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Abstract: Active microwave remote sensing data were used to calculate the near-surface soil moisture in the vegetated areas. In this 

study, Advanced Synthetic Aperture Radar (ASAR) observations of surface soil moisture content were used in a data assimilation 

framework to improve the estimation of the soil moisture profile at the middle reaches of the Heihe River Basin, Northwest China. A 

one-dimensional soil moisture assimilation system based on the ensemble Kalman filter (EnKF), the forward radiative transfer model, 

crop model, and the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was developed. The crop model, as a semi-empirical 

model, was used to estimate the surface backscattering of vegetated areas. The DHSVM is a distributed hydrology-vegetation model that 

explicitly represents the effects of topography and vegetation on water fluxes through the landscape. Numerical experiments were con-

ducted to assimilate the ASAR data into the DHSVM and in situ soil moisture at the middle reaches of the Heihe River Basin from June 

20 to July 15, 2008. The results indicated that EnKF is effective for assimilating ASAR observations into the hydrological model. Com-

pared with the simulation and in situ observations, the assimilated results were significantly improved in the surface layer and root layer, 

and the soil moisture varied slightly in the deep layer. Additionally, EnKF is an efficient approach to handle the strongly nonlinear prob-

lem which is practical and effective for soil moisture estimation by assimilation of remote sensing data. Moreover, to improve the as-

similation results, further studies on obtaining more reliable forcing data and model parameters and increasing the efficiency and accu-

racy of the remote sensing observations are needed, also improving estimation accuracy of model operator is important.   
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1  Introduction 

Soil moisture is one of the most important variables in 
describing the water and energy exchange at the land 
surface/atmosphere interface. Soil moisture is widely 
recognized as a key parameter in numerous disciplines, 
including meteorology, hydrology, ecology, and agri-
culture (Delworth and Manabe, 1988; Sellers and 
Schimel, 1993; Brubaker and Entekhabi, 1996). Hence, 

soil moisture can be determined from point measure-
ments, hydrologic models, and remote sensing tech-
niques. Traditional point measurements can only pro-
vide information about that specific point, and imprac-
tical for building a dense network of point observations. 
Hydrologic models simulate the continuous variation of 
the spatial distribution and temporal evolution of soil 
moisture, but the uncertainties of the model′s initial pa-
rameters, the nonlinear nature of land-atmosphere inter-
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actions, and the heterogeneity of the land surface cause 
deviations in the results. Moreover, the errors in hydro-
logic models gradually accumulate when the model goes 
forward. The remote sensing technology captures sur-
face soil moisture over large areas and periods. Deriving 
soil moisture by remote sensing data has been explored 
in many studies, such as those by Ulaby et al. (1978), 
Dobson and Ulaby (1986), Kogan (1990), England et al. 
(1992), and Sandholt et al. (2002). However, the sensors 
only detect signals above the soil surface, and remote 
sensing observation is conducted periodically, not con-
tinuously. 

The data assimilation theory provides an effective 
method for merging observations and model simulations. 
Multi-temporal large-area observations by using remote 
sensing efficiently reduce the uncertainty of initial state 
and parameters of hydrologic models. Different assimi-
lation methods have been used to estimate the soil 
moisture profile based on near-surface soil moisture 
observations in several previous studies (Entekhabi et 
al., 1994; Houser et al., 1998; Galantowicz et al., 1999; 
Walker and Willgoose, 2001; Heathman et al., 2003; 
Yang and Shen, 2009). Currently, variation filtering and 
Kalman filtering are the most popular algorithms for 
data assimilation. Both methods require simplified or 
linearized model operators and observation operators 
when they deal with the high nonlinearity and disconti-
nuity of model operators and observation operators, 
causing inaccurate assimilation results. For nonlinear 
dynamic problem, an extended Kalman filter was de-
veloped (Miller et al., 1994), but it is greatly unstable if 
the nonlinearities are strong, and the method needs huge 
computation for large-scale land surface systems. To 
overcome this limitation, Evensen (1994) proposed the 
ensemble Kalman filter (EnKF), which was a sequential 
data assimilation method that predicts the state error 
covariance via the Monte Carlo approach. Verlaan and 
Heemink (2001) compared the performance of two 
Kalman filters, and pointed out that the EnKF was more 
effective for strong nonlinear models. Moreover, EnKF 
directly predicts the state error covariance matrix by 
applying an ensemble of model states. As an efficient 
algorithm that handles strongly nonlinear dynamics and 
large state spaces, EnKF has been widely applied in 
many disciplines (Li et al., 2004; Zhang, 2006; Huang et 
al., 2008; Reichle et al., 2008; Crow and Berg, 2010; Li 
et al., 2010).  

Passive microwave brightness data were often used to 
estimate soil moisture in assimilation experiments 
(Reichle et al., 2002a; 2002b; Huang et al., 2008) mainly 
because the passive microwave signal is less dependent 
on the soil roughness and surface characteristics that 
highly influence the active microwave signal. However, 
passive microwave data provide a low resolution of the 
Earth′s surface, which limits the application in earth 
observations. The problem can be overcome by using 
active microwave remote sensing data, such as synthetic 
aperture radar observations. Previous research showed 
that the error of soil moisture estimation by active mi-
crowave for bare soil at C (3.75–7.50 cm) and L band 
(15–30 cm) is within 5%, which is comparable to most 
in situ measurement techniques (Mancini et al., 1999).  

In this study, an assimilation system based on the 
EnKF was presented by assimilating active microwave 
observations into two-dimensional hydrologic model— 
Distributed Hydrology-Soil-Vegetation Model (DHSVM), 
for estimating the soil moisture profile on vegetated ar-
eas. The semi-empirical radiative transform model— 
crop model (Roo and Duetal, 2001) was adopted as the 
observation operator to describe the surface backscat-
tering of vegetated areas. Assimilation experiments 
were carried out by using the Advanced Synthetic Ap-
erture Radar (ASAR) observations to test the assimila-
tion system in the Heihe River Basin of Gansu Province 
in Northwest China from June 20, 2008 to July 15, 2008. 
This research aims to improve soil moisture estimation 
through active microwave observations of the surface 
soil moisture content in a data assimilation framework 
by using the EnKF. 

2  Material and Methods 

2.1  Study area  
The Heihe River Basin, located in the northwestern 
China, is the second largest inland river basin with an 
area of 116 000 km2. The region has three major re-
gional distinctions, namely, the upper reaches of the 
Heihe River Basin in the Qinhai Province, the middle 
reaches of the Heihe River Basin in Gansu Province, 
and the lower reaches of the Heihe River Basin in Gansu 
Province and the Inner Mongolia Autonomous Region. 
The middle reaches of the Heihe River Basin, located in 
the Zhangye City of Gansu Province (38°45′–39°15′N, 
100°00′–100°45′E) (Fig. 1) was selected as the study 
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area of this paper, wherein a remote sensing assimilation 
experiment was conducted over an agriculture site lo-
cated near Yingke meterological station (38°51′55″N, 
100°25′11″E). The elevation of the study area varies 
between 1000 m and 2000 m above sea level, with av-
erage annual temperature of 6℃. 

As the Heihe River Basin is surrounded by high 
mountains, and located in the middle of the Eurasian 
continent and far from the sea, it has a typical temperate 
continental climate with scarce precipitation and strong 
evaporation. Annual mean precipitation is 121.5 mm, 
and the average annual potential evaporation exceeds 
2340 mm, which is 20 times as the average precipitation 
in the middle reaches of Heihe River Basin. Up to 95% 
of the water in the Heihe River Basin is replenished by 
precipitation and snowmelt. Up to 35 rivers originate 
from the Qilian Mountain in the Heihe River Basin. 

Among them, there are 18 rivers with a covering area 
exceeding 100 km2 and seven rivers with the runoff ex-
ceeding 1.0 × 108 m3/yr. The Heihe River is the only 
source of surface runoff in the Zhangye City. The artifi-
cial oases were dominated by irrigated farmlands in the 
middle reaches of Heihe River Basin, whereas the lower 
part has natural oases dominated by meadows and sa-
linized meadows that are relatively small, fragmented, 
and easily disturbed. Moreover, the decrease in water 
resources in this region has caused the forest to diminish 
quickly and the lakes in the downstream area have dis-
appeared some years ago, and turned into marsh-salinized 
and meadow-salt deserts (Li et al., 2001). The study site 
mainly consists of irrigated farmland, and it is a part of 
the low plains in northwestern China. Yingke Town is 
an oasis with soil consisting of 16.7% sand, 74.8% silt, 
and 8.5% clay. The vegetative cover of study area is corn. 

 

 
 
Fig. 1  Location of study area in China and observation stations. Color image on right is a false color picture composited by band 1, 3, 
and 4 of Landsat TM, which was obtained on July 7, 2008  
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2.2  Data and processing  

2.2.1  Ground observation data 

Three automatic meteorological observation stations 
were established for long-term observations (Fig. 1), 
recording six meteorological variables required for the 
DHSVM: relative humidity, air temperature, wind speed, 
precipitation, incoming shortwave radiation, and in-
coming longwave radiation. Time domain reflectome-
ters were used in each station to measure the soil mois-
ture at depths of 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 
and 160 cm. In this study, the soil volumetric water 
content at depths of 10 cm, 40 cm, and 80 cm were ap-
plied in the assimilation experiment. All ground obser-
vation data were obtained from the Watershed Airborne 
Telemetry Experiment Research of the Chinese Acad-
emy of Sciences Action Plan for the West Development 
Program. The web page (http://westdc.westgis.ac.cn/ 
water) provides more details about the instrumentation 
and data collection. The vegetation and soil type data 
were obtained from the Data Center for Resources and 
Environment Sciences (DCRES), Chinese Academy of 
Sciences. The input parameters required by the observa-
tion operator are listed in Table 1.  

2.2.2  ASAR data 

Satellites over the study area provided five ASAR im-
ages during the period from June 20, 2008 (day of year,  

DOY: 172) to July 15, 2008 (DOY: 197). ASAR is a 
synthetic aperture radar carried by the ENVISAT-1 sat-
ellite and operates in the C-band (central wavelength of 
5.63 cm), with multi-polarization, seven observation 
angles, and five operating modes. In this study, the 
ASAR data is in the alternating polarization operating 
mode (product code ASAR_APP_1P), corresponding to 
two kinds of polarization with resampled high spatial 
resolution of 12.5 m. The characteristics of the ASAR 
data in this experiment are given in Table 2. 

The ASAR data were preprocessed by using En-
viView software. The ASAR images were filtered by 
using the Lee filter (Lee et al., 1994) to suppress the 
speckle noise. The backscattering coefficient of ASAR 
was obtained after radiometric calibration. In the geo-
metric registration, the ASAR images were corrected by 
using the panchromatic orthophoto SPOT with a 2.5- 
meter spatial resolution. Registration error was within a 
pixel. 

2.3  Methods  
This section presents the strategy for soil moisture esti-
mation using data assimilation algorithm. As mentioned 
in the introduction, DHSVM was used as the system 
model operator to describe the moisture in the unsatu-
rated zone of homogeneous isotropic soil. The observa- 
tion equation aimed to build the relationship between 

 

Table 1  Input parameters required by observation operator 

Parameter Definition Value Unit 

λ Wavelength 5.63 cm 

θ Incident angle 14.2–42.7 deg 

Wcan Vegetation water content 0.30–0.45 kg/m3 

k Extinction coefficient of vegetation canopy 0.10–0.35 Np/m 

h Vegetation canopy height 0.5–1.6 m 

s Root mean square (RMS) height of surface roughness 1.3–4.2 cm 

cl Correlation length of surface roughness 8.77 cm 

ρb Soil bulk density 1.52 kg/m3 

ρs Soil specific density 2.8 kg/m3 

S Sand percentage 17 % 

C Clay Percentage 75 % 
 

Table 2  Overview of acquired ASAR data from Yingke station 

Acquisition date Day of year (DOY) Polarization mode Spatial resolution (m) Incidence angle (°) 

06/25/2008 177 HV/HH 12.5 25.7–31.2 

06/28/2008 180 HV/HH 12.5 14.2–22.3 

07/05/2008 187 VV/VH 12.5 42.4–45.2 

07/08/2008 190 VV/VH 12.5 38.9–42.7 

07/11/2008 193 VV/VH 12.5 30.8–36.2 
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simulated state variables and observations; thus, the 
crop model and the advanced integral equations model 
(AIEM) were used to determine the relationship be-
tween the satellite observations and soil moisture in the 
surface layer. EnKF was applied to integrating the 
simulation and observation by utilizing observation in-
formation to update the state variables. The schematic 
description of the assimilation of the ASAR data with 
EnKF is given in Fig. 2. Pseudorandom noise with pre-
scribed statistics was added to the first-guess initial soil 
moisture to generate the ensemble of initial soil mois-
ture. Then, DHSVM was driven by the initial soil mois-
ture profile, model parameters, and atmospheric forcing 
data. Therefore, the ensemble of forecast soil moisture  

profile can be obtained. At each time when ASAR ob-
servations were available, the simulated backscattering 
coefficient was calculated by using the crop model and 
AIEM based on the forecasted surface soil moisture and 
other parameters required by observation operators. 
Hence, the simulated and observed backscattering coef-
ficients were then fed into the EnKF to update the soil 
moisture profile. The updated soil moisture profiles 
were then used to reinitialize the model in subsequent 
runs until microwave observations were available again.  

2.3.1  Distributed Hydrology-Soil-Vegetation Model  

Distributed Hydrology-Soil-Vegetation Model explicitly 
represents the effects of topography and vegetation on  

 

 
 

Fig. 2  Flowchart of assimilating Advanced Synthetic Aperture Radar (ASAR) observations with ensemble Kalman filter 
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water fluxes through the landscape. The model includes 
canopy interception, evaporation, transpiration, and 
snow accumulation and melt, as well as runoff genera-
tion. DHSVM, as an open source hydrologic model, 
provides a dynamic representation of watershed proc-
esses at the spatial scale described by digital elevation 
model (DEM) data. The modeled landscape is divided 
into computational grid cells centered on DEM nodes. 
Topography characterization is used to model topog-
raphic controls on absorbed shortwave radiation, pre-
cipitation, air temperature, and downslope water move-
ment. Vegetation characteristics and soil properties are 
assigned to each model grid cell. These properties may 
vary spatially throughout the basin. At each time step, 
the model provided simultaneous solutions to energy 
and water balance equations for each grid cell in the 
watershed. The individual grid cells were hydrologically 
linked through surface and subsurface flow routing 
(Wigmosta et al., 1994).   

Canopy snow interception and release was simulated 
by using a one-layer mass and energy balance model. 
Snow accumulation was simulated by using a two-layer 
energy and mass balance model. Evaporation and tran-
spiration followed the Penman-Monteith equation. Un-
saturated moisture movement through multiple soil 
rooting zone layers was calculated by using Darcy′s 
Law. The water discharge from the lower rooting zone 
recharges the local water table. Each grid cell exchanges 
water with its adjacent neighbors. Return flow and satu-
ration overland flow are generated in locations where 
grid cell water tables intersect the ground surface 
(Wigmosta et al., 2002). 

The dynamics of unsaturated moisture movement in 
the DHSVM were estimated by using a two-layer model, 
and the mass balance equations for the surface soil layer 
and the root zone are given by Wigmosta et al. (1994): 
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where dk (k = 1, 2, 3) is the soil layer thickness in the 

soil layer k; v
t
km (k = 1, 2, 3) is the average soil moisture 

in the soil layer k at time t; IΔt is the volume of water 
infiltrated during the time step Δt; Qv is the volume of 
water discharged downward to the next layer; frjk is the 
fraction of roots from vegetation layer j in soil layer k; 
Vexk is the volume of water supplied by a rising water 
table in soil layer k; Etj is the volume of evaporation 
from vegetation layer j during the time step Δt; and Es is 
the volume of evaporated soil moisture from the surface 
layer. The model first calculates infiltration into the up-
per layer, and then the downward vertical moisture 
transfermation moving from top to bottom.  

2.3.2  Ensemble Kalman filter 

In this study, an improved EnKF proposed by Burgers et 
al. (1998) was adopted as the assimilation algorithm. It 
was based on Monte Carlo method and formulated with 
nonlinear dynamics as it can properly handle the error 
covariance evolution in nonlinear models. The process 
of the EnKF algorithm mainly includes forecast and 
analysis. The steps of procedure of EnKF are probably 
as follows: 

(1) First, The initial ensemble of state variables 

should be generated. 0
aX is given as the first-guest value 

by the Monte Carlo method. Then each of the initial 

state variables in the ensemble , 0
a
iX can be determined 

by adding random noise to 0
aX : 

a a
, 0 0   i iX X        ~ (0  , )i N P

  
(3) 

where ξi is the background error vector, a Gaussian dis-
tribution with a mean of zero and covariance matrix P. 
The superscript ′a′ represents state variables of analysis. 

(2) In the forecast step, a model operator was used to 

update each ensemble member, f
,    1i tX  . The forecasted 

state variable at time t + 1 can be calculated by the ana-

lyzed state variable a
, i tX at former time t with the equa-

tion: 

f a
,   1 ,   1   1 ( , , )  i t i t t t iX M X a v   

 
 ~ (0, )iv U

 
(4) 

where superscript ′f′ refers to state variable of forecast; 
M() refers to the model operator; at + 1 is the atmospheric 
forcing data; βt + 1 is model parameter and vi is the model 
error vector, which is supposed to be a Gaussian distri-
bution with a mean of zero and covariance matrix U. 
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(3) In the analysis step, the mean of { f
,   1i tX  } at time 

t + 1 was calculated for its covariance matrix. The ob- 

servations are related to the true state ( f
,   1i tX  ) through: 

f
,   1 ,   1  ( )  i t i t iY H X w  

   
~ (0, )iv R

 
 (5) 

where H() is the observation operator; Yi, t + 1 is the ob-
servation at time t + 1; and wi is the model error vector, 
which is a (0, R) Gaussian distribution. Then the ana-
lyzed state variable is updated with following equations. 
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where Kt + 1 is the Kalman gain matrix at time t + 1; Yt + 1 

is the observation data at time t + 1; f
  1tP  and f

1tX  are 

the covariance matrix and expectation of forecasted 

state vector of ensemble members { f
,   1i tX  } at time t + 

1, respectively; HT() is the transpose of H(); N is the 
number of state variable Xi. 

(4) Ensemble members were integrated independently 
and updated in accordance with the Kalman filter 
method when new observations become available, and 
the process was repeated. 

2.3.3  Observation operator 

The fundamental basis of microwave remote sensing for 
soil moisture is the relationship between soil dielectric 
properties and volumetric soil moisture content. Many 
approaches have been developed for modeling the mi-
crowave backscattering from vegetated areas (Ulaby et 
al., 1984; 1990; Roo and Duetal, 2001). The crop model, 
which is based on the simplification of the Michigan 
microwave canopy scattering model, was chosen to cal-
culate the vegetation backscattering. The crop model 
concluded the backscattering contribution from the in-
teractions between vegetation canopy and ground, 
unlike the water-cloud model. Thus, the crop model ig-
nores the scattering component associated with ground- 
trunk scattering by the following assumptions: 1) the 
stalk and crown of crop are not quite different and can 

be treated as one layer, which are distributed uniformly 
throughout the volume; 2) vegetation canopy has a 
physical vertical thickness. For a given incident angle θ, 

the backscattering coefficient of the crop model ( 0
pq ) 

could be generally presented as follows:  

0 0 0 0 0
pq pq1 pq2 pq3 pq4               

 
 (9) 

where p, q are the polarized configuration; 0
pq1 is the 

direct backscattering contribution from the canopy; 
0
pq2 is the sum of the ground-canopy and canopy- 

ground forward scattering contribution; 0
pq3 is the 

ground-canopy-ground scattering contribution; and 0
pq4  

is the direct backscattering contribution of the underly-
ing soil surface (including two-way attenuation by the 
canopy). These components are as follows: 

pq10
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pq4 pqs p q  T T 

 
 (13) 

p p exp(  sec )T k h  
 

 (14) 

2
p p0 exp[  (2 cos ) ]Γ Γ ks     (15) 

where σpq1 is the backscatter cross section per unit vol-
ume of the leaves and stem (m2/m3); σpq2 is the bistatic 
cross section per unit volume of the leaves and stems 
(m2/m3); kp (kq) is the p-polarized (q-polarized) extinc-
tion coefficient of vegetation canopy (Np/m); Tp (Tq) is 
the p-polarized (q-polarized) one-way transmissivity of 
the canopy; h is the canopy height (m); Γp (Γq) is the 
p-polarized (q-polarized) Fresnel reflectivity of ground 
surface; Γp0 is the Fresnel reflectivity of a specular sur-
face; k is the wave number (k = 2π / λ); s is the root 
mean square (RMS) height of ground surface (m), and 

0
pqs  is the backscattering coefficient of soil surface in 

the absence of vegetation cover.  
As the most popular method for calculating electro-

magnetic scattering on the real natural surface (Fung et 
al., 1992; Wu et al., 2008), AIEM was used to estimate 
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0
pqs , its single scattering term is given by the following 

equations:  

2
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where k1 is the wave number in medium 1; Wn (ksx – kx, 
ksy – ky) is the roughness spectrum of the surface related 
to the nth power of the surface correlation function by 
the Fourier transforms; fpq and Fpq are the Kirchhoff co-
efficient and the complementary field coefficient, re-
spectively; kz = kcosθ, ksz = kcosθs, kx = ksinθcosφ, 
ksx = ksinθscosφs, ky = ksinθsinφ, and ksy = ksinθssinφs, θ 

is the incident angle, φ is the incident azimuth angle, θs 
and φs are the scattering angle and scattering azimuth 

angle, respectively; and pq
nI  is a function of θ, φ, s, 

and soil dielectric constant (εm). 
εm can be transformed into soil moisture by using the 

formula proposed by Dobson et al. (1985). 
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  1.09  0.11   0.18S C      (19) 

where ρb is the soil bulk density; ρs is the soil specific 
density; εs is the dielectric constant of soil with ex-
tremely low moisture content [εs   (4.7, 0)]; εfw is the 
dielectric constant of free water; mv is the soil moisture 
content. In this study, a = 0.65 and β is determined by 
soil texture; S and C are the percentages of sand and 
clay (In this paper, S = 16.7%, C = 8.5%), respectively. 

3  Experiments and Results 

3.1  Assimilation of ASAR observation 

3.1.1  Size of ensemble 

The Monte Carlo method was used to solve nonlinear 
problems in the EnKF; thus, more samples can describe 
the spatial distribution of the state variables accurately. 

However, only increasing the size of the ensemble in-
creases the number of calculation. Previous studies have 
shown that when the size of ensemble exceeds the limit, 
the assimilation results stabilize with no substantial im-
provements. In fact, the appropriate ensemble size for 
data assimilation has not been established. Evensen 
(1994) chose an ensemble size of 100 in his assimilation 
experiment and pointed out that this value met the gen-
eral application. Based on previous studies, the proper 
ensemble size should balance the precision and compu-
tation time of assimilation. In this study, the ensemble 
size was adjusted, whereas the assimilation cycle, the 
background error model, and the observation error were 
unchanged. The soil moisture was assimulated with dif-
ferent numbers of samples, and the root mean square 
error (RMSE) values of the assimilated soil moisture are 
shown in Fig. 3. At small ensemble sizes, the RMSE 
converged quickly with increasing ensemble size in the 
surface layer, root layer, and deep layer. As the number 
reached 120, the results stabilized and fluctuated slightly. 
Further increase in ensemble size did not improve the 
assimilation results, but the computational burden greatly 
increased. The processing time with 500 ensemble sam-
ples was twice as that with 100 samples. In accordance 
with the tests above, the size of the ensemble was set to 
120, which was also close to those of other published 
ensemble experiments (Haugen and Evensen, 2002; 
Etienne and Dombrowsky, 2003; Huang et al., 2008). 

 

 
 

Fig. 3  Error analysis of assimilated soil moisture at different 
ensemble sizes. RMSE is root mean square error  

 

3.1.2  Determination of observation error and model 
error 

Before conducting the assimilation experiments, the 
surface soil moisture was inversed by the observation 
operator and ASAR data. The results were compared 
with in situ soil moisture, as shown in Table 3. 
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Table 3  Results of inversed soil moisture content by observation operator and ASAR data 

Soil moisture 06/25/2008 06/28/2008 07/05/2008 07/08/2008 07/11/2008 

Inversed value 0.254 0.248 0.232 0.230 0.201 

In situ 0.231 0.219 0.223 0.221 0.223 

 
Table 3 shows that the inversion soil moisture was 

very accurate, and the ASAR data are suitable for soil 
moisture assimilation. Implementing an EnKF requires 
information on both observation and model errors, 
which is crucial for correctly assimilating observations 
into models. The observation error and model error are 
considered mutative at different times; thus, quantifying 
the errors for both model and observation errors is very 
difficult. The in situ observations were assumed perfect, 
a month of data from May 21 to June 20, 2008 when the 
assimilation experiment began, was used to run the 
DHSVM. Then, the model background and its error 
variance were calculated. A Gaussian noise of the initial 
soil moisture was introduced in all the ensemble mem-
bers. In this study, the observation variances were given 
as 5% of the observed backscattering coefficient, which 
was calibrated by using the measured data set. The 
model noise was given as 10% of the change in state 
variables for that particular time step. Driven by forcing 
data and model parameters, the DHSVM was run with 
ASAR observations at a three-hour time step during the 
experiment period.  

To illustrate the effectiveness of the assimilation 
scheme, the data assimilation experiments were con-
ducted from June 20 (DOY: 172) to July 15 (DOY: 197), 
2008. During the assimilation step, a simulation by us-
ing DHSVM was performed at the same time, with no 
assimilation of ASAR data. 

3.2  Comparison of assimilation and simulation 
results  
The soil moisture in the surface layer, root layer, and 
deep layer from the assimilation and simulation are 
given in Fig. 4. This scheme accurately estimates the 
surface soil moisture through data assimilation. The 
simulated soil moisture was overestimated, while the 
assimilation results are closer to the in situ observations 
at the surface layer. In most cases, the soil moisture es-
timation was pulled closely to the in situ observations 
by data assimilation when ASAR observations are 
available. Compared with the in situ observations, the 
assimilation results at the root layer were much better 

than simulation results, which relatively overestimated 
the soil moisture (Fig. 4b). Unlike the significantly im-
proved estimation of soil moisture in the surface layer 
and root layer, soil moisture in the deep layer was stable 
and the assimilation results did not have any improve-
ment (Fig. 4c).  

Figure 4a shows that DOY of 185 is a turning point 
of the simulation results and assimilation results from 
DOY of 184 to 186. After the turning point, the assimi-
lated soil moisture and simulated soil moisture begin to 
increase, while the measured soil moisture keeps de-
creasing during these period. Maybe it is caused by the 
estimation error of DHSVM, including the atmospheric 
forcing data error and the uncertainty of model parame-
ters. Some of the atmospheric forcing data are obtained 
from automatic meterological stations, such as air tem-
perature, wind speed, relative humidity, shortwave ra-
diation, long wave radiation, precipitation. These data 
are observed continuously. Other atmospheric forcing 
data were manual measurements; thus, they can not be 
conducted continuously. Maybe only one measurement 
for a dynamic parameter was performed for a long time. 
Parts of the input parameters were substituted with em-
pirical parameters, including hydrological and ecologi-
cal variables, as well as vegetation and soil parameters. 
The parameter substitution increased the uncertainty of 
the simulation results. In addition, the assimilation sys-
tem exhibited the model error, which would accumulate 
gradually with the running time, which will cause the 
inconsistency in simulated and measured soil moisture. 

The assimilation and simulation at the three soil lay-
ers were validated by calculating the root mean square 
error (RMSE) and mean bias errors (MBE), and the re-
sults are shown in Table 4. At the surface layer, the 
RMSE and MBE of the simulation were 0.031 and 
0.029, respectively. When the satellite data were as-
similated, the RMSE and MBE were 0.021 and 0.018, 
respectively. Therefore, the assimilation results are more 
accurate than the simulation results and our assimilation 
method is effective. The soil moisture estimation was 
significantly improved. At the root layer, the assimila-
tion results were significantly improved compared with 
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Fig. 4  Soil moisture comparison of in situ observation, Distributed Hydrology-Soil-Vegetation Model (DHSVM) simulation and as-
similation results (DHSVM + EnKF) at surface layer (a), root layer (b) and deep layer (c) for Yingke station from June 20 (DOY: 172) 
to July 15 (DOY: 197) in 2008 

 
simulation results. At the deep layer, the assimilation 
and simulation results slightly differed because the soil 
moisture in the deep layer was stable. On the other hand, 
the given small model errors in the deep layer weakened 

the information propagation from the surface layer and 
the soil moisture was weakly influenced by the surface 
layer. 

The assimilation results were influenced by the un- 
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Table 4  Error statistics of assimilated and simulated soil mois-
ture at Yingke station from June 20, 2008 (DOY: 172) to July 15, 
2008 (DOY: 197) 

Simulation by DHSVM Assimilation of ASAR
Soil layer 

RMSE MBE RMSE MBE 

Surface layer 0.0310 0.0290 0.0210 0.0180 

Root layer 0.0650 0.0640 0.0440 0.0410 

Deep layer 0.0027 0.0025 0.0025 0.0019 

Notes: RMSE is root mean square error; MBE is mean bias error 

 
certainty of the DHSVM and observation errors. 
DHSVM is the ideal description of the hydrological 
processes on land surfaces, and some assumptions were 
made to simplify the actual hydrological processes. For 
example, the vegetation was divided into two layers, the 
overstory and the understory, the soil was classified into 
the surface layer, the root layer, and the saturated layer. 
The understory layer and surface soil were assumed to 
not contribute to evapotranspiration. The DHSVM did 
not include thawing, but soil moisture changed partly by 
thawing in our assimilation experiment in the Yingke 
station. Therefore, further studies are needed to improve 
the accuracy of the model because of the inherent un-
certainties in the DHSVM. Although the crop model and 
the AIEM describe the scattering of the land surface and 
inversion of the soil moisture in vegetated area, the 
vegetation canopy greatly affected the inversion results. 
When the vegetation cover was intensive and the wave-
length of microwave was short, the microwave signal 
could not penetrate the vegetation canopy and detect the 
ground information. In addition, remote sensing data is 
influenced easily by weather conditions and sensor er-
rors, which may increase the observation errors from 
remote sensing.  

4  Discussion  

Similar studies have recently used the same dataset from 
Zhangye City of Gansu Province in Northwest China. 
Liu et al. (2010) assimilated the ASAR data with hy-
drologic model and empirical backscattering model to  

estimate soil moisture. In addition, the study area was 
located near the Yingke station in Zhangye City. More-
over, the study site was a bare area, with soil moisture 
content less than 5%; thus, the assimilation results were 
much better and closer to the in situ observations than 
the simulation results. However, compared with the al-
gorithm mentioned in this paper, Liu′s model can not be 
used in the vegetated areas, only in the bare soil. And it 
can not get good assimilation results at a moist soil sur-
face (mv > 5%). These deficiencies limited its applica-
tion greatly. Wang et al. (2011) also determined soil 
moisture by using the multi-temporal ASAR data near 
Yingke station, and the roughness parameters and soil 
moisture were obtained simultaneously by using the 
proposed method. RMSE of soil moisture calculated by 
Wang′s method was about 6%, which is higher than the 
results derived by the data assimilation in this paper. 
Hence, the soil moisture estimation was close to the in 
situ observations in most cases by using the data as-
similation. Table 5 shows the detail of soil moisture es-
timation by the methods mentioned above. 

Although the dynamic response of the modeled out-
put was improved by assimilation, the assimilated soil 
moisture was overestimated in this paper. Considering 
the simulation results are always greater than the in situ 
observations, the data assimilation pulls the estimation 
results close to the measured soil moisture rather than 
eliminate the effects of the excessively high simulation 
results. The deviation of the simulated results may be 
caused in the uncertainty of model parameters (such as 
vegetation parameters and soil parameters) and atmos-
pheric forcing data (such as air humidity, air tempera-
ture, and radiation). For example, soil physical parame-
ters such as the saturated hydraulic conductivity and the 
porosity are considered homogeneous in the three soil 
layers by using the DHSVM. The assumption may cause 
significant errors in the simulation results. Thus, the 
current model needs to be adjusted to cope with hetero-
geneous soil characteristics. However, the limited ex- 
perimental conditions prevented us from obtaining all 

 

Table 5  Comparison of estimated soil moisture with similar works 

Method Study area 
RMSE of estimated soil  
moisture at surface layer 

RMSE of estimated soil  
moisture at root layer 

Application region 

Algorithm in this paper Yingke 0.0210 0.0440 Bare soil or vegetated area

Liu′s model (Liu et al., 2010) Yingke 0.0112 0.0025 Bare soil 

Wang′s method (Wang et al., 2011) Yingke 0.0600 – Bare soil 

Note: ′–′ means no data because Wang′s method can not simulate soil moisture at deep layer 
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model parameters, some of which were substituted with 
empirical parameters. The in situ soil moisture fluctu-
ated during one day, whereas the model simulation 
hardly showed this variation. The physical model inac-
curately simulated the surface environment because of 
the uncertainty of model parameters and atmospheric 
forcing data and the real surface environment. In addi-
tion, the external environment changed with time. 
However, the empirical parameters were constant in our 
model during the same time, so the simulation results 
did not fluctuate with the in situ soil moisture within one 
day.  

The data assimilation algorithm has a potential draw-
back even though it is widely used in hydrological and 
meteorological applications. The proper distribution of 
observation error covariance plays a critical role in the 
correct use of observation data, and it is crucial for the 
data assimilation. However, the true state variables at 
different times are unknown, and the covariance of the 
observation error can not be measured directly and it 
varies with time. Therefore, only appropriate statistical 
methods were used to describe the observation error 
covariance under certain reasonable assumptions. A 
Gaussian distribution was used to describe the distribu-
tion of observation error covariance in this paper, which 
may introduce uncertainty into the assimilation results.  

A method for assimilating ASAR data into the 
DHSVM for soil moisture profile estimation was pro-
posed at the point scale. Nevertheless, the data assimila-
tion research exhibited some limitations; thus, the im-
provements could be made in the future.  

(1) Numerous data and parameters are presented in 
the assimilation system, such as long-term continuous 
meteorological forcing data, soil parameters, vegetation 
parameters. Due to the limited experimental conditions, 
some of the parameters were substituted with the em-
pirical parameters of the study. This may cause errors in 
the data assimilation. Therefore, more reliable forcing 
data and model parameters are needed in future studies. 

(2) The assimilation results are influenced considera-
bly by the accuracy of satellite observations which is 
determined by the quality of satellite data and the preci-
sion of the observation operators (crop model and AIEM 
in this paper). Determining the quality of satellite data 
and increasing the efficiency and accuracy of the obser-
vation operator are needed to improve the assimilation 
results further. 

(3) The key point of data assimilation algorithm is to 
minimize statistical error, which mainly comes from the 
observation noise and the uncertainty of the model. Re-
cent studies on error estimation are relatively weak; thus, 
further studies on decreasing the uncertainty of the 
model and observation error are needed to improve the 
assimilation results.  

(4) The main purpose of assimilating remote sensing 
data is to take advantage of remote sensing observations 
over large areas. Therefore, hydrological data assimila-
tion system at the catchment scale should be developed, 
which is useful for hydrological forecast, water resource 
management, and other practical applications.  

5  Conclusions 

A one-dimensional soil moisture assimilation system 
based on DHSVM and EnKF is presented in this re-
search. The crop model, a semi-empirical radiative 
transformation model, was adopted as observation op-
erator, which accurately describes the scattering of the 
vegetated area. The performance of this system was 
successfully tested and validated by the in situ soil 
moisture observations from the Heihe River Basin ref-
erence site in the northwestern China from June 20 to 
July 15, 2008.  

Analysis of the ensemble size showed that when the 
size of ensemble exceeded the limit, the assimilated soil 
moisture exhibited no further improvement. The proper 
ensemble size in this research was 120, which provided 
accurate assimilation results, and required less time for 
assimilation calculation. In addition, the assimilation 
results were significantly influenced by the observation 
error and uncertainty of model; therefore, more attention 
should be given to identifying observation errors and 
decreasing the uncertainty of model. Additionally, 
EnKF is an effective and easy-to-implement hydrologic 
data assimilation scheme for estimating soil moisture 
profile from satellite observations. Compared with the 
simulation results of DHSVM, the soil moisture estima-
tion by using the assimilation method was significantly 
better at the surface layer and root layer, with decreasing 
average errors and RMSE relative to the simulation re-
sults. However, for soil moisture in the deep layer, the 
assimilation results were nearly the same as the simula-
tion results because soil moisture in the deep layer was 
stable and unaffected by the soil moisture in the surface 
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layer. 
The active microwave remote sensing data were as-

similated practically and effectively into hydrologic 
models of the vegetated area. Compared with similar 
studies in the same area, better results were achieved by 
our assimilation algorithm. However, the uncertainty of 
the model parameters and atmospheric forcing data 
should be considered because they may influence the 
assimilation results. This paper presents a preliminary 
study of the assimilation of active microwave data for 
estimating the surface soil moisture profile in vegetated 
area on the point scale. Further research is needed in 
several aspects such as obtaining more reliable forcing 
data and model parameters and increasing the efficiency 
and accuracy of the remote sensing observations. Then, 
improving estimation precision of model operator and 
decreasing the observation error are needed, and the 
assimilation scheme should be optimized from the point 
scale to the catchment scale. 
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