
 
Chin. Geogra. Sci. 2014 Vol. 24 No. 6 pp. 631–646   Springer      Science Press 

doi: 10.1007/s11769-014-0662-9 www.springerlink.com/content/1002-0063 

                                       

Received date: 2012-11-27; accepted date: 2013-03-11 
Foundation item: Under the auspices of Key Program of Chinese Academy of Sciences (No. KZZD-EW-08-02), CAS/SAFEA (Chinese 

Academy of Science/State Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams 
(No. KZZD-EW-TZ-07), Strategic Frontier Program of Chinese Academy of Sciences—Climate Change: Carbon Budget and Rele-
vant Issues (No. XDA05050101) 

Corresponding author: WANG Zongming. E-mail: zongmingwang@neigae.ac.cn  
© Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag Berlin Heidelberg 2014 

Examining Forest Net Primary Productivity Dynamics and Driving 
Forces in Northeastern China During 1982–2010 

MAO Dehua1, 2, WANG Zongming1, WU Changshan3, SONG Kaishan1, REN Chunying1 

(1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sci-
ences, Changchun 130102, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Department of Geography, 
University of Wisconsin-Milwaukee, Milwaukee WI 53201, USA) 

Abstract: Forest net primary productivity (NPP) is a key parameter for forest monitoring and management. In this study, monthly and 

annual forest NPP in the northeastern China from 1982 to 2010 were simulated by using Carnegie-Ames-Stanford Approach (CASA) 

model with normalized difference vegetation index (NDVI) sequences derived from Advanced Very High Resolution Radiometer 

(AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) and Terra Moderate Resolution Imaging Spectroradiometer 

(MODIS) products. To address the problem of data inconsistency between AVHRR and MODIS data, a per-pixel unary linear regres-

sion model based on least squares method was developed to derive the monthly NDVI sequences. Results suggest that estimated forest 

NPP has mean relative error of 18.97% compared to observed NPP from forest inventory. Forest NPP in the northeastern China in-

creased significantly during the twenty-nine years. The results of seasonal dynamic show that more clear increasing trend of forest NPP 

occurred in spring and autumn. This study also examined the relationship between forest NPP and its driving forces including the 

climatic and anthropogenic factors. In spring and winter, temperature played the most pivotal role in forest NPP. In autumn, precipitation 

acted as the most important factor affecting forest NPP, while solar radiation played the most important role in the summer. Evaportran-

spiration had a close correlation with NPP for coniferous forest, mixed coniferous broadleaved forest, and broadleaved deciduous forest. 

Spatially, forest NPP in the Da Hinggan Mountains was more sensitive to climatic changes than in the other ecological functional re-

gions. In addition to climatic change, the degradation and improvement of forests had important effects on forest NPP. Results in this 

study are helpful for understanding the regional carbon sequestration and can enrich the cases for the monitoring of vegetation during 

long time series. 
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1  Introduction 

As one of the largest land cover types, forests play a 
significant role in the regional climate and global carbon 
cycle (Fang et al., 2001a). There is general agreement 

that global forest is a large and persistent carbon sink for 
atmospheric CO2 (Pan et al., 2011). Forest in China is 
also a centre to the global and national carbon sink for 
atmospheric CO2 (Fang et al., 2001b; Piao et al., 2009). 
Forests transform atmospheric carbon from CO2 to 
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woody biomass with the process of photosynthesis, 
while at the same time some energy is lost through res-
piration and mortality. The balance between the light 
energy fixed through photosynthesis and the energy lost 
through respiration and mortality is termed forest net 
primary productivity (NPP). The NPP represents the net 
carbon input from the atmosphere to the terrestrial 
vegetation (Melillo et al., 1993), and it is one of the 
important biophysical variables presenting vegetation 
activities, and is the first step of the biogeochemical 
carbon cycle (Tan et al., 2007). The studies of spa-
tio-temporal dynamics of NPP and factors that impact 
such dynamics have become a new research focus and 
have attracted much attention recently. These research 
activities were spurred by global issues, such as global 
change, indirect sustainable management, and conserva-
tion of biodiversity (Yuan et al., 2006). As an essential 
component of the global change study, examining the 
spatio-temporal dynamics of forest NPP and factors that 
lead such changes have played an important role in for-
est monitoring and management. And the study on forest 
NPP is helpful to understand the global or regional car-
bon cycle. 

Remote sensing can provide important information 
for simulating forest NPP and examining its spa-
tio-temporal dynamics. For instance, remote sensing can 
supply a synoptic view of large geographic regions with 
multiple spectral bands and repetitive coverage. The 
spatial resolutions of remote sensing imagery range 
from meter-level to kilometer-level with the coverage 
area from local to global scale. The temporal coverage 
of remote sensing imagery ranges from hours to several 
years. Through applying remote sensing technology, 
Nemani et al. (2003) reported a global NPP increase of 
6% from 1982 to 1999, and pointed out that such in-
crease was mainly due to the reduced cloud cover and 
associated increase in solar radiation. Piao et al. (2003; 
2005) estimated the NPP dynamic from 1982 to 1999 
based on normalized difference vegetation index (NDVI) 
and detected seasonal dynamics of terrestrial NPP in 
response to climatic changes in China. Based on remote 
sensing datasets, numerous related studies were also 
conducted to simulate NPP values and applied to dif-
ferent regions with a number of models (Tagesson et al., 
2009; Yu et al., 2009b; Huang et al., 2010).  

For a better examination of the NPP dynamic and its 
response to climatic changes and human disturbances, 

time-series NPP datasets are essential. For example, the 
NDVI from advanced very high resolution radiometer 
(AVHRR) provided by the National Oceanic and At-
mospheric Administration (NOAA), with a spatial reso-
lution of 8 km and a time sequence from 1982 to 2006, 
have been widely applied in estimating forest NPP. 
Comparatively, the NDVI with a spatial resolution of 1 
km, from moderate resolution imaging spectroradiome-
ter (MODIS) data, have been available since 2000. Al-
though remote sensing imagery are available for a cer-
tain time span, it is still very difficult to find a single 
remote sensing dataset with consistent spatial/spectral 
resolution and covering a long time for accurate NPP 
simulation. To date, scientists always limit the spatial 
resolution and time series to a certain degree such that a 
single remote sensing data source can be utilized. For 
many study areas, however, a consistent simulation of 
NPP at the same spatial resolution over a long time is 
particularly important. The Carnegie-Ames-Stanford 
Approach (CASA) model, one of the most important 
and widely used light-use efficiency models, was util-
ized to study the dynamics of forest NPP and its re-
sponses to climatic changes and land cover changes 
(Potter et al., 2012).  

The northeastern China has abundant forest resources, 
and its forest area is approximately 31% of the total for-
est area in China (EBVMC, 2001). The role in carbon 
sink of forest in the northeastern China can not be ig-
nored. However, forests in the northeastern China have 
experienced significant changes due to climatic and an-
thropogenic impact over the past decades. In particular, 
increased temperature and decreased precipitation have 
had significant impacts on forests (Guo et al., 2007; Yao 
et al., 2011). Land cover changes due to human activi-
ties, including farming reclamation or other deforesta-
tion activities over the last century, urbanization in re-
cent decades, also significantly affect forest distribution 
and quality (Xu et al., 2004a; Liu et al., 2009). 

Therefore, we studied the forest in the northeastern 
China based on NPP. The objectives of the present study 
are: 1) to simulate long-term (from 1982 to 2010) 
monthly and annual forest NPP in the northeastern 
China through integrating AVHRR GIMMS (Global 
Inventory Modeling and Mapping Studies) NDVI, 
TERRA MODIS NDVI and meteorological datasets, 2) 
to investigate the spatio-temporal dynamic of forest NPP 
across the study area over 29 years, and 3) to explore the 
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impact of climatic change and human activities (forest-
land degradation or improvement) on the dynamics of 
forest NPP, and provide guidance to forest management 
and ecological restoration in the northeastern China.  

2  Data and Methods 

2.1  Study area 
In this study, the northeastern China (38°42′–53°35′N, 
115°32′–135°09′E) is selected as the study area. It cov-
ers three provinces (Heilongjiang, Jilin, and Liaoning) 
and four prefecture-level administration divisions of 
Inner Mongolia Autonomous Region (i.e., Hulun Buir 
City, Xing′an League, Tongliao City, and Chifeng City) 
(Fig. 1). The study area is surrounded by medium and 
low mountains along three directions, including the 
Changbai Mountains in the southeast, the Da Hinggan 
Mountains in the northwest, and the Xiao Hinggan 
Mountains in the northeast. This study area is an impor-
tant forest zone and timber production base in China, 
with a forest area of approximately 4.73 × 105 km2. Na-
tive forest types include cold-temperate mixed broad-
leaved deciduous forest and needle-leaved forest, as 
well as cold-temperate coniferous forest. A large portion 
of the study area is characterized by a temperate mon-

soon continental climate, except for areas located at the 
latitude of 50°N or higher, which are dominated by the 
cold monsoon. Winter is long and cold, while summer is 
short. Air temperature in this study area increases from 
north to south, with a mean annual temperature of 
–4℃–12℃. Precipitation has significant seasonal and 
annual changes. And approximately 70%–80% of total 
precipitation occurred between mid-June and mid-August. 
Annual precipitation decreases from 1100 mm in the 
east to 250 mm in the west.   

Based on the vegetation map and ecological func-
tional region map (Fu et al., 2001), climatic and topog-
raphic information, forests in the northeastern China 
were classified into four ecological functional regions, 
namely, the Da Hinggan Mountains, the Xiao Hinggan 
Mountains and Wanda Mountains, the Changbai Moun-
tains, and the Inner Mongolia semi-arid zone. Spatial 
distribution of different forest types of and four eco-
logical functional regions are shown in Fig. 1. 

2.2  Data source and data processing 
2.2.1  Remote sensing data 
Remote sensing data employed in this study consist of 
AVHRR GIMMS NDVI and TERRA MODIS NDVI. 
The AVHRR GIMMS NDVI dataset (from 1982 to 2006)  

 

 
 

Fig. 1  Spatial distribution of forest types and ecological functional regions in northeastern China 
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at a spatial resolution of 8 km × 8 km and every half 
month was derived from the NOAA/AVHRR imagery. 
The TERRA MODIS NDVI dataset with a spatial reso-
lution of 1 km × 1 km from 2000 to 2010 was down-
loaded from the National Aeronautics and Space Ad-
ministration′s (NASA) Earth Observing System. The 
NDVI data for every month were obtained by using the 
Maximum Value Composite (MVC) method with which 
the highest observed value for each pixel from a prede-
fined compositing period is employed to represent the 
NDVI value for that period.  
2.2.2  Meteorological data 
Meteorological data, including mean monthly tempera-
ture, monthly cumulative precipitation and daily sun-
shine duration from 1982 to 2010, were extracted from 
the China Meteorological Data Sharing Service System 
(http://cdc.cma.gov.cn/). In the study area, meteorologi-
cal data from 95 stations were recorded and employed 
after removing the records with deficiencies. Monthly 
solar radiation data for all meteorological stations were 
calculated from daily sunshine duration, the latitudes of 
meteorological stations, as well as other parameters 
(Allen et al., 1998; Seaquist et al., 2003). To be consis-
tent with the spatial resolution of the constructed NDVI 
dataset, these monthly data were then interpolated into 
raster format at an 8 km spatial resolution by using the 
universal Kriging method. Further, evaportranspiration 
data were calculated from temperature and precipitation 
raster data by using the regional evaportranspiration 
model. Expressions for actual evaportranspiration used 
for correlation analyses in this paper were referenced 
from previous study by Zhou and Zhang (1995). In the 
regional evaportranspiration model, the potential evapor-

transpiration and net radiations in surface need to be 
calculated, firstly. All the data were projected into the 
Albers Equal Area Conic projection system using the 
ArcGIS-9.3 software.  
2.2.3  Forest distribution and actual observed NPP  
Forest distribution data were extracted and edited from 
the land cover data covering the northeastern China in 
2000. The land cover data were derived from Landsat 
Thematic Mapper (TM) images through computer clas-
sifications and visual interpretations. Details on data 
processing can be found in Wang et al. (2009). As 
shown in Fig. 1, forests in the study area were classified 
into coniferous forest, mixed coniferous broadleaved 
forest, and broadleaved deciduous forest. The actual 
observed forest NPP data used to validate the simulated 
results were contained from the results of Luo (1996). 
Those observed NPP with a unit of g C/(m2·yr) were 
calculated from forest biomass in 2006 (Luo, 1996). 
And the data were obtained by harvest and widely used 
in many studies (Zhu et al., 2006a). Based on the geo-
graphical position of observed data, there are 74 sam-
ples retained after calculating the mean value of samples 
in the same pixel.  
2.2.4  Frame of data processing 
For achieving the objectives, data processing and analy-
sis were carried out as a frame presented in Fig. 2. First, 
based on the remote sensing data and meteorological 
data, a geographical database consisting of monthly 
NDVI, temperature, precipitation, and solar radiation 
were prepared. Second, monthly and annual NPP for 
different forest types from 1982 to 2010 were simulated 
by CASA model and validated by observed data. Third, 
estimated forest NPP was applied to investigate its spatio- 

 

 
 

Fig. 2  Frame for data processing and analysis. SOL: solar radiation; FPAR, fraction of photosynthetically active radiation; Tε: effect of 
temperature on plant photosynthesis; Wε: impact of water on plant photosynthesis; ε: active light-use efficiency 
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temporal dynamic and impacts from climatic factors and 
human activities. 

2.3  Simulation of forest NPP using CASA model 
The CASA model developed by Potter et al. (1993) is a 
light efficiency process-based model, which has the 
ability of mitigating problems associated with limited 
and inconsistent data from meteorological stations in 
large scale studies (Yuan et al., 2006). The CASA 
model has been widely applied in different regions and 
at different scales. With the CASA model, forest NPP 
can be calculated by using the following equation (Pot-
ter et al., 1993; Zhu et al., 2007b: 

( , ) ( , ) ( , )NPP x t APAR x t x t   (1) 

where NPP(x, t) refers to the forest NPP of a pixel at 
location x and time t; APAR is the absorbed photosyn-
thetically active radiation, which refers to canopy-   
absorbed incident solar radiation over a time period 
(MJ/m2), and ε is the actual light-use efficiency. The 
process for simulating forest NPP was accomplished 
through programming using the Arc Macro Language 
provided by the ArcInfo Worksation software. The de-
tails of deriving monthly APAR and ε are described as 
follows. 
2.3.1  Estimation of APAR 
The algorithm of calculating APAR at location x and 
time t was detailed in equations 2, 3 and 4, respectively 
(Zhu et al., 2007b; Piao et al., 2001). 

( , ) ( , ) ( , ) 0.5APAR x t SOL x t FPAR x t     (2) 

min

max min

( , ) min ,0.95
SR SR

FPAR x t
SR SR

 
   

  (3) 

1 ( , )
( , )

1 ( , )

NDVI x t
SR x t

NDVI x t





  (4) 

where SOL is the total solar radiation over a time period 
(MJ/m2). FPAR(x, t) is the fraction of photosynthetically 
active radiation at position x and time t, which is calcu-
lated from the simple ratio (SR) of vegetation indices. 
Further, SR is calculated from the NDVI sequence, 
SRmax is the maximum value of SR, and SRmin is the 
minimum value of SR (e.g., unvegetated land areas). 
The fixed values of SRmax are different for various forest 
types. The value for SRmax is obtained from the previous 
study by Zhu et al. (2007b).  

In this study, monthly AVHRR GIMMS NDVI data-

set differ from monthly TERRA MODIS NDVI dataset 
in terms of spatial and spectral resolution. Hence, a per-  
pixel unary linear regression model method integrating 
the two datasets from different sensor sources was used 
to construct a consistent and successive NDVI sequence 
dataset from 1982 to 2010 with the same spatial resolu-
tion. The structure form of the model for different data 
is shown as follow: 

i i iG a bV      (5) 

where Gi represents the GIMMS NDVI value for the ith 
month, Vi is the converted MODIS NDVI value at the 8 
km × 8 km resolution for the ith month, parameters a 
and b are calculated with the ordinary least squared 
method, and εi is the random error term. This model was 
constructed and calibrated with the GIMMS NDVI and 
MODIS NDVI from 2000 to 2006, when both datasets 
are available. The model was constructed with a spatial 
resolution of 8 km, and the monthly MODIS NDVI se-
quences from 2000 to 2010 were translated to 8 km spa-
tial resolution to be consistent with those of the AVHRR 
GIMMS NDVI data. Good consistency between 
GIMMS and MODIS NDVI were discussed and the an-
nual changes of NDVI during the three decades were 
compared. And this per-pixel unary linear regression 
model appeared to be the most appropriate regression 
equation for each pixel, and more details about the 
process of constructing long time-series NDVI data 
were described in Mao et al. (2012). The correlation 
coefficient of GIMMS NDVI and expanded GIMMS 
NDVI is 0.991, and R2 is 0.995 and 0.982 for the re-
gional and pixel consistency check, respectively. 
2.3.2  Estimation of ε 
The algorithm of actual light use efficiency (ε) can be 
expressed by Equation (6) (Field et al., 1995; Zhou and 
Zhang, 1995; Peng et al., 2010): 

1 2 max( , ) ( , ) ( , ) ( , )x t T x t T x t W x t        (6) 

where, Tε1(x, t) and Tε2(x, t) are temperature stress coef-
ficients which reflect the restriction from temperature on 
light use efficiency at position x and in time t, and Wε(x, 
t) is the moisture stress coefficient which suggests the 
reduction of light use efficiency caused by moisture 
factor at position x and in time t. εmax is the maximum 
light-use efficiency of vegetation under ideal conditions. 
The values of εmax for different forest types in China 
were obtained following the simulated results from Zhu 
et al. (2006b).  
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2.4  Validation for estimated forest NPP 
In order to assess the effectiveness of estimated forest 
NPP, we made a validation by calculating the mean 
relative error (MRE) and correlation coefficient between 
estimated forest NPP and observed forest NPP. The 
comparison among various estimated forest NPP using 
different models was employed to support the validation 
for forest NPP from CASA model in this study.  

2.5  Examination of spatio-temporal dynamics of 
forest NPP 
With the estimated forest NPP for each 8 km × 8 km 
pixel in the northeastern China from 1982 to 2010, we 
conducted a spatio-temporal analysis on forest NPP. For 
spatial analysis, we divided the forest NPP into six 
grades, and examined their spatial distribution. More-
over, the spatial distribution of forest NPP in the four 
forest ecological functional regions was explored. To 
explore the temporal dynamics, we examined the time 
series forest NPP data categorized by forest types, sea-
sons, and ecological functional regions. For analyzing 
the spatio-temporal patterns of forest NPP, correlation 
analysis, regression analysis, and variation analysis were 
conducted in the present study. Variation analysis was 
employed to investigate spatial differences among the 
temporal variability of NPP during the 29 years. The 
variation coefficient (C.V.) is calculated by Equation 
(7):   

2

1

[ ( ) ] / 29

. .

n

i
i

NPP NPP

C V
NPP







 (7) 

where NPPi is the mean NPP for the year i (i = 1, ..., 29), 

and NPP  is the mean NPP value for all the years 

(from 1982 to 2010). 

2.6  Evaluation for impact of climatic factors on 
forest NPP 
We also examined the climatic factors that correlate 
with such spatial and temporal patterns. In particular, 
the climatic factors employed in analyses include tem-
perature, precipitation, solar radiation, and evaportran-
spiration. Similarly, the impact of climatic factors on the 
dynamic of forest NPP was evaluated based on different 
forest types, growth seasons, and ecological functional 
regions. Correlation analysis was performed to examine 
whether a statistically significant association existed for 

each climatic factor.  

3  Results and Analyses 

3.1  Simulation results of forest NPP  
Using the CASA model, we simulated the monthly and 
annual forest NPP values in the northeastern China from 
1982 to 2010. For each year, the forest NPP values were 
calculated for each 8 km × 8 km pixel (7123 pixels total 
for the study area). Intending to validate the accuracy, 
we made a comparison between forest NPP from the 
simulated result and actual observation. As shown in Fig. 
3, the forest NPP value from observation is higher than 
that from model simulation. However, a clear linear re-
lation exists between forest NPP value from estimation 
by using CASA model and actual observation by harvest 
method. The correlation coefficient is 0.736 (p < 0.01) 
between the NPP from estimated result by CASA model 
and from observed result by field investigation. The 
value of mean relative error is 18.97%. It means 81.03% 
of the estimated accuracy for forest NPP using CASA 
model in the northeastern China. Also, the fluctuation 
range of the simulated forest NPP is lower than that of 
the observed forest NPP. Based on those results and 
other′s estimated accuracy (Zhu et al., 2006a), forest 
NPP from simulation is considered as reliable and can 
be used to do further analyses.  
 

 
 

Fig. 3  Comparison of forest NPP from estimation using CASA 
model and actual observation using harvest method 

 

Total forest NPP in the northeastern China over the 
study period was approximately 300 Mg C/yr, and the 
mean forest NPP over the study period ranged from 200 
g C/(m2·yr) to 985 g C/(m2·yr). A comparison with re-
sults obtained in other studies is also reported in Table 1. 
In particular, the simulated results from 1982 to 1999 
were compared with the results reported by Zhu et al.  
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Table 1  Comparison of simulated forest NPP for different forest types with findings from other studies 

Forest type (g C/(m2·yr)) 
Study Model and scale Study period Broadleaved  

deciduous forest 
Coniferous forest 

Mixed coniferous  
broadleaved forest 

Zhu et al. (2006a) CASA/8 km 1982–1999 663 447 469 

Present study CASA/8 km 1982–1999 691 534 613 

Guo et al. (2008) BOIME-BGC/1 km 2000–2006 474 454 573 

Zhao et al. (2011) CEVSA/1 km 2000–2008 638 460 722 

Present study CASA/8 km 2000–2008 646 547 720 

 
(2006a), and the results from 2000 to 2008 were com-
pared with the results reported by Guo et al. (2008) and 
Zhao et al. (2011). We found that differences of forest 
NPP values exist among different models, but the gen-
eral trend is consistent. There was a change from in-
creasing trend to decreasing trend. The low diversity for 
different studies may be the results of different scales 
and study periods (e.g. a large pixel resolution may 
smooth small variations). 

3.2  Spatial variation of mean forest NPP  
Through spatial analysis, we found that the spatial 
variations of forest NPP are consistent with forest types 
and ecological functional regions (Fig. 4). Broadleaved 
deciduous forests had the highest NPP values exceeding  

 

 
 
Fig. 4  Spatial pattern of mean forest NPP from 1982 to 2010. A: 
Da Hinggan Mountains ecological functional region; B: Xiao 
Hinggan Mountains and Wanda Mountains ecological functional 
region; C: Changbai Mountains ecological functional region; D: 
Inner Mongolia semi-arid zone ecological functional region 

700 g C/(m2·yr), when compared with that of the conif-
erous forests and mixed coniferous broadleaved forests. 
On the contrary, coniferous forests had the lowest NPP 
due to a short growth period. For the four forest eco-
logical functional regions, the Changbai Mountains had 
the highest forest NPP values, followed by the Xiao 
Hinggan Mountains and Wanda Mountains, then the Da 
Hinggan Mountains. Forests in the Inner Mongolia 
semi-arid zone had the lowest amount of forests and the 
worst environment for vegetation growth among the 
four regions. 

For examining the variations of forest NPP for dif-
ferent forest types, we grouped the forests into four 
grades based on the forest NPP values, and these grades 
are: 1) less than 600 g C/(m2·yr), 2) 600–700 g C/(m2·yr), 
3)700–800 g C/(m2·yr), and 4) higher than 800 g 
C/(m2·yr). The percentage of forest areas covered by 
each grade for each forest type is shown in Fig. 5. It can  

 

 
 
Fig. 5  Area percentages of forest NPP at different grades for 
different forest types 
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be observed that the forest NPP differs significantly for 
different forest types. For coniferous forest, over 75% of 
the pixels had a forest NPP value lower than 600      
g C/(m2·yr). Mixed coniferous broadleaved forests, 
which only occupy a small area in the northeastern 
China, had around 70% of the pixels with a forest NPP 
value less than 600 g C/(m2·yr), and less than 1% of the 
pixels with a forest NPP value ranging from 700      
g C/(m2·yr) to 800 g C/(m2·yr). Broadleaved deciduous 
forests, on the other hand, had the highest forest NPP 
values, and the pixels with a forest NPP value higher 
than 800 g C/(m2·yr) comprise a large percentage. As a 
summary, the distribution of forest NPP in the north-
eastern China had a clear spatial heterogeneity and ob-
vious disparity pattern among different forest types. 

3.3  Temporal dynamics of forest NPP for different 
forest types 
Annual forest NPP values and their changes for different 
forest types are shown in Fig. 6. Forest NPP values for 
all types of forests exhibited a significantly increasing 
trend (p < 0.05, standard deviation 37–44) from 1982 to 
2010, and coniferous forests showed the most notable 
increase in the forest NPP values as indicated in the re-
gression coefficient. Although there was a clear trend, 
some variations exist. The maximum and the second 
highest forest NPP values over the study period can be 
found in 2010 and 1996, respectively. And the minimum 
forest NPP values for broadleaved deciduous forests and 
mixed coniferous broadleaved forests can be found in 
1983 and 1994. For coniferous forests, the minimum 
and the second lowest forest NPP values are found in 
1983 and 1998. It can also be observed that, in general, 

coniferous forests had lower forest NPP values, and 
broadleaved deciduous forests were likely to have 
higher forest NPP values. 

3.4  Trends of forest NPP in different seasons 
To further investigate the dynamic of forest NPP over 
the study period, the changing trends in different 
seasons from 1982 to 2010 were analyzed. Results show 
that forest NPP values in summer (from June to August) 
and winter (January, February, and December) did not 
have a clear trend of increasing or decreasing (Fig. 7). 
However, the forest NPP values in spring (from March 
to May) and autumn (from September to November) 
were found to have significantly increased trends. For a 
particular year, the highest values of forest NPP (over 
400 g C/(m2·yr)) were found in summer, while the 
lowest forest NPP values (e.g., lower than 0.4        
g C/(m2·yr)) were found in winter. As a growing cycle, 
spring marks the beginning of vegetation growth, and 
the forest NPP reaches its peak value in the summer, 
then autumn marks the end of the growing season. For-
est NPP in winter was almost zero because of the low 
temperature and the lack of leaves in deciduous forests. 

3.5  Disparity of forest NPP in different ecological 
functional regions 
In this study, the spatial variations of forest NPP were 
also examined among the four forest ecological func-
tional regions which have obvious climatic differences. 
As shown in Fig. 4, discrepant grades were found in 
different forest ecological functional regions because of 
variation in forest types and climatic conditions. The 
changing trends of forest NPP values were investigated 

 

 
 

Fig. 6  Annual changing trends of forest NPP for different forest types from 1982 to 2010 
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for the four regions. Results indicate that significantly 
increased trends of forest NPP from 1982 to 2010 were 
found in the Da Hinggan Mountains, the Xiao Hinggan 
Mountains and Wanda Mountains, and the Inner Mon-
golia semi- arid zone ecological functional regions (Fig. 
8). Mean annual forest NPP in the Changbai Moutains 
ecological functional region had no obviously changing 
trends. Figure 8 also shows a difference in mean forest 
NPP for these forest eclogical functional regions. 
Although forest NPP in the Changbai Mountains ecolo-
gical functional regions had no clear trends over the study 
period, a typical amplitude of fluctation was observed 
with the biggest standard divation of 44 g C/(m2·yr). 

The percentage of geographic area covered by each 

forest NPP grade is shown in Fig. 9. It can be observed 
that the forest NPP values in the most areas of the Da 
Hinggan Mountains ecological functional region had a 
value lower 600 g C/(m2·yr). In the Xiao Hinggan 
Mountains and Wanda Mountains ecological functional 
region, where broadleaved deciduous forests and mixed 
coniferous broadleaved forests were widely distributed, 
forest NPP exceeding 700 g C/(m2·yr) were found. The 
Changbai Mountains ecological functional region, char-
acterized by broadleaved deciduous forests and few ev-
ergreen coniferous forests, had over 55% of the total 
area with forest NPP values over 800 g C/(m2·yr). Fi-
nally, forest NPP in the Inner Mongolia semi-arid zone 
ecological functional region varied under 600 g C/(m2·yr) 

 

 
 

Fig. 7  Changing trends of annual forest NPP in different seasons from 1982 to 2010 

 

 
 

Fig. 8  Changing trends of annual forest NPP in different ecological functional regions from 1982 to 2010 
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Fig. 9  Area percentages of forest NPP at diffenernt grades for different ecological functional regions 
 

because of the severe environment and scattered 
patches. 

3.6  Temporal coefficient of variation analysis  
For a better assessment on the changes of forest NPP in 
the northeastern China, temporal variation analysis was 
also conducted. The spatial pattern of variation coeffi-
cients (C.V.) (Equation 7) at pixel scale are shown in Fig. 
10. The forest NPP in the Inner Mongolia semi-arid 
zone ecological functional region had the highest varia-
tion coefficients, varying from 0.10 to 0.69. A higher 
variation coefficient indicates more obvious variation  

 

 
 

Fig. 10  Spatial pattern of variation coefficients (C.V.) for forest 
NPP in northeastern China. A: Da Hinggan Mountains ecological 
functional region, B: Xiao Hinggan Mountains and Wanda 
Mountains ecological functional region, C: Changbai Mountains 
ecological functional region, D: Inner Mongolia semi-arid zone 
ecological functional region 

trends. Therefore, the forest NPP in the Inner Mongolia 
semi-arid zone had a significantly increasing trend. This 
may be due to the Three North Shelter Forest projects, 
which has played an important role in the improvement 
of forest NPP in the semi-arid zone (Yan et al., 2011). 

3.7  Effects of climatic factors on forest NPP 
Climatic factors are important determinants of vegeta-
tion and play a crucial role in shaping spatial patterns 
and temporal dynamics of forest NPP. Results of corre-
lation analysis between annual forest NPP of different 
forest types and annual climatic factors (e.g., tempera-
ture, precipitation, solar radiation, evaportranspiration) 
are shown in Table 2. This enables an exploration of the 
impact of climatic changes on forest NPP and their 
variations for different forest types. Positive correlations 
between forest NPP and mean temperature (TEM), and 
between forest NPP and solar radiation (SOL) were 
found for all types of forests. Positive correlations indi-
cate that rising temperature and increasing solar radia-
tion in the northeastern China were associated with the 
increase of forest NPP. On the contrary, negative corre-
lations were found between forest NPP and annual pre-
cipitation (PRE), and between forest NPP and evapor-
transpiration (ET). A large amount of precipitation re-
duced the opportunity for forests to receive solar radia-
tion for photosynthesis (Piao et al., 2003). In 1998, 
flood damage made great negative effects on forests in 
the northeastern China, so a low value of forest NPP 
was found for the year, especially in autumn. Moreover, 
a large amount of evaportranspiration reduced available 
moisture content. The moisture for vegetation growth in 
the northeastern China was not only derived from pre-    
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Table 2  Correlation coefficients between forest NPP and climatic factors in different forest types (n = 29) 

Forest type NPP and TEM NPP and PRE NPP and SOL NPP and ET 

Coniferous forest 0.228 –0.405* 0.626** –0.659** 

Mixed coniferous broadleaved forest 0.101 –0.138 0.121 –0.440* 

Broadleaved deciduous forest 0.112 –0.157 0.210 –0.609** 

Notes: * means significant, p < 0.05; ** means extremely significant, p < 0.01. NPP, net primary productivity; TEM, mean annual temperature; PRE, 
annual cumulative precipitation; SOL, annual total solar radiation; ET, annual cumulative evaportranspiration 

 

cipitation, but also from thawed snow and frozen soil. 
Evaportranspiration is the synthetical and direct charac-
ter of the intensity of temperature, precipitation, and 
solar illuminance. Therefore, forest NPP and evapor-
transpiration had the closest and negative correlation. 

Table 2 also shows that the correlation between cli-
matic factors and NPP is different for different forest 
types. Comparatively, the forest NPP of coniferous for-
ests was more sensitive to climatic change than two 
other types of forests. Coniferous forests are distributed 
in the northern part of the study area, with higher lati-
tude, shorter growing days, less solar radiations, and 
lower temperature, and therefore more sensitive to cli-
matic changes. Overall, this finding showed stronger 
correlation existed between forest NPP and climatic 
factors, and some of them are highly significant. Dif-
ferent from other studies, in which correlation analyses 
were only conducted between NPP and temperature and 
precipitation (Sun and Zhu, 2001), the results of this 
study indicated that there was a stronger correlation 
between evaportranspiration and NPP for all types of 
forests in the northeastern China. This result, therefore, 
contributes to the understanding of the influence of cli-
matic factors on forest NPP.   

To investigate effects of seasonal climatic factors on 
seasonal forest NPP, correlation analyses between forest 
NPP in four seasons and seasonal meteorological factors 
were conducted. As shown in Table 3, seasonal tem-
perature was closely associated with forest NPP in 
spring, summer, and winter. As spring is the start of 
growing cycle for trees and increased temperature yields 
long growth period (Zhu et al., 2007a), therefore, tem-
perature is associated with a higher value of forest NPP. 
Summer is associated with stronger photosynthetic rate 
and a warmer winter can facilitate the growth of ever-
green coniferous forests. Therefore, increasing tem-
perature in the three seasons improved forest NPP and 
resulted in a significantly positive correlation between 
forest NPP and temperature. Negative correlations were 
found between forest NPP and precipitation in spring, 

summer, and autumn. This is expected as the growing 
season of forests is from April to October, and precipita-
tion had much more effect on forest NPP in the growing 
season (summer and autumn) by reducing solar radia-
tion or sunshine duration (Nemani et al., 2003). Further, 
forest NPP was significantly and positively correlated to 
solar radiation in spring and summer. This is reasonable 
as trees have more leaves in spring and summer, and 
solar radiation strengthens productivities. Finally, eva-
portranspiration was negatively associated with forest 
NPP in summer and autumn seasons and positively cor-
related to forest NPP in spring and winter. In summer 
and autumn, increasing evaportranspiration reduced soil 
moisture for vegetation growth, thereby reducing forest 
NPP. In winter, the northeastern China has a freezing 
temperature, and ground is covered by snow for over 
100 days. Therefore, increasing evaportranspiration may 
be beneficial to forest NPP by improving soil conditions. 

We also conducted similar analysis at the scale of 
ecological functional regions, and results are listed in 
Table 4. Forest NPP in the Inner Mongolia semi-arid 
zone with lower precipitation had the highest correlation 
coefficient with temperature because increased tem-
perature resulted in droughts by reducing soil moisture 
(Long et al., 2010). The arid environment led to grass-
land degradation or transform to farmland for acquiring 
more economic benefits. This phenomenon also oc- 
curred in forestland. A significantly negative correlation 

 
Table 3  Correlation coefficients between forest NPP and cli-
matic factors in different seasons (n = 29) 

Season 
NPP and 

TEM 
NPP and  

PRE 
NPP and 

SOL 
NPP and 

ET 

Spring 0.533** –0.029 0.505** 0.094 

Summer 0.422* –0.372* 0.502** –0.265 

Autumn 0.096 –0.366* –0.026 –0.308 

Winter 0.861** 0.188 –0.102 0.398* 

Notes: * means significant, p < 0.05; ** means extremely significant, p < 
0.01. NPP, net primary productivity; TEM, mean seasonal temperature; 
PRE, seasonal cumulative precipitation; SOL, seasonal total solar radia-
tion; ET, seasonal cumulative evaportranspiration 
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Table 4  Correlation coefficients between forest NPP and climatic factors in different ecological functional regions (n = 29) 

Ecological functional region NPP and TEM NPP and PRE NPP and SOL NPP and ET 

Da Hinggan Mountains 0.175 –0.376* 0.698** –0.617** 

Xiao Hinggan Mountains and Wanda Mountains 0.205 –0.277 0.130 –0.509** 

Changbai Mountains –0.050 0.044 0.250 –0.271 

Inner Mongolia semi-arid zone 0.307 0.111 0.518** –0.130 

Notes: * means significant, p < 0.05; ** means extremely significant, p < 0.01. NPP, net primary productivity; TEM, mean annual temperature; PRE, 
annual cumulative precipitation; SOL, annual total solar radiation; ET, annual cumulative evaportranspiration 

 

between forest NPP and precipitation in the Da Hinggan 
Mountains was found, possibly because precipitation 
under low-temperature surroundings resulted in less 
solar duration and radiation for tree growth (Piao et al., 
2003). Solar radiation played the most important role in 
forest NPP in the Da Hinggan Mountains and the Inner 
Mongolia semi-arid zone, while evaportranspiration 
served as the most important climatic factor affecting 
the forest NPP in the northern part of the study area, 
comprising the Da Hinggan Mountains, the Xiao Hing-
gan Mountains and Wanda Mountains. Evaportranspira-
tion reduced soil moisture content and was likely to 
negatively affect forest NPP. Thus, negative correlations 
between forest NPP and evaportranspiration were found, 
especially in the northern part of the study area, which 
had lower temperature and less precipitation. Forest 
NPP in the Da Hinggan Mountains was thus found to be 
more sensitive to climatic changes than in other three 
regions during the past three decades. 

4  Discussion 

4.1  Uncertainty of forest NPP simulation 
In this study, the CASA model was applied to simulate 
the forest NPP with an accuracy of 81.03% in North-
eastern China over 29 years. And the significant correla-
tion was found between estimated forest NPP and actu-
ally observed forest NPP. After the validation and statis-
tical analysis, effective estimation of forest NPP was 
obtained. It is important to be aware that a few major 
errors may lead to the uncertainty of the estimates. First, 
the forest NPP was simulated at a large spatial scale (8 
km × 8 km) with most pixels containing numerous types 
of forests. Therefore, the resultant forest NPP values 
may be subject to estimation errors, especially in the 
Inner Mongolia semi-arid zone. Secondly, errors from 
the input data of the CASA model were also non-negli-
gible. Although the MVC method was used to derive 
monthly NDVI to reduce the effects of clouds, atmos-

phere, and solar elevation angle, errors still exist in 
these processes of data acquisitions. The estimation of 
solar radiation and interpolation of meteorological data 
also yielded simulation errors of forest NPP estimates. 
Nevertheless, optimal approaches were adopted in this 
study to reduce possible errors. These approaches in-
clude employing the preferable Kriging interpolation 
method and proper parameters suitable for Northeastern 
China. Accuracy of integrating AVHRR GIMMS and 
TERRA MODIS datasets to construct a long-time se-
quence NDVI dataset were discussed in detail and suc-
cessfully verified through the consistency check pre-
sented by Mao et al. (2012). The forest NPP value from 
actual observation is a little higher than the value from 
model simulation. It mainly resulted from an accumula-
tion from many years of the actual observation forest 
NPP value. Through model comparison, differences 
among various models or at diverse spatial resolutions 
were determined. When compared with the results from 
Zhu et al. (2006a), a higher mean forest NPP was found 
in this study. This is likely due to the differences in the 
study area, as Zhu et al. only employed the Northeastern 
China Transect. The transect covers geographic regions 
with lower vegetation abundance. The mean forest NPP 
from 2000 to 2008 obtained in this study is similar to 
the CEVSA modeling results reported by Zhao et al. 
(2011), and is slightly higher than the value obtained in 
Guo et al. (2008). In summary, no significant differ-
ences exist among these results. Therefore, the results, 
based on the root mean square error and comparisons 
among several models, reported in the present study 
were credible and scientific for such a large study area 
(Northeastern China) and long-time sequence (nearly 
three decades). 

4.2  Spatial pattern and temporal dynamics of for-
est NPP 
The evident climatic changes and intense human distur-
bances resulted in great changes in forest NPP in 
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Northeastern China. Our results indicate that forest NPP 
in the Northeastern China over the past decades exhib-
ited an obvious spatial pattern and temporal dynamics. 
Spatially, coniferous forests dominated by Dahurian 
Larch (Larix gemelinii) and Pinus sylvestris (Pinus syl-
vestris var. mongolicalitv) were primarily distributed in 
the Da Hinggan Mountains with a lower temperature 
and longer winter. The Da Hinggan Mountains region is 
the second biggest permafrost zone in China and is cov-
ered by snow more than half a year (Zhou et al., 2000). 
Thus, the short growing days and small needle-shaped 
leaves resulted in lower forest NPP when compared with 
other types of forests. Mixed coniferous broadleaved 
forests and broadleaved deciduous forests are primarily 
distributed in the Changbai Mountains and the Xiao 
Hinggan Mountains and Wanda Mountains, where 
higher forest NPP values can be attributed to the abun-
dant precipitation and higher temperature, resulting in 
more growing days. The forest NPP value in the Inner 
Mongolia semi-arid zone is the lowest when compared 
to other regions. It is not only due to the lack of precipi-
tation, but also because of much evaportranspiration in 
the area. The forest NPP of similar forest types had dif-
ferent grades, which can be attributed to climatic condi-
tions and the ages of the trees (Huang et al., 2010).    

The forest NPP values in different ecological func-
tional regions and seasons, as well as in different forest 
types, had various characteristics over the study period. 
During the past 29 years, there was a general increasing 
trend of forest NPP due to many climatic factors, in-
cluding increased temperature, decreased precipitation, 
less cloudy and rainy days, and more solar radiations, all 
of which provided a better growing environment for 
forests (Jin et al., 2000; Mao et al., 2010; Yang et al., 
2010). Fang et al. (2001b) found that the changes of 
NPP are owing to the difference of precipitation. The 
annual changes of forest NPP are the most correlated to 
variability of annual precipitation, such as the difference 
between 2009 and 2010. Strong precipitation in 1998 
resulted in the low NPP because reduced the solar radia-
tion for vegetation photosynthesis (Piao et al., 2003). 
Furthermore, a seasonal analysis on dynamics of forest 
NPP shows that the forest NPP value increased signifi-
cantly in spring and autumn, which cover the growing 
season of forests. As a result of the forest fire over the 
Da Hinggan Mountains in the spring of 1987, the forest 
NPP in spring in 1987 decreased significantly (Fig. 7). 

Moreover, the temporal analysis results of forest NPP 
for the four ecological functional regions show that all 
regions except the Changbai Mountains region had a 
clear increasing trend of forest NPP. It is because that 
the forests in the Changbai Mountains region have been 
significantly impacted by human activities, such as de-
forestation, farmland reclamation. Therefore, effective 
forest managements are imperative for the Changbai 
Mountains ecological functional region.  

4.3  Effects of forest degradation and conservation 
on forest NPP 
Forests play a vital role on regional environment and 
ecological equilibrium. However, in the past several 
decades, forests in Northeastern China have undergone 
significant human-induced changes (Liu et al., 2003; Xu 
et al., 2004b; Liu et al., 2009). Although a large number 
of forest parks and reserves have been established in the 
past three decades, large areas of primary forests were 
damaged, especially the coniferous forests. Bai and 
Dent (2005) argued that land degradation and improve-
ment in China significantly affected NPP. Xu et al. 
(2004a) found that a total of 9.006 × 105 ha forests were 
degraded during 1985–1995 and 4.869 × 105 ha forests 
were degraded during 1995–2000 in Northeastern China. 
Liu et al. (2005) found that 1.023 × 105 ha forests were 
converted into other land use types in the Da Hinggan 
Mountains and Xiao Hinggan Mountains and in the 
eastern part of Northeastern China. These degraded ar-
eas were mainly distributed in the forest-grassland and 
forest-cropland transitional zones. The conversion from 
forestland into other land cover types resulted in a de-
crease in NPP. To date, deforestation is still ongoing, 
resulting in reduced productivity and degraded regional 
environments, such as aggravated soil erosion in the 
Inner Mongolia semi-arid zone. Forests in the Inner 
Mongolia semi-arid zone are scattered, and the en-
hancement of forest quality and expansion of forest area 
are necessary to control the sandstorm and stabilize the 
sands in the Inner Mongolia semi-arid zone. Moreover, 
the Grain to Green Program (GTGP) must be effectively 
implemented in this sub-region, especially in the Horqin 
desert zone which includes the serious desertification of 
lands (Yan et al., 2011). Some forests disappeared in the 
past three decades, especially in the Changbai Moun-
tains, because of urbanization and land degradation. Yu 
et al. (2009a) and Lu et al. (2010) emphasized that ur-
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banization had significant effects on the change of NPP. 
In light of this, economic development policy in North-
eastern China, including the ′Revitalizing old industrial 
base of Northeast China′ policy (Zhang, 2008), may also 
negatively affect the forests and forest NPP values.   

Chinese central and local governments have gradu-
ally realized the importance of sustainable utilization of 
forests in Northeastern China. The Natural Forest Con-
servation Program (NFCP) and the GTGP (Liu et al., 
2008) were implemented for improving and protecting 
forests. Northeastern China, as one of the typical region 
which has luxuriant forest resources and at the same 
time experiencing significant deforestation, is the key 
region for the implementation of these two programs. 
The area of plantations increased significantly in 
Northeastern China. A total of 5.242 × 105 ha forests 
were returned from croplands in Northeastern China 
from 1990 to 2000 (Liu et al., 2005). Moreover, about 
8.28 × 104 ha of grassland was returned to forestland in 

the Da Hinggan Mountains and Xiao Hinggan Moun-
tains from 2000 to 2005 (Liu et al., 2009). Results from 
the seventh forest inventory (from 2004 to 2008) 
showed that areas of tree plantation obviously increased 
in Northeastern China, and therefore increased forest 
NPP in this area. As the major lumber production base 
in China, effective conservation and management on 
forests in Northeastern China will be implemented. Thus, 
the forest NPP values in Northeastern China will main-
tain the increasing trends with reasonable forest conser-
vation and management practices. 

5  Conclusions 

Forest NPP in Northeastern China from 1982 to 2010 is 
simulated using the CASA model by integrating 
AVHRR and MODIS remote sensing data. Simulation 
results are employed to investigate the spatial patterns 
and temporal dynamics of forest NPP during these 29 
years. Further, the impact of climatic factors and human 
activities, including degradation and plantation activities, 
on the dynamics of forest NPP is examined for the past 
three decades. Climatic changes and human activities 
exert obvious effects on forest NPP in Northeastern 
China. In addition, we find that forest NPP increased 
significantly over the past decades. The increasing 
trends in forest NPP are found stastically significant in 
spring and autumn and in different ecological functional 

regions including the Da Hinggan Mountains, the Xiao 
Hinggan Mountains and Wanda Mountains, and the In-
ner Mongolia semi-arid zone.  

Meanwhile, stronger correlations are found between 
evaportranspiration and forest NPP for coniferous forest, 
mixed coniferous broadleaved forest, and broadleaved 
deciduous forests in Northeastern China, when com-
pared with other climatic factors. Forest NPP in the Da 
Hinggan Mountains ecological functional region is more 
sensitive to climatic changes than that in other three re-
gions over the study period. Coniferous forests, which 
are the most sensitive to climatic changes, merits further 
investigations in the future work.   

References 

Allen R G, Pereira L S, Raes D, 1998. Crop evapotranspira-
tion-Guidelines for computing crop water requirements. In: 
FAO Irrigation and Drainage. Rome: FAO, 13–56.  

Bai Z, Dent D, 2009. Recent land degradation and improvement 
in China. AMBIO, 38(3): 150–156. doi: 10.1579/0044-7447- 
38.3.150 

EBVMC (Editorial Board of Vegetation Map of China, Chinese 
Academy of Sciences), 2001. Vegetation Regionalization Map 
of China. Beijing: Science Press. (in Chinese) 

Fang J, Chen A, Peng C et al., 2001a. Changes in forest biomass 
carbon storage in China between 1949 and 1998. Science, 
292(5525): 2320–2322. doi: 10.1126/science.1058629 

Fang J, Piao S, Tang Z et al., 2001b. Interannual variability in net 
primary production and precipitation. Science, 293(5536): 
1723. doi: 10.1126/science.293.5536.1723a 

Field C B, Randerson J T, Malmstrom C M, 1995. Global net 
primary production: Combining ecology and remote sensing. 
Remote Sensing of Environment, 51(1): 74–88. doi: 10.1016/ 
0034-4257(94)00066-V 

Fu Bojie, Liu Guohua, Chen Liding et al., 2001. Scheme of eco-
logical regionalization in China. Acta Ecologica Sinica, 21(1): 
1–6. (in Chinese) 

Guo Zhixing, Wang Zongming, Song Kaishan et al., 2007. Cor-
relations between forest vegetation NDVI and water-thermal 
condition in Northeast China forest regions in 1982–2003. 
Chinese Journal of Ecology, 26(12): 1930–1936. (in Chinese) 

Guo Zhixing, Wang Zongming, Zhang Bai et al., 2008. Analysis 
of temporal-spatial characteristics and factors influencing 
vegetation NPP in Northeast China from 2000 to 2006. Re-
sources Science, 30(8): 1226–1235. (in Chinese) 

Huang N, Niu Z, Wu C et al., 2010. Modeling net primary pro-
duction of a fast-growing forest using a light use efficiency 
model. Ecological Modelling, 221(24): 2938–2948. doi: 
10.1016/j.ecolmodel.2010.08.041 

Jin H, Li S, Cheng G et al., 2000. Permafrost and climatic change 
in China. Global and Planetary Change, 26(4): 387–404. doi: 



 MAO Dehua et al. Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China During … 645 

10.1016/S0921-8181(00)00051-5 
Liu J, Li S, Ouyang Z et al., 2008. Ecological and socioeconomic 

effects of China′s policies for ecosystem services. PNAS, 
105(28): 9477–9482. doi: 10.1073/pnas.0706436105 

Liu Jiyuan, Zhang Zengxiang, Xu Xinliang et al., 2009. Spatial 
patterns and driving forces of land use change in China in the 
early 21st century. Acta Geographica Sinica, 64(12): 1411– 
1420. (in Chinese) 

Liu Jiyuan, Zhang Zengxiang, Zhuang Dafang et al., 2003. A 
study on the spatial-temporal dynamics changes of land-use 
and driving forces analyses of China in the 1990s. Geo-
graphical Research, 22(1): 1–12. (in Chinese) 

Liu Yansui, Peng Liuying, Chen Yufu, 2005. Conversion of land 
use types and ecological effect in Northeast China. Transac-
tions of the CSAE, 21(10): 175–178. (in Chinese) 

Long Huiling, Li Xiaobing, Wang Hong et al., 2010. Net primary 
productivity (NPP) of grassland ecosystem and its relationship 
with climate in Inner Mongolia. Acta Ecologica Sinica, 30(5): 
1367–1378. (in Chinese) 

Lu D, Xu X, Tian H et al., 2010. The effects of urbanization on 
net primary productivity in southeastern China. Environment 
Management, 46(3): 404–410. doi: 10.1007/s00267-010-9542-y 

Luo Tianxiang, 1996. Patterns of Biological Production and Its 
Mathematical Models for Main Forest Types of China. Beijing: 
Graduate School, Chinese Academy of Sciences. (in Chinese) 

Mao D, Wang Z, Luo L et al., 2012. Integrating AVHRR and 
MODIS data to monitor NDVI changes and their relationships 
with climatic parameters in Northeast China. International 
Journal of Applied Earth Observation and Geoinformation, 18: 
528–536. doi: 10.1016/j.jag.2011.10.007 

Mao Dehua, Wang Zongming, Luo Ling et al., 2010. Grow-
ing-season normalized difference vegetation index, NDVI, re-
sponse to climate changes and increased carbon dioxide con-
centration in frozen areas of Northeast China during 1982– 
2008. Acta Scientiae Circumstantiae, 30(11): 2332–2342. (in 
Chinese) 

Melillo J M, McGurie A D, Kicklighter D W et al., 1993. Global 
climate change and terrestrial net primary production. Nature, 
363(6426): 234–240. doi: 10.1038/363234a0.  

Nemani R R, Keeling C D, Hashimoto H et al., 2003. Cli-
mate-driven increases in global terrestrial net primary produc-
tion from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 
10.1126/science.1082750 

Pan Y, Birdsey R, Fang J et al., 2011. A large and persistent car-
bon sink in the world′s forests. Science, 333(6045): 988–993. 
doi: 10.1126/science.1201609 

Peng D, Huang J, Huete A R et al., 2010. Spatial and seasonal 
characterization of net primary productivity and climate vari-
ables in southeastern China using MODIS data. Journal of 
Zhejiang University, 11(4): 275–285. doi: 10.1631/jzus. 
B0910501 

Piao S, Fang J, Ciais P et al., 2009. The carbon balance of terres-
trial ecosystems in China. Nature, 458(7241): 1009–1014. doi: 
10.1038/nature07944 

Piao S, Fang J, Zhou L et al., 2003. Interannual variations of 

monthly and seasonal normalized difference vegetation index 
(NDVI) in China from 1982 to 1999. Journal of Geophysical 
Research: Atmospheres, 108(D14). doi: 10.1029/2002JD002848 

Piao S, Fang J, Zhou L, 2005. Changes in vegetation net primary 
productivity from 1982 to 1999 in China. Global Biogeo-
chemical Cycles, 19(2): GB2027. doi: 10.1029/ 004GB002274 

Piao Shilong, Fang Jingyun, Chen Anping, 2003. Seasonal dy-
namics of terrestrial net primary production in responses to 
climate changes in China. Acta Botanica Sinica, 45(3): 269– 
275. (in Chinese) 

Piao Shilong, Fang Jingyun, Guo Qinghua, 2001. Application of 
CASA model to the estimation of Chinese terrestrial net pri-
mary productivity. Acta Phytoecologica Sinica, 25(5): 603– 
608. (in Chinese) 

Potter C S, Klooster S, Genovese V, 2012. Net primary produc-
tion of terrestrial ecosystems from 2000 to 2009. Climatic 
Change, 115(2): 365–378. doi: 10.1007/s10584-01200460-2 

Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial eco-
system production: A process model based on global satellite 
and surface data. Global Biogeochemical Cycles, 7(4): 811– 
841. doi: 10.1029/93GB02725 

Seaquist J W, Olsson L, Ardo J, 2003. A remote sensing based 
primary production model for grassland biomass. Ecological 
Modeling, 169(1): 131–155. doi: 10.1016/S0304-3800(03) 
00267-9 

Sun Rui, Zhu Qijiang, 2001. Effect of climate change of terres-
trial net primary productivity in China. Journal of Remote 
Sensing, 5(1): 58–61. (in Chinese) 

Tagesson T, Smith B, Lofgren A, 2009. Estimating net primary 
production of Swedish forest landscapes by combining mecha-
nistic modeling and remote sensing. AMBIO, 38(6): 316–324. 
doi: 10.1579/08-A-513.1 

Tan K, Piao S, Peng C et al., 2007. Satellite-based estimation of 
biomass carbon stocks for northeast China′s forests between 
1982 and 1999. Forest Ecology and Management, 240(1): 
114–121. doi: 10.1016/j.foreco.2006.12.018 

Wang Zongming, Zhang Bai, Song Kaishan et al., 2009. Land use 
changes in Northeast China driven by human activities and 
climatic variation. Chinese Geographical Science, 19(3): 
225–230. doi: 10.1007/s11769-009-0225-7 

Xu Xinliang, Liu Jiyuan, Zhuang Dafang et al., 2004a. Analysis 
on spatial-temporal characteristics and driving factors of 
woodland change in Northeastern China based on 3S technol-
ogy. Scientia Geographica Sinica, 24(1): 55–60. (in Chinese) 

Xu Xinliang, Liu Jiyuan, Zhuang Dafang et al., 2004b. Spa-
tial-Temporal characteristics and driving factors of woodland 
resource changes in China. Journal of Beijing Forest Univer-
sity, 26(1): 41–46. (in Chinese) 

Yan Q, Zhu J, Hu Z et al., 2011. Environmental impacts of the 
shelter forests in Horqin sandy land, Northeast China. Journal 
of Environmental Quality, 40(3): 815–824. doi: 10.2134/ 
jeq2010.0137 

Yang Z, Ouyang Y, Xu X et al., 2010. Effects of permafrost deg-
radation on ecosystems. Acta Ecologica Sinica. 30(1): 33–39. 
doi: 10.1016/j.chnaes.2009.12.006 



646 Chinese Geographical Science 2014 Vol. 24 No. 6 

Yao J, He X, Li X et al., 2011. Monitoring responses of forest to 
climate variations by MODIS NDVI: A case study of Hun 
River upstream, northeastern China. European Journal of For-
est Research, 131(3): 705–716. doi: 10.1007/s10342-011- 
0543-z 

Yu D, Shao H, Shi P et al., 2009a. How does the conversion of 
land cover to urban use affect net primary productivity? A case 
study in Shenzhen City, China. Agricultural and Forest Mete-
orology, 149(11): 2054–2060. doi: 10.1016/j.agrformet.2009. 
07.012 

Yu D, Shi P, Shao H et al., 2009b. Modeling net primary produc-
tivity of terrestrial ecosystems in East Asia based on an im-
proved CASA ecosystem model. International Journal of Re-
mote Sensing, 30(18): 4851–4866. doi: 10.1080/0143116080 
2680552 

Yuan Jinguo, Niu Zheng, Wang Chenli, 2006. Vegetation NPP 
distribution based on MODIS data and CASA model—A case 
study of Northern Heibei Province. Chinese Geographical Sci-
ence, 16(4): 334–341. doi: 10.1007/s11769-006-0334-5 

Zhang Pingyu, 2008. Revitalizing old industrial base of Northeast 
China: Process, policy and challenge. Chinese Geographical 
Science, 18(2): 109–118. doi: 10.1007/s11769-008-0109-2 

Zhao Guoshuai, Wang Junbang, Fan Wenyi et al., 2011. Vegeta-

tion net primary productivity in Northeast China in 2000–2008: 
Simulation and seasonal change. Chinese Journal of Applied 
Ecology, 22(3): 621–630. (in Chinese) 

Zhou Guangsheng, Zhang Xinshi, 1995. A natural vegetation NPP 
model. Acta Phytoecologica Sinica, 19(3): 193–200. (in Chi-
nese) 

Zhou Youwu, Guo Dongxin, Qiu Guoqing et al., 2000. Geocryo-
logy in China. Beijing: Science Press, 26–30, 40–42. (in Chinese) 

Zhu W, Pan Y, Liu X et al., 2006a. Spatio-temporal distribution of 
net primary productivity along the Northeast China transect 
and its responses to climatic change. Journal of Forestry Re-
search, 17(2): 93–98. doi: 10.1007/s11676-006-0022-4 

Zhu Wenquan, Pan Yaozhong, He Hap et al., 2006b. Simulation 
of the maximum light use efficiency for typical vegetation in 
China. Chinese Science Bulletin, 51(6): 700–706. (in Chinese) 

Zhu Wenquan, Pan Yaozhong, Yang Xiaoqiong et al., 2007a. In-
fluence analysis of climatic changes on terrestrial vegetation 
net primary productivity in China. Chinese Science Bulletin, 
52(21): 2535–2541. (in Chinese) 

Zhu Wenquan, Pan Yaozhong, Zhang Jinshui, 2007b. Estimation 
of net primary productivity of Chinese terrestrial vegetation 
based on remote sensing. Journal of Plant Ecology, 31(3): 
413–424. (in Chinese) 

 


