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Abstract: Hyperspectral data are an important source for monitoring soil salt content on a large scale. However, in previous studies, 

barriers such as interference due to the presence of vegetation restricted the precision of mapping soil salt content. This study tested a 

new method for predicting soil salt content with improved precision by using Chinese hyperspectral data, HuanJing-Hyper Spectral 

Imager (HJ-HSI), in the coastal area of Rudong County, Eastern China. The vegetation-covered area and coastal bare flat area were dis-

tinguished by using the normalized differential vegetation index at the band length of 705 nm (NDVI705). The soil salt content of each 

area was predicted by various algorithms. A Normal Soil Salt Content Response Index (NSSRI) was constructed from contin-

uum-removed reflectance (CR-reflectance) at wavelengths of 908.95 nm and 687.41 nm to predict the soil salt content in the coastal 

bare flat area (NDVI705 < 0.2). The soil adjusted salinity index (SAVI) was applied to predict the soil salt content in the vegeta-

tion-covered area (NDVI705 ≥ 0.2). The results demonstrate that 1) the new method significantly improves the accuracy of soil salt con-

tent mapping (R2 = 0.6396, RMSE = 0.3591), and 2) HJ-HSI data can be used to map soil salt content precisely and are suitable for 

monitoring soil salt content on a large scale. 
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1  Introduction 

Soil salinization is occurring at an increasingly rapid 
rate around the world; additionally, changing weather 
patterns associated with climate change are likely to 
increase this risk (Wei et al., 2001; Gu et al., 2002). Im-
proving methods for soil salt content monitoring and 
forecasting is currently an important area of research 
(Metternicht and Zinck, 2003). Traditional methods, 
including field surveying using Electromagnetic Con-

ductivity Meters (EM38 and EM31) and sample collec-
tion do not currently meet the requirements for soil salt 
content monitoring on a large scale and in areas charac-
terized by high variation (Slavich and Petterson, 1990; 
Anderson-Cook et al., 2002; Kinal et al., 2006). Previ-
ous studies reported that the precision of soil salt con-
tent monitoring and mapping based on hyperspectral 
data was higher than that on multispectral data (Metter-
nicht and Zinck, 2003; Fernandez-Buces et al., 2006; 
Ghosh et al., 2012; Mashimbye et al., 2012; Shamsi et 
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al., 2013). The types and levels of soil salinity could be 
determined accurately by using hyperspectral data with 
high spectral resolution, which was a generally accepted 
monitoring method (Farifteh et al., 2008; Weng et al., 
2010; Zhang M M et al., 2011; Zhang T et al., 2011; 
Ghosh et al., 2012). 

Currently, there are problems associated with the use 
of hyperspectral data to monitor soil salt content. First, 
though there are many sources of hyperspectral data, 
satellite-borne sensors are relatively few, and hyper-
spectral data are most often collected from airborne 
sensors, including Modular Airborne Imaging Spec-
trometer (MAIS), Pushroom Hyperspectral Imager (PHI), 
Operational Modular Imaging Spectrometer (OMIS-1, 
OMIS-2), Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS), The Advance of Australian Aerial 
High Spectral Equipment (HYMAP), and Digital Air-
borne Imaging Spectrometer (DAIS). Examples of satel-
lite-borne sensors are Moderate-Resolution Imaging 
Spectroradiometer (MODIS) (Xu et al., 2012), Earth 
Observing 1 (EO-1), and HuanJing-Hyper Spectral 
Imager (HJ-HSI). Second, although the accuracy of soil 
salt content monitoring by hyperspectral data is rela-
tively high, most high-salinity soils are located in agri-
cultural or coastal regions where massive crops and 
halophyte plants on the surface of the land interfere with 
spectral reflectance (Metternicht and Zinck, 2003). For 
example, paddy, cotton, and corn crops, as well as 
halophyte plants, were planted to accelerate salt washing 
in coastal reclamation areas, which led to a lack of cor-
respondence between the reflectance spectra of soil salt 
content and the theoretical one measured by the Field-
SPec spectrometer, an analytical spectral device (ASD) 
(Farifteh et al., 2008; Zhang T et al., 2011). Additionally, 
spectral absorption and reflection vary according to the 
type of vegetation (Zhang T et al., 2011). Ways to re-
move the effects of vegetation on the soil reflectance 
spectra has become an important area of research. Re-
searchers have developed more than ten models to pre-
dict soil salt content in many different zones over twenty 
years, for example, simple ratio vegetation index (RVI), 
normalized differential vegetation index (NDVI), nor-
malized difference salinity index (NDSI), soil adjusted 
salinity index (SAVI), partial least squares regression 
(PLSR), photochemical reflectance index (PRI); plant 
senescence reflectance index (PERI); and structure-  
insensitive pigment index (SIPI) (Huete, 1988; Gamon 

et al., 1997; Blackburn, 1998; Penuelas and Filella, 
1998; Merzlyak et al., 1999; Lobell et al., 2010; Weng 
et al., 2010; Zhang T et al., 2011; Mashimbye et al., 
2012). However, the mapping accuracy of previous 
models is relatively low (Weng et al., 2010; Zhang T et 
al., 2011; Ghosh et al., 2012). Although some research-
ers have made great efforts to improve previous models, 
their accuracy remains low. Reflectance spectra of 
coastal soils are affected by the presence of vegetation 
and water (Metternicht and Zinck, 2003), and the con-
tribution of soil salt to the reflectance spectra is hard to 
distinguish from these interferences (Rao et al., 1995).  

Among satellite-borne sensors, MODIS has high time 
resolution, but also has some inherent shortcomings in-
cluding low accuracy and low spatial resolution (Lobell 
et al., 2010; Shamsi et al., 2013). The Hyperion has 
relatively high spatial resolution (30 m) and high spec-
tral resolution covering a range from visible near infra-
red (VNIR) to short wave infrared (SWIR); however the 
width of single image is very narrow, being only 7.7 km. 
It therefore cannot meet the needs of soil salt content 
monitoring on a large scale, which restricts its use in 
practical applications. HJ-HSI is an open access satel-
lite-borne hyperspectral data sensor. It has high spectral 
resolution (4 nm) and broad coverage: the width of sin-
gle image is 51 km, and the spatial resolution is 100 m. 
In this study, we applied HJ-HSI to map the salt content 
of soils in Rudong County, Jiangsu Province, China. A 
new method that applies the normal soil salt content 
response index (NSSRI) and soil adjusted salinity index 
(SAVI) was applied to map the soil salt content based on 
NDVI705. The objectives of this study are: 1) to confirm 
the feasibility of using HJ-HSI data to map soil salt 
content; and 2) to provide a new method of using hy-
perspectral data for monitoring soil salt content with 
improved accuracy. 

2  Materials and Methods 

2.1  Study area 
This study was conducted in Rudong County, Jiangsu 
Province, located in the east coast of China (32°14′23″– 
32°38′10″N, 120°41′22″–121°35′25″E) (Fig. 1). The 
study area is close to the Yellow Sea, and has a north 
subtropical oceanic monsoon climate with plenty of 
rainfall and sunshine. The average annual temperature is 
15 . The total population in 2010 was 9℃ .96 × 105. The 
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length of its coast is 106 km, and the coastal area has 
vast offshore sandbanks. The area of the beach in the 
study region is vast and shaped by alluvial deposits from 
the Changjiang (Yangtze) River. The coastal beach is 
currently expanding seaward at a rate of 25–30 cm a 
year. At present, 15 reclamation regions have been built 
up in the study area, and the total area of the reclamation 
region is 230 km2 (Fig. 1, Table 1). The area of land that 
can be reclaimed at present is nearly 100 km2. The soil 
is well-developed, and is mostly shallow tidal saline soil. 
Silty saline soil is the main soil type in the reclamation 
area, where vegetation coverage is high because of the 
presence of various crops. In the bare, coastal flat area, 
sandy saline soil and saline clay are the main soil types. 
Suaeda glauca, Spartina cynosuroides, Spartina al-
terniflora and Spartina patens are the main vegetation 
types, but overall vegetation coverage is low. Alluvial 
soil develops in the flood bed area where there are 
plenty of freshwater resources. Halophyte plants usually 
grow in the high tide area. 

2.2  Data and processing 
2.2.1  Soil Sampling and chemical analyses 
This study was conducted from 15 to 19 August, 2011. 

Four sea-land gradient zones were set up, and one sam-
ple was collected every 200 m. The sampling depth was 
20 cm, and 64 samples were collected: 26 from the bare 
flat area and 38 from the vegetation-covered area. 
Global Positioning System (GPS) was applied to obtain 
the coordinates of each sampling location. All soil sam-
ples were air dried and passed through a 2-mm sieve to 
remove gravel and weed roots, and then the salt ions and 
total dissolved salt of each sample were measured. Na+ 
and K+ were measured by flame photometry; CO3

2– and 
HCO3

– were determined by using standard H2SO4 titra-
tion; Mg2+, Ca2+, and SO4

2– were measured by ethyl-
enediaminetetraacetic acid disodium salt (EDTA) com-
plexometry, and Cl– was determined by standard AgNO3 
titration (Bao, 2000). All samples were then passed 
through a 0.149-mm sieve to determine soil total phos-
phorus (TP), total nitrogen (TN), total potassium (TK) 
and soil organic matter (SOM) according to the method 
of Bao (2000). 
2.2.2  Hyperspectral data  
The HJ-HSI sensor was carried by the HJ-1A satellite, 
which was launched on 6 September, 2009. The sensor 
was activated on 30 September 2009. The HJ-HSI sen-
sor has since provided the first open-access hyperspec- 

 

 
Fig. 1  Map of study area and distribution of sampling sites 
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Table 1  Reclamation areas in Rudong′s coastal area  

Number Reclamation area Area (km2) 
Development 

year 

1 Yudong 21.89 2007 

2 Yangdong 20.60 1960 

3 Wangjiatan 10.14 1974 

4 Seconde stage of Yangkou 4.64 2010 

5 Seconde stage of Yangbei 1.74 2004 

6 First stage of Yangkou 5.03 2004 

7 First stage of Yangbei 8.31 2001 

8 Rudong saltern 11.87 1958 

9 Old Beikan 14.78 1951 

10 New Beikan 18.56 1974 

11 Juedong 14.29 1972 

12 Huangang 13.45 1971 

13 Huandong 26.14 1969 

14 Dongling 38.64 1982 

15 Outside of Huangang 19.77 2007 

 
tral data for environmental monitoring in China. Its spa-
tial resolution is 100 m and it covers a spectral range 
from 459 nm to 956 nm with a total of 115 bands. The 
average spectral resolution is 4 nm and the width of a 
single image is 51 km. The revisit period of the HJ-HSI 
sensor is four days (Wang et al., 2010). The HJ-HSI data 
in this study were obtained from the Satellite Environ-
ment Center, Ministry of Environmental Protection, China 
(http://www.secmep.cn/secPortal/portal/index.faces), 450/ 
76 (path/row). The HJ-HSI data loaded from the Satel-
lite Environment Center have been all treated by sensor 
calibration and radiance calibration. The HJ-HSI data 
involved in the analysis were acquired on 11 August, 
2011. The effect of atmospheric scattering and moisture 
absorption on reflectance spectra were removed from 
the image by using the model Line of Sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH) in ENVI 
4.7 software. The continuum-removed reflectance (CR-  
reflectance) spectra were acquired by using the contin-
uum removal tools in ENVI 4.7 software to eliminate 
interference factors, to signal spectral absorption and 
reflectance to highlight the useful information, and to 
carry out the experiment on mapping soil salt content. 

2.3  Methods 
2.3.1  Estimation approach of soil salt content 
Crops and halophyte plants are the major barriers to ac-
curately predict the soil salt content (Zhang T et al., 
2011). Previous studies have shown a high precision in 

mapping the soil salt content by using the normalized 
difference algorithm in the bare flat area (Weng et al., 
2010). In the vegetation-covered area, there was a strong 
correlation between SAVI and soil salt content, while 
correlations between soil salt content and NDVI, red 
edge position (REP), plant senescence reflectance index 
(PSRI), simple ratio (SR), and structure-insensitive pig-
ment index (SIPI) were low (Gitelson and Merzlyak, 
1994; Blackburn, 1998; Merzlyak et al., 1999; Aldak-
heel, 2011). The accuracy of the predicted soil salt con-
tent in the vegetation-covered area was lower than that 
in the coastal bare flat area in those studies, which seri-
ously decreased the accuracy in the whole region. These 
findings indicate that it is important to distinguish the 
vegetation-covered area and the bare flat area, and con-
struct corresponding indices accordingly (Fig. 2). Thereby, 
this study poses a combined indices composed of SAVI 
and NSSRI to predict soil salt content in the coastal area. 
In the coastal bare flat area, soil salt content is predicted 
by using NSSRI. However, soil salt content is estimated 
by using SAVI in the vegetation-covered area. 

This study distinguished the bare flat area and the 
vegetation-covered area by using NDVI705, which is an 
improved version of NDVI. It is very sensitive to minor 
changes in the vegetation canopy, gap fraction, and se-
nescence, and has been used in such applications as pre-
cision agriculture, forest monitoring, and vegetation 
stress detection. In addition, it was successfully used as 
an index to predict the soil salt content by Gitelson and 
Merzlyak (1994). The formula is as follows: 

750 750

750 750
705 =

+
NDVI

 
 


  (1) 

where ρ750 and ρ705 are the CR reflectance at 750 nm and 
705 nm, respectively. If NDVI705 is less than 0.2, the 
region is considered to be coastal bare flat area; other-
wise it is considered as vegetation-covered area. 

The normalized difference algorithm was used in the 
mapping soil salt content to construct the NSSRI in the 
coastal bare flat area. Its formula is as follows: 

( 1 2) / ( 1 2)NSSRI B B B B     (2) 

where NSSRI is the normal soil salt content response 
index; B1 and B2 are the CR-reflectance of the bands 1 
and 2, produced by hyperspectral analysis, respectively. 
SAVI was used to predict the soil salt content in the 
vegetation-covered area. Zhang T et al. (2011) revealed  
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Fig. 2  Description of soil salt content estimation method. NDVI705: normalized differential vegetation index; SAVI: soil adjusted salin-
ity index; NSSRI: normal soil salt content response index 
 

differences in the CR-reflectance spectra between dif-
ferent types of vegetation, and a single band could not 
reflect the impact of all vegetation on the CR-reflec-
tance spectra. Therefore, the soil salt content response 
index should be constructed with several bands to 
eliminate the effect of vegetation. Multiple bands can 
therefore be applied to construct SAVI. Most of the 
crops and halophyte plants had distinctive CR-reflectance 
spectra in spectral ranges between 655 nm and 764 nm, 
and between 889 nm and 903 nm (Zhang T et al., 2011). 
The average CR-reflectance in the ranges of 655–764 nm 
and 889–903 nm were therefore applied to construct the 
SAVI. 

2 1

2 1

= (1 0.5)
+ + 0.5

λ λ
SAVI 

λ λ


    (3) 

where λ1 and λ2 are the average CR-reflectance in the 
ranges of 655–764 nm and 889–903 nm, respectively.  

2.3.2  Evaluation of accuracy 
The accuracy of mapping was measured by the root 
mean square error (RMSE) method (Weng et al., 2010). 

2

=1  

( )n
i i

i

y p
RMSE =

n

   (4) 

where yi and pi are the measured soil salt content and 
predicted soil salt content at the ith sample, respectively, 
and n is the number of samples involved in the analysis. 

3  Results and Analyses 

3.1  Descriptive statistics of soil properties in study 
area  
Spectral absorption and reflectance of soils vary de-
pending on the salts present (Farifteh et al., 2008). As-
certaining the type of salts present was therefore an im-
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portant step. Descriptive statistics of the soil salt content 
of the 64 samples was conducted by using SPSS 17.0 
software (Table 2 and Table 3). The results show that the 
predominant ion in the soil in the study area is Cl–, 
which is significantly correlated (p < 0.05) with total 
soil salt content, K+ and Na+, with correlation coeffi-
cients of 0.997, 0.931, and 0.920, respectively. These 
results indicate that NaCl and KCl are the dominant salts 
in the soil in the study area. The nutrient content of the 
soils are relatively low, especially in the coastal bare flat 
area. 

3.2  Spectrum selection  
Previous studies have ascertained the most appropriate 
bands used to determine soil salt content by using the 
theoretical reflectance curve obtained from the analyti-
cal spectral device in the laboratory (Farifteh et al., 
2006; Fernandez-Buces et al., 2006). The reflectance 
spectra of soil in the field were disturbed by soil nutri-
ents, physical properties, and moisture, and were there-
fore not consistent with the corresponding theoretical 

spectra. The contribution of soil salt was therefore dif-
ficult to ascertain (Farifteh et al., 2008; Weng et al., 
2010). This study directly assessed and validated the 
relationship between the CR-reflectance spectra of HJ- 
HSI and high-salinity soil in the coastal bare flat area. 
Two samples with high salt content were chosen, and 
the CR-reflectance spectra were obtained from the five 
pixels surrounding the two samples (Fig. 1, Table 4). 
The average CR-reflectance was used to map the soil 
salt content in the coastal bare flat area (Fig. 3). 

The best available pairs of bands must have two fea-
tures based on the normalized difference algorithm. One 
is the difference between CR-reflectance of pairs of 
bands 1 and 2 is very large, another is a high correlation 
coefficient between the CR-reflectance and the corre-
sponding soil salt content. 

The correlation coefficient between the CR-reflectance 
of different bands and the corresponding soil salt content, 
as well as the main ions, were calculated to ascertain the 
best pair of bands (Farifteh et al., 2008) (Fig. 4). The 
results reveal that high CR-reflectance occurs mainly in 

 

Table 2  Concentrations of ions of soils in study area  

Item CO3
2 

(mmol/kg) 
HCO3

 

(mmol/kg)
Cl 

(mmol/kg) 
SO4

2 

(mmol/kg)
K+ 

(mmol/kg)
Na+ 

(mmol/kg)
Ca2+ 

(mmol/kg)
Mg2+ 

(mmol/kg) 
SOM 
(‰) 

TP 
(‰) 

TN
(‰)

TK
(‰)

Mean – 4.24 49.38 0.27 0.48 8.73 3.13 11.97 3.44 0.45 0.62 16.23

Minimum – 3.87 4.12 0.08 0.13 2.83 1.56 5.48 0.17 0.23 0.37 13.97

Maximum – 4.40 181.44 0.28 1.52 25.92 9.25 22.27 10.54 0.91 0.81 19.29

 

Table 3  Correlation coefficients among ions and total salt content of soils in study area 

 CO3
2 HCO3

 Cl SO4
2 K+ Na+ Ca2+ Mg2+ 

Total soil salt 
content 

CO3
2 1 0.054 –0.060 –0.105 –0.073 –0.030 –0.089 0.078 –0.049 

HCO3
 0.054 1 0.175 0.212* 0.225* 0.235* 0.243* 0.162 0.206 

Cl –0.060 0.175 1 0.799** 0.931** 0.920** 0.755** 0.508** 0.997** 

SO4
2 –0.105 0.212* 0.799** 1 0.876** 0.813** 0.610** 0.327** 0.802** 

K+ –0.073 0.225* 0.931** 0.876** 1 0.953** 0.766** 0.430** 0.938** 

Na+ –0.030 0.235* 0.920** 0.813** 0.953** 1 0.747** 0.455** 0.931** 

Ca2+ –0.089 0.243* 0.755** 0.610** 0.766** 0.747** 1 0.378** 0.774** 

Mg2+ 0.078 0.162 0.508** 0.327** 0.430** 0.455** 0.378** 1 0.553** 

Total soil salt 
content 

–0.049 0.206 0.997** 0.802** 0.938** 0.931** 0.774** 0.553** 1 

Notes: **: significant at the 0.05 level (2-tailed); *: significant at the 0.1 level (2-tailed) 
 

Table 4  Properties of soils in verification zone of CR-reflectance spectra 

Sample Longitude (°) Latitude (°) Sampling date Land use type pH a∶b∶c Soil salt content (%) 

Hb4 121.4 32.33 2011-08-16 Bare shallow 7.97 86 4 10∶ ∶  0.92 

Hb5 121.4 32.33 2011-08-16 Bare shallow 8.06 88 2 10∶ ∶  0.68 

Notes: a: the proportion of soil particles greater than 0.05 mm; b: the proportion of soil particles between 0.002 mm and 0.05 mm; c: the proportion of 
soil particles less than 0.002 mm 
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Fig. 3  Continuum-removed reflectance (CR-reflectance) spectra 
in verification zone (X: column; Y: row) 

 

 
 
Fig. 4  Correlation coefficient between CR-reflectance and cor-
responding soil salt content 

 
the ranges of 460–466 nm, 480–494 nm, 587–594 nm, 
and 900–951 nm, especially in blue bands (460–466 nm) 
and NIR bands (900–951 nm) (Fig. 3). The correlation 
coefficient between the CR-reflectance and the corre-
sponding soil salt content is high (r > 0.5) in the ranges 
of 558–688 nm and 778–909 nm (Fig. 4). The highest 
value is at the wavelength of 687.41 nm (r = 0.66). Two 
available pairs of bands are determined based on the re-
quirements of the normalized difference algorithm 
(908.95 and 687.41 nm; 908.95 and 834.27 nm). The 
correlation coefficients are relatively high in the first pair, 
−0.55 and 0.66, respectively, and the CR-reflectance 
values are 0.620 and 0.488, respectively. The CR-reflec-
tance values in the second pair are 0.620 and 0.438, re-
spectively, and their correlation coefficients are −0.55 
and −0.60, respectively. This indicates that the first pair 

is more sensitive to the changes in the CR-reflectance 
that result from changes in the soil salt content than the 
second pair. So, the index NSSRI was constructed by 
using the wavelengths of 908.95 nm and 687.41 nm. 

908.95 687.41 908.95 687.41( ) / ( )NSSRI ref ref ref ref     (5) 

where ref908.95 and ref687.41 are the CR-reflectance at the 
wavelengths of 908.95 nm and 687.41 nm, respectively. 

3.3  Accuracy of soil salt content prediction 
The coastal bare flat area (NDVI705 < 0.2) and the vege-
tation covered area (NDVI705 ≥ 0.2) were extracted by  
ENVI 4.7 software (Verrelst et al., 2008). Equation (5) 
was applied to calculate the NSSRI in the coastal bare 
flat area, and SAVI (Equation (3)) was applied in the 
vegetation-covered area. Linear regression fitting analy-
sis between measured soil salt content and NSSRI, 
SAVI was conducted by using Excel software. Eighteen 
of the 26 samples located in the coastal bare flat area 
were used to conduct the model for estimating soil salt 
content by using NSSRI (Fig. 5). Thirty of the 38 sam-
ples located in the vegetation-covered area were used to 
construct the model for estimating the soil salt content 
by using SAVI (Fig. 6). The other 16 samples (eight in 
the coastal bare flat area and eight in the vegetation 
covered area) were used to test the combined indices 
model as posed above (Fig. 7, Table 5).  

Figures 5 and 6 show that the fitting accuracy of the 
soil salt content predicted with NSSRI and SAVI was 
relatively higher than that from the results of Zhang T et 
al. (2011) (R2 between 0.50 and 0.58), especially in the 
coastal bare flat area (R2 = 0.8227, RMSE = 0.1440), 
which was in agreement with Gamon et al. (1997), 
Merzlyak et al. (1999) and Weng et al. (2010).  

 

 
 

Fig. 5  Linear regression function of soil salt content based on 
normal soil salt content response index (NSSRI) in coastal bare 
flat area 
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Fig. 6  Linear regression function of soil salt content based on 
soil adjusted salinity index (SAVI) in vegetation-covered area 

 

 
 

Fig. 7  Comparison of predicted and measured soil salt content 
in 2011 in study area  

 
Table 5  Comparison of accuracy of soil salt content estimation 
based on different methods  

Study R2 RMSE 

Gitelson and Merzlyak (1994) 0.4335 0.7291 

Merzlyak et al. (1999) 0.3212 0.3652 

This study 0.6396 0.3591 

 
As mentioned above, a scatter plot of the predicted 

soil salt content and its corresponding measured values 
was obtained by using 16 samples (Fig. 7). As shown in 
Table 5, accuracy comparison between this study and 
other two results was conducted. The model used by 
Gitelson and Merzlyak (1994) was based on an index of 
SR705, which is the ratio of CR-reflectance in 750 nm to 
that in 705 nm (SR705 = R750 / R705). And that ulitilized 
by Merzlyak et al. (1999) was based on the index of 
PSRI defined as the ratio of CR-reflectance in 680 nm 

subtract that in 500 nm to that in 750 nm (PSRI = (R680 – 
R500) / R750). From Table 5, we can known that the pre-
diction accuracy of the method proposed in this study 
was highest (R2 = 0.6396, RMSE = 0.3591), indicating 
that this new method is appropriate to use to monitor 
soil salt content because it has been shown to predict 
soil salt content with precision. 

3.4  Spatial pattern of predicted soil salt content 
The map of soil salt content in the study area was ob-
tained by merging maps of the coastal bare flat area and 
the vegetation-covered area (Fig. 8). As shown in Fig. 8, 
soil salt content in the study area generally varied from 
0 to 3.2%. Soil with a high salt content (> 2%) are 
mainly located within the newly reclaimed area and its 
peripheral region (coastal bare flat area). Soils with the 
highest salt content are located in the Rudong saltern 
reclamation area and its peripheral bare flat region, the 
Yangkou reclamation area and the unused marsh in its 
southeastern part; in some of these areas, the salt content 
exceeds 3%. This is likely because of the location of 
these regions are mainly in the lunar submerged tidal 
zone, comprising beach salty soil where many salterns 
have carried out solar salt production and the soil salt 
content in the topsoil is high (Fang et al., 1990). The 
spatial pattern of soil salt content in the study area is as 
a gradient, and soils closest to the coast have the highest 
salt content. This gradient effect is most obvious in the 
reclamation areas of Yangdong, Huandong, Huangang, 
Dongling, and their peripheral bare flat regions. The 
results also demonstrate that soil salt content decreases 
with increasing time since reclamation. 

4  Discussion  

With respect to previous studies, the accuracy of the 
model developed in this study was high when used to 
predict soil salt content (R2 = 0.6396, RMSE = 0.3591) 
(Weng and Gong, 2006; Ghosh et al., 2012). The model 
performed well, likely because different indices were 
combined to predict soil salt content of the vegeta-
tion-covered area and the coastal bare flat area. Linear 
models for mapping soil salt content based on hyper-
spectral data all produce abnormal values (Gamon et al., 
1997; Merzlyak et al., 1999; Weng et al., 2010; Xu et al., 
2012; Su et al., 2013). The soil salt content of the 
coastal marsh range from 0.1% to 3% (Fang et al., 
1990); however these models in some cases predict  
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Fig. 8  Map of predicted soil salt content by combined indices model in study area  
 

negative values. For example, in the north of the study 
area (the north bank of the Nanling River), the predicted 
soil salt content by using the method proposed by this 
study is −11% and −6%. The pixels with negative values 
were usually affected by residual noise in the image af-
ter atmospheric correction by the Fast Line-of-sight At-
mospheric Analysis of Spectral Hypercubes (FLAASH) 
model, such as image noise or clouds (Weng et al., 
2010). In the Nanling River Estuary, the soil salt content 
values predicted by the method ranged from −0.400% to 
−0.001%. The main reason for this inaccuracy is likely 
the presence of non-saline soils, which result from the 
use of freshwater from the Nanling River for washing 
and irrigation; these activities cause a decrease in the 
topsoil salt content in the Nanling River Estuary and its 
surrounding area. Negative values were assigned a value 
of 0 in this study. The values of soil salt content are very 
high in some pixels, and some of them are greater than 
7%. The areas with high values are mainly located in the 
coastal bare flat areas where there are many salterns, 
fish ponds, and wide water bodies, which can lead to 
abnormal changes in the soil salt content response indi-
ces (NSSRI and SAVI). 

Currently, the most popular models for constructing 
soil salt content response indices are ratio algorithm 

(Merzlyak et al., 1999), difference algorithm (Huete, 
1988), differential trend algorithm (Horler et al., 1983), 
and normalized difference algorithm (Gitelson and 
Merzlyak, 1994; Gamon et al., 1997). Commonly, the 
soil salt content response index is constructed by using a 
single algorithm based on the best bands that were sen-
sitive to soil salt content, which enhances the signal 
from soil salt and eliminates background noise of the 
soil due to vegetation, water, or soil nutrients. However, 
the reflectance spectra of one or two bands can not ac-
curately represent the soil salt content because of inter-
ference due to moisture and vegetation. Currently, the 
major models for mapping soil salt content are those 
constructed by only one or two bands, or four bands at 
the most. This is another reason for the low accuracy of 
soil salt content maps. New models should be con-
structed involving more bands more sensitive to the 
presence of soil ions by using multiple regression analy-
sis to improve the precision of soil salt content predic-
tions. Furthermore, quantitative relationships may be 
built between reflectance and various salt ions directly. 
If this could be done, then researchers would be able to 
quickly determine the soil salt content based on hyper-
spectral data; however this would require extensive 
laboratory work. 
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Previous studies have reported the mapping of soil 
salt content by using hyperspectral data in arid and 
semi-arid areas in general have high accuracy with R2 
between 0.7–0.9 (Dutkiewicz et al., 2009; Bilgili et al., 
2011; Ding et al., 2011; Mashimbye et al., 2012). In the 
coastal areas, mapping accuracy tends to be relatively 
low because of the high moisture content of soils. The 
reflectance spectra of various types and levels of salt in 
air-dried or oven-dried soils have been accurately ob-
tained (Metternicht and Zinck, 2003; Farifteh et al., 
2008); however the difference between reflectance 
spectra of land covered by crops and land covered by 
halophyte plants were small, which indicates the need 
for more fieldwork (Zhang T et al., 2011). Active re-
mote sensing technology may be an effective way to 
resolve the problem of mapping soil salinity (Metter-
nicht and Zinck, 2003; Ding and Yao, 2013). Previous 
studies have found that soil organic matter, texture, and 
metal, moisture and nutrient content all influenced re-
flectance spectra (Gallagher et al., 2008; Mulder et al., 
2011). Methods to identify the combined effects of 
various factors on reflectance of soil should be a focus 
of future research.  

5  Conclusions 

Hyperspectral data are currently an important source for 
mapping soil salt content. However, vegetation, soil 
moisture, and soil texture are the barriers restricting the 
precision of soil salt content mapping in the coastal ar-
eas. Combined indices or integrated models involving 
multiple factors may be effective ways to improve the 
accuracy of soil salt content maps. In this study, a new 
methods with multiple indices were successfully used to 
predict soil salt content in Rudong County, Jiangsu 
Province, China. In the study area, the main salts in the 
coastal reclamation area are NaCl and KCl. This study 
attempted to restrict the interference by vegetation using 
NDVI705 and applied different indices to map soil salt 
content in the coastal bare flat area and vegetation-covered 
area. Soil salt content is significantly correlated with 
CR-reflectance at the band length of 908.95 nm and 
687.41 nm, with correlation coefficient of −0.55 and 
0.66, respectively. NSSRI and SAVI are applied to indi-
rectly explain the soil salt content in the coastal bare flat 
area and vegetation-covered area respectively. The re-
sults show that the accuracy of the new method (R2 = 
0.6396, RMSE = 0.3591) is higher than that of previous 

studies that use a single index. This study indicates that 
HJ-HSI data have enormous potential to predict the soil 
salt content on a large scale. 
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