI residuals; RUENPP is NPP residuals 

 

Fig. 6  Effectiveness of ecological engineering projects on vegetation restoration based on accumulated difference vegetation index 
residuals (RUEΣNDVI) (A) and net primary productivity residuals (RUENPP) (B). Sig. is significant and Insig. is not significant. BTSSR is 
study area, Beijing-Tianjin Sand Source Region, China   
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Table 3  Pixel number and percentage of different types of effectiveness summarized in vegetation restoration or degradation validation 
region based on accumulated difference vegetation index residuals (RUEΣNDVI) and net primary productivity residuals (RUENPP) 

Vegetation restoration Vegetation degradation 
Effectiveness 

RUEΣNDVI RUENPP 
 

RUEΣNDVI RUENPP 

Significantly negative 20 (0.09%) 47 (0.21%) 4644 (73.98%) 4697 (74.83%) 

Insignificantly negative 791 (3.48%) 1157 (5.09%) 1219 (19.42%) 1135 (18.08%) 

Insignificantly positive 9948 (43.76%) 13 916 (61.22%) 380 (6.05%) 426 (6.79%) 

Significantly positive 11 972 (52.67%) 7611 (33.48%) 

 

34 (0.54%) 19 (0.30%) 

Note: meanings of all abbreviations see Table 2 

 
the spatial distribution of the significantly positive effec-
tiveness from Fig. 6, which showed that the RUEΣNDVI 
was preferable for the assessment of positive effective-
ness. For vegetation degradation regions, the pixel 
number of significantly negative effectiveness did not 
change when choosing the RUEΣNDVI or RUENPP. 
Therefore, the RUEΣNDVI was advantageous for the ef-
fectiveness assessment of ecological engineering on 
vegetation restoration. 

3.5  Interpretation of effectiveness 
Concerning land cover dynamics, 1.5% of the BTSSR 
experienced land cover conversion between 2000 and 
2010. The conversion from grassland to woodland was 
dominant (26.6%), followed by grassland to settlements 
(11.4%), cropland to settlements (11.1%), cropland to 
grassland (8.1%), bare land to grassland (7.7%), wetland 
to grassland (6.4%), and cropland to woodland (5.2%). 
Among these changes, the transitions from grassland to 
woodland, cropland to grassland, bare land to grassland, 
and cropland to woodland could be considered as results 
of ecological engineering projects, while crop-
land/grassland change to settlements resulted from ur-
banization. The overlapping between the effectiveness 
assessment and the land cover in 2010 showed that most 
significantly negative effectiveness areas corresponded 

to grassland, based on the RUEΣNDVI or RUENPP 
(88.78% and 86.77%, respectively). Oppositely, signifi-
cantly positive effectiveness areas mainly corresponded 
to woodland (55.36% and 44.85%, respectively) and 
grassland (40.03% and 48.29%, respectively) based on 
the RUEΣNDVI or RUENPP. Therefore, more efforts 
should be put on grassland restoration in the future. 

Based on the distribution for the six rehabilitation 
subareas, the effectiveness of the ecological engineering 
differed spatially (Table 4). In order to evaluate the dif-
ference of vegetation restoration effectiveness in each 
sub-area, the ratio between the areas characterized by 
significantly positive and negative based on RUEΣNDVI 
was chosen as the valuation criteria. Based on which, 
the most effective region was the WEYM, followed by 
the WWEBYP, the DWHSL, the DGNXP, the DOSL, 
and the DGUP. According to the characteristics of the 
different subareas, we concluded that water erosion re-
gions dominated by woodland (WEYM) had the best 
restoration effects, followed by wind-water erosion 
crisscross regions (WWEBYP, DWHSL), while wind 
erosion regions dominated by grassland (DGNXP, 
DGUP, and DOSL) showed the worst restoration. The 
reasons for this difference in effectiveness could be ob-
tained by comparing the areas under ecological engi-
neering projects with the total areas. According to the  

 

Table 4  Statistics of effectiveness for different sub-areas (pixel numbers) based on accumulated difference vegetation index residuals 
(RUEΣNDVI) and net primary productivity residuals (RUENPP) 

Significantly negative Significantly positive 
Sub-area 

RUEΣNDVI RUENPP 
 

RUEΣNDVI RUENPP 

WWEBYP 56 911 90 742 146 510 75 040 

DGNXP 98 301 88 369 68 019 33 648 

DWHSL 84 917 100 371 78 436 61 334 

DOSL 130 510 183 030 38 151 27 221 

DGUP 130 966 195 230 20 245 16 205 

WEYM 9183 33 630 

 

262 681 73 600 

Note: meanings of all abbreviations see Table 1 
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Beijing and Tianjin Sandstorm Source Controlling Pro-
gram, the proportion of water erosion, wind-water ero-
sion and wind erosion regions was approximately 88%, 
68% and 21%, respectively. Therefore, the effectiveness 
was proportional to the efforts of ecological engineering. 

The negative effectiveness determined in this study 
might include the side effects of irrational engineering, 
but it is more probably because the absence of ecologi-
cal engineering somewhere. 

4  Discussion 

The vegetation productivity trends were very sensitive 
to the choice of vegetation productivity indicator. A 
clear tendency towards smaller increasing areas was 
shown when using the NPP (51.30%) instead of the 
ΣNDVI (59.30%). This finding was consistent with the 
earlier study of Wu et al. (2013). In their study, the 
proportion of the areas with increasing trend was 
smaller when the NPP was used (58.34%) instead of 
the annual integrated NDVI (64.33%). The reasons for 
this difference mainly resulted from the incorporation 
of the precipitation in the NPP calculation, since sev-
eral studies have shown that severe droughts in 2007 
and 2009 seriously reduced the vegetation growth in 
the northern China (Piao et al., 2010; Zhao and Run-
ning, 2010).  

Consistent with earlier studies (Tucker et al., 1991;  

Herrmann et al., 2005; Wu et al., 2013), 44% (ΣNDVI) 
and 38% (NPP) of the pixels analyzed were significantly 
correlated (α = 0.1) with the precipitation in the BTSSR. 
Therefore, the effect of precipitation variation on the 
vegetation must be eliminated with the RESTREND 
method, which has vegetation productivity proportional 
to the precipitation as a prerequisite (Fensholt et al., 
2013). However, this requirement is usually not satisfied 
for sub-humid areas covered by woodland. The influ-
ence of the intra-seasonal precipitation distribution on 
the vegetation productivity was investigated by incor-
porating two additional parameters of the precipitation 
distribution (variance and skewness) in the multivariate 
regression models. Compared with the model only using 
the precipitation, the addition of these two parameters 
increased the ability of the model to explain the vegeta-
tion productivity variation (Fig. 7). The explained vari-
ance changes varied spatially but were not significantly 
related with the climate type or land cover, with the ar-
eas of most obvious increase (> 40%) coinciding with 
the areas characterized by insignificant relationships 
between the vegetation productivity and precipitation. 
Therefore, the establishment of an improved model for 
the vegetation productivity and precipitation and other 
climactic factors was very important when using the 
RESTREND method. Considering the data accessibility 
and widespread utilization of the RESTREND, the pro-
posed approach should be effective for other arid and  

 

Fig. 7  Comparison of percentage of variance change explained by other variables in addition to precipitation: accumulated normalized 
difference vegetation index (ΣNDVI) (A) and net primary productivity (NPP) (B). BTSSR is study area, Beijing-Tianjin Sand Source 
Region, China   



226 Chinese Geographical Science 2016 Vol. 26 No. 2 

 

semi-arid regions, where the vegetation productivity is 
strongly affected by the precipitation. 

The degradation areas in the BTSSR were regarded 
as a negative effectiveness of the ecological engineering 
projects. Most negative effectiveness regions were lo-
cated in grassland-dominated wind erosion areas. In 
those regions, the proportion between the areas under 
ecological engineering projects and the total area was 
only approximately 21%, meaning that the degradation 
probably resulted from the lack of ecological engineer-
ing measures. Since we did not know the actual spatial 
distribution of the engineering projects, the negative 
effectiveness identified in this study included degraded 
areas caused by the absence of ecological engineering 
projects. The negative effectiveness regions identified 
represent hotspots for the analysis of the detailed rea-
sons for degradation and require additional attention in 
future ecosystem restoration. 

5  Conclusions 

The effectiveness of ecological engineering projects on 
vegetation restoration in the BTSSR was assessed using 
long-term vegetation productivity trends, in which the 
short-term effects of the precipitation variation on the 
productivity were normalized using the RUE. The main 
conclusions were: 

(1) More than half of the BTSSR experienced a 
vegetation productivity increase from 2000 to 2010. The 
increasing intensity was sensitive to the choice of indi-
cators, with a clear tendency to smaller increasing areas 
when the NPP (51.30%) was used instead of the ΣNDVI 
(59.30%).  

(2) The short-term variation in the precipitation had a 
great impact on the remote sensing-based vegetation 
productivity, with 44% of the ΣNDVI and 38% of the 
NPP significantly and linearly correlated with the annual 
precipitation. The RESTREND method effectively 
eliminated this correlation, widely reducing the increas-
ing and locally expanding the decreasing trends that 
resulted originally from the precipitation variation. The 
intra-seasonal precipitation distribution also affected 
significantly the vegetation productivity. Through in-
corporating two additional precipitation parameters 
(variance and skewness), the vegetation productivity 
variations could be explained better. 

(3) The RUE combined with land cover dynamics 

was valid for the effectiveness assessment of ecological 
engineering projects on vegetation restoration. Com-
pared with RUENPP, RUEΣNDVI was more appropriate for 
vegetation restoration assessment. Based on which, we 
found that 47.39% of the BTSSR have experienced 
vegetation restoration from 2000 to 2010. The effec-
tiveness of the ecological engineering projects differed 
among subareas, with water erosion regions dominated 
by woodland having the best restoration effects, fol-
lowed by wind-water erosion crisscross regions, while 
wind erosion regions dominated by grassland were the 
worst. The effectiveness was proportional to the strength 
of the ecological engineering.  

(4) Clearly 41.7% of the BTSSR experienced vegeta-
tion restoration (with 9.59% being significant). How-
ever, serious degradation still outnumbers the restora-
tion. Therefore, more effort should be put in restoring 
the degraded areas in the future. 
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