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Abstract: Comparative space-time thinking lies at the heart of spatiotemporally integrated social sciences. The multiple dimensions and 

scales of socioeconomic dynamics pose numerous challenges for the application and evaluation of public policies in the comparative 

context. At the same time, social scientists have been slow to adopt and implement new spatiotemporally explicit methods of data analy-

sis due to the lack of extensible software packages, which becomes a major impediment to the promotion of spatiotemporal thinking. 

The proposed framework will address this need by developing a set of research questions based on space-time-distributional features of 

socioeconomic datasets. The authors aim to develop, evaluate, and implement this framework in an open source toolkit to comprehen-

sively quantify the changes and level of hidden variation of space-time datasets across scales and dimensions. Free access to the source 

code allows a broader community to incorporate additional advances in perspectives and methods, thus facilitating interdisciplinary 

collaboration. Being written in Python, it is entirely cross-platform, lowering transmission costs in research and education. 
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1  Introduction 

Growing socioeconomic inequality across various spa- 
tial scales threatens the social harmony and erodes the 
political basis for sustainable growth. This concern is 
exemplified by Levy and Chowdhury (1995)′s comment 
that ′large income and wealth differences between coun- 
tries and regions generated acts of aggression which 
inflicted considerable human suffering, loss of resources 
and knowledge, destruction of civilizations and envi- 
ronmental damage′. Meanwhile, a number of fascinating 

debates on the trajectories and mechanisms of regional 
development are reflected in numerous empirical studies 
of specific regions and countries (Moulaert and 
Mehmood, 2009; Yeung, 2009; Vasquez, 2011; Wei and 
Liefner, 2012; Wei, 2013). Despite rich and growing list 
of empirical literature, comparative analysis of devel- 
opment and inequality within and between economic 
systems remains largely unexplored (Ye, 2010). It is 
fascinating to detect a list of differences and similarities 
across various scales and dimensions between and 
within multiple regional and urban systems. In other  



 YE Xinyue et al. An Open Source Toolkit for Identifying Comparative Space-time Research Questions 349 

words, many cases studies and good practices exist, but 
a systematical comparison toolkit is missing. 

At the same time, the volume of available space-time 
data in various disciplines and domains has increased 
dramatically due to the growing sophistication and 
ubiquity of information and communication technology 
(Batty, 2005; Wang, 2005; Mennis and Guo, 2009; Yang 
et al., 2010; Gui et al., 2012, Ye and Shi, 2012). Spatial 
statistics and spatial econometrics have enabled social 
scientists to leverage these new data sources, while sig-
nificant difficulties still exist (Getis et al., 2004; LeSage 
and Pace, 2009; Anselin, 2012; Anselin and Rey, 2012). 
It is clear that a space-time perspective has become in-
creasingly relevant to our understanding of socioeco-
nomic dynamics and a framework is needed to system-
atically integrate space and time (Miller and Wentz, 
2003; Goodchild, 2008; Wang and Arnold, 2008; Rey 
and Ye, 2010; Ye and Liu, 2012). Thus, the availability 
of codes and tools to support space-time data analysis 
will play a critical role in the adoption of such a per-
spective across the social sciences (Anselin, 2010; 
Bivand, 2011; Ye and Carroll, 2011a). 

Methods developed in the mainstream social science 
disciplines have been applied with little attention paid to 
the potential challenges posed by the spatial effects over 
time across multiple scales and dimensions (Rey and Ye, 
2010). Though rich conceptual frameworks have high-
lighted the spatial unevenness of socioeconomic proc-
esses, the gap has been widening between the empirical 
studies and theories (Ye, 2010). Hence, the most crucial 
step is to systematically understand the data from the 
theoretical and policy context before testing hypotheses. 
It is worth noticing that data are also collected based on 
the understanding of the systems including hypotheses 
(Ye, 2010). Comparison is at the heart of human behav-
ior and reasoning. Comparative analysis is a method to 
observe and interpret the world, including its spatial and 
temporal characteristics. In many disciplines, research-
ers are asked to compare and contrast two things, such 
as two temporal trends, two spatial processes, and so on. 
When one or two space-time datasets are presented, it is 
interesting to detect crucial differences or surprising 
commonalities among or between the two systems, 
which can be refined to generate many important re-
search questions. Faced with a daunting task of finding a 
variety of differences and similarities across all possible 
perspectives, it is necessary to design research questions 

more logically and comprehensively. However, existing 
exploratory approaches to space-time analysis, from 
data mining to visualization, are limited to building a 
framework to generate research questions for one space- 
time dataset, let alone two datasets. This papers aims to 
suggest a framework of research questions to compare 
space-time patterns and trends within one dataset, as 
well as across two datasets. The proposed framework 
aims to systematically evaluate the integrated treatment 
of three dimensions (space, time, and distribution) and 
four scales (global, meso, local, and individual) in so-
cioeconomic studies. The framework will address the 
following broad questions: 1) What role does three di-
mensions and four scales play in the empirical analysis 
of socioeconomic dynamics and discrete space? 2) 
Though this framework was initialized in regional ine-
quality studies, can it be applied to human mobility and 
continuous space? 3) Can generic comparative research 
questions be systematically asked based on the combi-
nation of three dimensions and four scales of the data? 

2  Literature Review 

The existing spatial analysis methods have been devel-
oped primarily in the static context. Yet, all of the proc-
esses of interest to social scientists operate over spatial, 
temporal, and distributional dimensions across scales. 
Questions on inequality lie at the heart of the discipline 
of geography, although recent work in human geography 
has been criticized for failure to address the key chal-
lenges of development and inequality. The last two dec-
ades have witnessed an enormous literature of empirical 
studies on socioeconomic inequality across multiple 
social sciences (Barro et al., 1991; Chen and Fleisher, 
1996; Le Gallo and Ertur, 2003; Ezcurra, 2007; Tselios, 
2009; Li and Wei, 2010; Rosés et al., 2010; Marrero and 
Rodríguez, 2013). Though many earlier studies relied on 
the same underlying theoretical and empirical frame- 
works used in the international analyses of income dy- 
namics, the spatial effects in convergence studies is now 
a central theme in the literature (Rey and Janikas, 2005; 
Fingleton and López-Bazo, 2006; Dall'erba and Le 
Gallo, 2008; Le Gallo and Kamarianakis, 2010). 

Most exploratory data analysis methods focus on ei- 
ther longitudinal or cross-sectional datasets, which largely 
ignore the inseparability of space and time. The treat- 
ment of space-time effects in the comparative socio- 
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economic analysis has only recently begun to receive 
attention (Bosch and Maloney, 2010; Rey and Ye, 2010; 
Ye, 2010; García et al., 2012; Tonts et al., 2012). At the 
same time, the findings are mixed and sometimes con-
flicting for the same socioeconomic dynamics (Ye and 
Wei, 2005; Ye and Xie, 2012). This is because socio-
economic process is a multi-dimensional and multi-scale 
phenomenon. However, most empirical studies are mo-
tivated by only a few well defined research questions. 
Then the researcher chooses the appropriate analytical 
methods while also obtaining the data needed for appli-
cation of the methods. Only at the end of the process 
does the analyst interpret and evaluate the results. Nev-
ertheless, these traditional research methods and proce-
dures tend not to be very useful in revealing patterns and 
trends in new, large, and complicated space-time dataset. 
In other words, the analyst has to get acquainted with the 
data before formulating novel questions, instead of test-
ing the hypotheses without a full exploration of the 
dataset features. The process of ′getting acquainted with 
data′ is the basis of exploratory data analysis (EDA) 
(Andrienko and Andrienko, 2006; Anselin et al., 2006). 
EDA is a philosophy of conducting data analysis, which 
originates from Tukey′s seminal work (Tukey, 1977). As 
argued by Tukey, EDA is to analyze data for the purpose 
of interactively formulating hypotheses instead of test-
ing hypotheses (Anselin et al., 2006). Exploratory 
space-time data analysis can reveal complex patterns 
and trend not identified otherwise, and it forms the basis 
for formulating novel research questions for space-time 
dataset. These tools have now nourished a vibrant re-
search agenda-Geovisual Analytics focusing on the space- 
time dynamics (Andrienko et al., 2010; Andrienko et al., 
2011; Anselin, 2012). Recent years has seen an explo-
sion of such exploratory methods and software tools 
developed in diverse fields (Henriques et al., 2012; 
Rohde and Corcoran, 2012; Sadahiro, 2012; Templ et 
al., 2012; Traun and Loidl, 2012; Rey et al., 2013). 

During the past several decades, burgeoning efforts 
have been witnessed on the development and imple-
mentation of spatial analysis packages (Anselin and 
Getis, 1992; Rey and Anselin, 2006; Anselin, 2010; 
Anselin, 2012; Bivand, 2011). The pioneering spatial 
analysis toolbox SpaceStat was developed in the 1990s, 
implementing a set of spatial statistics routines (Anselin, 
1991). SpaceStat relies on Environmental Systems Re-
search Institute (ESRI)′s ArcView to manage data han-

dling and visualization. However, general GIS solutions 
typically lack support for rich interactions such as dy-
namic linking and brushing, which are central to the 
exploratory process (Anselin, 2012). Therefore, tools 
emphasizing exploratory analysis are often standalone, 
demonstrated by the transition from SpaceStat to GeoDa 
(Anselin et al., 2006). 

The history of open source movement is much 
younger, but its impact on GIS world is impressive 
(Rey, 2009; Shao et al., 2012; Steiniger and Hunter, 
2013). As Rey (2009) comments, ′a tenet of the free 
software (open source) movement is that because source 
code is fundamental to the development of the field of 
computer science, having freely available source code is 
a necessity for the innovation and progress of the field′. 
The development of open source packages has been 
boosted. Steiniger and Hunter (2013) map the free and 
open source GIS of 2012, clearly depicting the current 
geospatial ecosystem for both business and research use. 
The Open Source Geospatial Foundation (OSGeo) pro-
jects that support spatial data handling has a vibrate de-
veloper community with extensive collaborative activi-
ties, possibly due to the wide audience and public ado-
pted Open Geospatial Consortium (OGC) standards. In 
comparison, spatial analysis can be quite flexible and is 
often discipline-specific and data-specific. Therefore, 
analysis routines are often written by domain scientists 
with specific scientific questions in hand (Bivand, 2011). 
The explosion of these routines is also contributed by 
the increasingly easier developing processes with pow-
erful scripting language environments such as R and 
Python. However, many duplicates and gaps in the 
methodological development have also been witnessed. 

Ye (2010) and Ye and Rey (2013) argue that the 
method duplicates and gaps exist due to the lack of sys-
tematic exploration of space-time dataset. However, the 
definitions of the unit of analysis and the unit of obser-
vation should be distinguished before the structure of 
the space-time dataset can be characterized. The unit of 
analysis is the major entity that is being analyzed in the 
research, while the unit of observation is the basic entity 
that the data is reported upon. The unit of analysis is the 
′what′ that is being studied, which is designed by the 
researcher. However, the unit of observation is decided 
by the way the dataset was collected, which can not be 
fully controlled by the researcher. In most studies, the 
difference between the unit of analysis and the unit of  
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observation is not emphasized. Although this has been 
an issue for some time, it is important to recognize the 
difference between the unit of analysis and the unit of 
observation in the framework for comparative space- 
time analysis. The main reason is that the unit of analy-
sis involves the issues of scales and aggregation of data, 
which are very useful for designing data analysis tasks. 
Census data, for instance, serves as the unit of observa-
tion for many socioeconomic studies. Census data may 
be aggregated into census enumeration districts (block, 
block group, census tract, place, county, Metropolitan 
Statistical Area, State, and so on), by postcode areas 
(Zip Code Tabulation areas), with considerable diffi-
culty into other geographic subdivisions such as police 
beats or flood zones, or any other polygonal spatial par-
tition. Various spatial partition schemes lead to different 
types of unit of analysis, which in turn generate different 
perspectives of looking at the same data. Hence, it is 
valuable to consider all possible perspectives before 
formulating research questions. At the same time, it is 
worth noticing that all possible temporal configurations 
should be considered. Monthly unemployment counts 
(the unit of observation), for instance, can be aggregated 
into quarterly or yearly periods. Many types of units of 
analysis can be generated when both spatial and tempo-
ral partition schemes are considered. Unemployment 
issues, for instance, can be analyzed at the county level 
using monthly counts, or at the state level using yearly 
counts, or at the level of any other polygonal spatial par-
tition with any other temporal partition. 

Stimulated by open source geocomputation and geo-
visualization, the researchers have developed a series of 
new statistics to integrate space and time in analyzing 
regional and urban systems (e.g., Ye and Carroll, 2011a; 
Ye and Carroll, 2011b; Wells et al., 2012; Ye and Shi, 
2012; Ye and Xie, 2012; Ye and Rey, 2013). A more 
thorough and comprehensive open source toolkit is 
needed for developing generic research questions and 
tasks for space-time socioeconomic data. The authors 
have also been active in dissemination of new metrics 
for the broader research community by developing open 
source spatial analysis software to facilitate the dialogue 
among geographers, economists and policy-makers (Ye 
and Carroll, 2011a). These non-parametric methods 
examine the patterns and trends masked by macro sta- 
bilities in regional and urban systems, which have been 
implemented in two open source space-time analysis 
packages led by Rey and Anselin (2007): Space Time  

Analysis of Regional Systems (STARS) and Python 
Spatial Analysis Library (PySAL). STARS is a package 
designed for the analysis of areal data measured over 
time (Rey and Janikas, 2006). PySAL is a library of spa-
tial analysis functions (Rey and Anselin, 2007). The 
authors have been contributing a number of computa-
tional geometry methods of space-time analysis and a 
series of new comparative statistics, and bringing them 
into a user-friendly graphical environment with an array 
of dynamically linked graphical views (Ye and Carroll, 
2011a; Ye and Carroll, 2011b). 

Local indicator of spatial association (LISA) is an in-
dicator to examine local spatial dependence (Anselin, 
1995). LISA Time Path extends this static spatial statis-
tics to a temporal setting by plotting the pair-wise 
movement of a given variable of the focal unit (X coor-
dinate) and its spatial lag (Y coordinate) over time (Rey 
et al., 2005; Rey and Ye, 2010). At a given time, each 
region can be identified with a position whose coordi-
nates are defined above. Hence, each region has a direc-
tional path connecting all the coordinates by temporal 
order. A variety of geometric properties can be summa-
rized for each region′s LISA time path, since individual 
aspects of the same contemporaneous process can be 
dissected by interval gaps. When viewed in a compara-
tive context, the geometry of the paths (the trajectory of 
LISA of specific economies) can illuminate aspects of 
various regional growth processes. Hence, the compari-
son of LISA Time-Paths can reveal important insights as 
to socioeconomic dynamics across space and over time. 
The relative levels and pace of change of a region can 
be investigated and compared at the individual scale. 
That is, a particular region′s economic status fluctuates, 
or moves up/down relative to the national average. At 
the local scale, a focal economy might have a different 
velocity of development rate from its neighbors over 
time. This comparison provides important insights to the 
finer-scale aspects of stability and distinct directional 
movement within various regional income dynamics, 
because the convergence hypothesis is concerned with 
these distributions over time. 

3  A Framework 

3.1  Dimensions and scales for socioeconomic dy-
namics and discrete space 
According to Waldo Tobler, everything is related to 
everything else, but near things are more related than 
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distant things (Tobler, 1970). In addition to space, things 
near in time or near in statistical distribution should also 
be more related than distant things. Hence, the interde- 
pendence across space, time, and statistical distribution 
should be the rule rather than the exception. Ignoring 
these relationships leads to overlooking many possible 
interactions and dependence among space, time, and 
attributes. To reveal these relationships, the distributions 
of space, time, and attributes should be treated as the 
context in which a measurement is made, instead of 
specifying a single space and/or time as the context. The 
′distribution′ of space (the dimension of space) refers to 
the spatial distribution of attributes while the ′distribu- 
tion′ of attributes (the dimension of statistical distribu- 
tion) implies the arrangement of attributes showing their 
observed or theoretical frequency of occurrence. In ad- 
dition, the ′distribution′ of time (the dimension of time) 
signifies the temporal trend of attributes. 

Besides the dimensions, it is also important to recog- 
nize the issue of scales. Four scales are taken into con- 
sideration. The unit of analysis at the individual scale 
signifies the geographical location of an attribute (A1, 
Table 1), the temporal label of an attribute (A5, Table 1), 
or the rank of an attribute (A9, Table 1). The unit of 
analysis at the local scale explores a group of units 
which is formed by the focal observation and its neigh- 
boring observations in one of these three dimensions. A 
focal state and its neighboring states, for example, can 
be considered as a unit of analysis from the perspective 
of the spatial dimension (distribution) at the local scale 
(A2, Table 1). A focal year, the previous year, and the 
following year can be considered as a unit of analysis 
from the perspective of the temporal dimension at the 
local scale (A6, Table 1). A focal rank and the two im- 
mediate higher/lower ranks can be considered as a unit 
of analysis from the perspective of the statistical dimen-
sion (distribution) at the local scale (A10, Table 1). 

A meso-scale analysis studies a group of entities 
which shares similar features in spatial, temporal or sta-

tistical distributions. In other words, the local-scale 
analysis differs from the meso-scale analysis in the way 
how a subset of space-time data is retrieved for analysis. 
The former emphasizes that the rest of the subset are 
′near things′ to the focal element while the latter does 
not have this constraint. Hence, the latter usually has a 
larger subset (larger in space and lengthier in time) as 
the unit of analysis than the former does. The spatial 
distribution of rich states, for example, can be consid-
ered as a unit of analysis from the perspective of the 
spatial dimension (distribution) at the meso scale (A3, 
Table 1). All the years since a policy was implemented 
can be considered as a unit of analysis from the perspec-
tive of the temporal dimension at the meso scale (A7, 
Table 1). An income quartile can be considered as a unit 
of analysis from the perspective of statistical dimension 
(distribution) at the meso scale (A11, Table 1). The 
analysis at the global scale examines the distributions of 
all the regions, times, or attributes. Spatial distribution 
of all the incomes, for example, can be considered as a 
unit of analysis from the perspective of the spatial di-
mension (distribution) at the global scale (A4, Table 1); 
all the years can be considered as a unit of analysis 
based on the temporal dimension at the global scale be-
cause the research of the space-time dynamics is very 
sensitive to the selected starting and ending years (A8, 
Table 1); the statistical distribution of all the incomes 
can be considered as a unit of analysis based on statisti-
cal dimension (distribution) at the global scale (A12, 
Table 1). Limiting attention to only one of these dimen-
sions or scales may result in a misguided or partial un-
derstanding of the economic growth dynamics. 

3.2  Dimensions and scales for human mobility and 
continuous space 
The fast methodological advancements in recent years 
call for a unified framework of time geography (Sui, 
2012), and also a toolkit that help researchers to system-
atically exploring the movement data from different 

 
Table 1  Examples for unit of analysis (socioeconomic dynamics and discrete space) 

Levels 
 

Individual Local Meso Global 

Spatial 
Ohio 
(A1) 

Ohio and its neighboring states
(A2) 

Spatial distribution of rich states 
(A3) 

Spatial distribution of all incomes 
(A4) 

Temporal 
2009 
(A5) 

2008, 2009 and 2010 
(A6) 

2000s 
(A7) 

1929–2012 (study period) 
(A8) 

Distributions 

Statistical 
No.6 income 

(A9) 
No. 5, 6, and 7 incomes 

(A10) 
First income quartile 

(A11) 
Statistical distribution of all incomes 

(A12) 
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perspectives. Figure 1 demonstrates the one-day trajec-
tories of taxi 1 and taxi 2 in Wuhan. Looking at the spa-
tial dimension, we can use the individual trajectory and 
the comparative view of two trajectories to reflect di-
verse moving patterns, or use the cluster and the global 
distribution of trajectories to analyze the community 
structure and mobility patterns. Similar analyses could 
be conducted in the temporal and statistical dimension, 
and their combination might generate a comprehensive 
set of research perspectives. This comprehensive view at 
different scales is critical for making policy-relevant 
analysis, because any method alone can not reveal the 
complex socio-economic patterns and urban dynamics 
contained in the movement data. To integrate these 
methods into a coherent framework, we need to first 
categorize existing methods into different perspectives, 
design new methods to fill the gap, and implement 
computation and interactive visualization procedures for 
each of the method. 

Similar categorization applies to human mobility as 
shown in Table 2, where each moving object are treated 
as an agent and its velocity used as the statistical attrib-
ute. Hägerstrand, the pioneer in time geography, origi-
nally envisioned the adoption of seeing how human 
move as an unique and new perspective in regional sci-
ence (Hägerstrand, 1970). Measurement theory has been 

proposed to rigorously evaluate the space-time condi-
tions for human interaction (Miller, 2005a; Miller, 
2005b). Winter and Yin (2011) further adds the prob-
abilistic element to quantify locations of moving objects 
from a stochastic perspective, more faithfully reflect the 
uneven distribution of movements across space. Repre-
sentations of the space-time prism, which quantify the 
various constraints in our moving behaviors, have been 
extensively studied within the GIS community using 
surface modeling and 3D interactive visualization de-
vices (Miller, 1991; Kwan, 2000b; Kwan, 2000a; Kwan 
and Lee, 2003). Studies have also been extended to the 
road network space (Kuijpers and Othman, 2009; Kui-
pers et al., 2010). These theoretical and tool develop-
ments have spurred applications in multiple disciplines 
including transportation, environmental criminology, 
civil engineering and ecology (Timmermans et al., 2002; 
Ratcliffe, 2006; Ahmed and Miller, 2007; Long and 
Nelson, 2012b). Studies have also been extended to 
non-human settings, where animals and other moving 
objects are becoming the subject of research (Jones and 
Cloke, 2008; Bonnell et al., 2013), which reflect Häger-
strand′s view of geography as human ecology (Sui, 
2012). The advances in the data collection further ex-
pands and deepens the understanding of human dynam-
ics, from taxi GPS trajectories to mobile phone records  

 

 
Fig. 1  Two taxi trajectories in a weekday in Wuhan downtown area. September, 12th, 2012 
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Table 2  Examples for unit of analysis (human mobility and continuous space) 

Levels 
 

Individual Local Meso Global 

Spatial 
Agent I 

(A1) 

Agent I′s movement and move-
ments of its neighboring agents 

(A2) 

Spatial distribution of 
fast movements 

(A3) 

Spatial distribution of all  
movements 

(A4) 

Temporal 
12:00 
(A5) 

12:00, 13:00, 14:00 
(A6) 

Morning 
(A7) 

Feb 1th to March 1th (study period)
(A8) 

Distributions 

Statistical 
No. 3 velocity 

(A9) 
No. 2, 3, and 4 velocities 

(A10) 
First velocity quartile 

(A11) 

Statistical distribution of all 
movement velocities 

(A12) 
 

(Downs and Horner, 2012; Gao et al., 2013), from 
physical movements to virtual activities (Yu and Shaw, 
2008; Shaw and Yu, 2009). 

With huge amount of movement data readily avail-
able, we can explore the interactions and patterns of 
moving objects across all possible scales, stimulating a 
range of new research questions. Movement of individ-
ual spatial scale mostly concerns the construction of 
space-time prisms and choice set of individual′s activi-
ties (Kuijpers et al., 2010, Chen and Kwan, 2012). At 
the local spatial scale, we can examine how a focal 
agent interacts with others (Winter and Raubal, 2006; 
Neutens et al., 2010), and answer questions such as an 
alibi query to test whether two moving objects have 
physically met (Kuijpers et al., 2011). Meso spatial 
scale analysis includes clustering and generalization of 
trajectories (Andrienko and Andrienko, 2011; Guo et al., 
2012a; Murray et al., 2012). Spatial analysis at the 
global scale considers the overall spatial pattern, such as 
the social interaction potential in a city (Farber et al., 
2012), or predictions of future movements (Song et al., 
2010; Horner et al., 2012). Movement data are essen-
tially longitudinal, so these studies can all be viewed 
from a temporal dimension. The statistical dimension 
has not been fully studied (Long and Nelson, 2012a).  

Continuous space is largely explored by natural sci-
ence disciplines such as hydrology, geophysics, ocean-
ography, meteorology, and soil science (Corazza et al., 
2012; Galanis et al., 2012; Guo et al., 2012b; Yang et 
al., 2012; Yue et al., 2012), where the attribute of inter-
est are continuously measurable across the study area 
(O′Sullivan and Unwin, 2010). The categorization 
framework is also valuable for analysis of continuous 
space data. We categorized the articles published in the 
Journal-Stochastic Environmental Research and Risk 
Assessment (SERRA) in 2012, which focuses on sto-
chastic approaches in environmental sciences and engi-
neering applied to continuous space data. By identifying 

the research focus, we can find the gaps and implement 
tools accordingly. Table 3 demonstrates the categoriza-
tion of the research work published in SERRA (71 of 
them, excluding 12 articles on purely theoretical issues 
and one erratum). 

 
Table 3  Classification of unit of analysis in research works 
published in Journal of Stochastic Environmental Research and 
Risk Assessment in 2012 

Levels 
 

Individual Local Meso Global

Spatial 37 5 6 38 

Temporal 30 3 21 39 Distributions

Statistical 15 3 9 62 

 
In the continuous space, a common task is to interpo-

late data in unsampled location, a main theme in geosta-
tistics (Chun and Griffith, 2013). Techniques include 
semi-variogram, inverse distance weighting and Krig-
ing, which are still being actively studied (Ankenman et 
al., 2010; Kerry et al., 2012; Zhang, 2012). A related 
analytic method is kernel density estimation (KDE). 
Different from interpolation, KDE generates estimates 
of a certain phenomenon across the continuous space 
from original counts recorded in the locations of occur-
rence. KDE is often used as an exploratory tool in map-
ping accessibility or risks (Spencer and Angeles, 2007; 
Cai et al., 2012). KDE has also been extended into net-
work space to study traffic accidents (Xie and Yan, 
2008; Sugihara et al., 2010; Loo et al., 2011).   

Depending on the smallest functional unit being 
studied, research in continuous space can also be cate-
gorized by the different spatial, temporal and statistical 
scales. For example, studies dedicated to study the 
properties of a single spatial entity can be categorized 
into individual spatial scale, such as studying the drift-
ing pattern of a moving object in the ocean (Mínguez et 
al., 2012). Local-scale spatial analyses are normally 
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seen in local regression analyses (Tutmez et al., 2012). 
Meso-scale spatial analyses concerns the partition of 
space into subspaces such as primary forest and secon-
dary forest in (Funwi-Gabga and Mateu, 2012). Finally 
the global spatial scale analysis observes the pattern 
across the study area, examples include quantifying the 
spatial behaviors and intensity of fires in the whole 
study area (Juan et al., 2012). Similar categorization can 
be made in the temporal dimension. Statistical dimen-
sion normally couples with the spatiotemporal pattern 
and depends on the specific statistical method used. 

3.3  Task typology and workflow 
The total of 12 basic units of analysis can be conceptu-
alized through combining three dimensions and four 
scales (Table 1). This view of a space-time dataset helps 
to describe patterns of socioeconomic activities such as 
geographical spillover occurring across scales. By iden-
tifying the unit of analysis, a general task typology can 
build on top of Table 1. Three conceptual tables involve 
various possible research questions based on the com-
bination of these 12 units of analysis (Tables 4, 5, and 6) 
(Ye and Rey 2013). 

 

Table 4  Spatial-temporal research questions 

Temporal 
Spatial 

Individual Local Meso Global 

Individ-
ual 

A1+A5 A1+A6 A1+A7 A1+A8 

Local A2+A5 A2+A6 A2+A7 A2+A8 

Meso A3+A5 A3+A6 A3+A7 A3+A8 

Global A4+A5 A4+A6 A4+A7 A4+A8 

 

Table 5  Statistical-temporal research questions  

Temporal 
Statistical 

Individual Local Meso Global 

Individual A9+A5 A9+A6 A9+A7 A9+A8 

Local A10+A5 A10+A6 A10+A7 A10+A8 

Meso A11+A5 A11+A6 A11+A7 A11+A8 

Global A12+A5 A12+A6 A12+A7 A12+A8 

 

Table 6  Statistical-spatial research questions  

Spatial 
Statistical 

Individual Local Meso Global 

Individual A9+A1 A9+A2 A9+A3 A9+A4 

Local A10+A1 A10+A2 A10+A3 A10+A4 

Meso A11+A1 A11+A2 A11+A3 A11+A4 

Global A12+A1 A12+A2 A12+A3 A12+A4 

A framework developed based on Tables 4–6 can be 
used to systematically design research questions re-
garding patterns, trends, interactions, and relationships 
in space-time data. In other words, this work lead to a 
general task topology for socioeconomic data by inte-
grating spatial, temporal, and statistical distributions at 
individual, local, meso, and global scales. One research 
question can thus engender many follow-up research 
questions. This framework allows the behavior of a dy-
namic system to be reconstructed from a group of units 
of analysis. The key aspect of the work is to integrate 
the three dimensions of a space-time dataset in a four- 
scale environment. Spatial data analysis, temporal data 
analysis, and probability distribution analysis are three 
fundamental analytical methods for space-time dataset 
(Ye, 2010). Taxonomy of methods can then be built by 
combining any two methods at any two scales, which 
aims to address the tasks raised by the framework of 
research task. 

This framework will enable the analyst to open-min-
dedly explore the structure of the dataset and gain new 
insights. According to Shneiderman (1996), exploratory 
data analysis can be generalized as a three-step process: 
′overview first, zoom and filter and then details-on-   
demand′. In the first step, an analyst must obtain an 
overview of the entire dataset, which is referred to as 
global-scale methods. In the second step, the analyst 
zooms in on the items of interest, which is referred as 
meso-scale methods. At the third stage, the analyst se-
lects an item and/or its vicinity for examination of more 
details, which is referred as local-scale or individ-
ual-scale methods. This process is iterative and the ana-
lyst can frequently return to the previous steps. Based on 
Tables 4–6, 48 comparative research questions can be 
generated based on spatial-temporal task, temporal-   
statistical task, and statistical-spatial task. To address 
these 48 research questions, current methods will be 
surveyed and gaps will be highlighted and addressed. It 
is valuable to have a toolkit to fully explore the interac-
tions among space, time, and attributes across scales on 
one hand, and to generate a systematic group of research 
questions which can guide the design of EDA on the 
other hand. A whole analytic workflow using the toolkit 
is demonstrated in Fig. 2, the exploratory process can be 
separated into four main steps: 

(1) Data preparation and perspective suggestion. 
When the file IO operation takes place, the toolkit will 
analyze data characteristics such as data type and count, 
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Fig. 2  Workflow 
 

combined with user inputs specifying the spatial and 
temporal ranges as well as unit and related data seman-
tics. Based on the data characteristics, the toolkit will 
display available perspectives providing users with a set 
of tools for certain types of analytic tasks. 

(2) Tool selection. The researchers can now select a 
perspective, and choose a tool from the suggested tool-
set. Descriptive information of the tool and suggested 
analytic procedure will be displayed in the GUI in a 
user-friendly way. The user then inputs the parameters 
and runs the method. 

(3) Computation and visualization. The analytic en-
vironment will be initialized for the selected tool. The 
computation will then take place, which invokes a set of 
computation primitives. After computation, different 
visualization primitive will be initialized and displayed. 

(4) Interactive exploration. Researchers can now ex-
plore the data through multiple linked map and plots, 
through which they can identify patterns and form re-
search questions. After the process, they may continue 
the analytic process by refining the parameters, chang-
ing a different tool, selecting a subset of data, or starting 
a different perspective.  

4  Summary 

Spatial turn in many socioeconomic theories has been 
noted in a vast field, encompassing both social and 
physical phenomena (Krugman, 1999; Goodchild et al., 
2000; Goodchild, 2008; Goodchild and Janelle, 2010). 
The fast growth in socioeconomic dynamics analysis is 
increasingly seen as attributable to the availability of  

panel datasets (Goodchild and Glennon, 2008; Elhorst, 
2010). By contrast, spatial social scientists have been 
slower to adopt and implement new spatiotemporally 
explicit methods of data analysis due to the lack of ex-
tensible software packages, which becomes a major im-
pediment to promote spatiotemporal thinking. The cur-
rent research implements the new methodological ad-
vances in an open source environment for exploring 
space-time socioeconomic data, which lend support to 
the notion that space and time can not be meaningfully 
separated. This research interfaces the open source 
revolution and socioeconomic analysis, which is among 
the burgeoning efforts seeking the cross-fertilization 
between the two fast-growing communities. As Rey 
(2009) suggests, ′increased adoption of open source 
practices in spatial analysis can enhance the develop-
ment of the next generation of tools and the wider prac-
tice of scientific research and education′. This open 
source work procedure can facilitate the interdiscipli-
nary research due to ′the collaborative norms involving 
positive spillover effects in building a community of 
scholars′ (Rey 2009). The methods are built in open 
source environments and thus easily extensible and cus-
tomizable (Lewis, 2012). Hence, this research can pro-
mote collaboration among researchers who want to im-
prove current functions or add extensions to address 
specific research questions in regional studies. 

A unique feature of this research is that it utilizes the 
notion of unit of analysis to identify research questions 
and methodological gaps/opportunities. The proposed 
research can greatly enhance our ability to explore and 
compare the potential interactions among space, time, 
and attributes across scales and dimensions. The interac-
tive spatial data analysis has motivated, if not directly 
provoked, new queries that are worthy of additional re-
search. The framework of comparative space-time 
analysis enables access to a much wider thinking which 
addresses the role of dimensions and scales at different 
stages of socioeconomic dynamics for more in-depth 
study. In other words, the current work is mainly from 
an exploratory perspective, which can motivate geogra-
phers and social scientists to design a series of tasks and 
formulate new hypotheses from theoretical and policy 
perspectives. This space-time work provides an impor-
tant contribution to the current spatial science and spa-
tial humanities literature, which lacks a framework of 
asking comparative space-time questions. Although this 
comparative framework arose in the analysis of regional 
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income dynamics, it can also be applied to a wide set of 
socioeconomic processes with geo-referenced data 
measured over time. 

Space-time variations of socioeconomic dynamics are 
highly topical subjects for intellectual inquiry and have 
long been the focus of policy initiatives (Anselin, 2010; 
Wu et al., 2013). This paper notes that the multi-scale 
and multi-dimension methods can expose some hidden 
patterns and trends that otherwise would be very diffi-
cult to detect. This research presents a general frame-
work for pattern discovery and hypothesis exploration in 
space-time datasets. On this basis, this framework and 
specific domain could benefit from each other in the 
following procedures: First, the analyst has the specific 
reason for investigating distinct socioeconomic issues, 
which can be expressed as a general question or a set of 
general questions. Second, this nature of the investiga-
tion is checked against the task topology of the dataset. 
Third, the analyst carries out the matched tasks and de-
tects something both interesting and relevant to this in-
vestigation. Fourth, new, more specific questions might 
appear, motivating the analyst to look for more details. 
These questions affect what details will be viewed and 
in what ways. Lastly, the general questions in step 1 are 
revised and the investigator goes through the procedures 
again. The open source environment offers a straight-
forward way of benefiting wider community (Rey, 
2009). As such, explanations of various socioeconomic 
dynamics can be provided based on rigorous analysis, 
and policy interventions are then proposed in light of the 
understanding of the space-time dataset, which will 
open up a rich empirical context for the social sciences 
(Ye and Wei, 2012). 
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