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Abstract: Shadow is one of the major problems in remotely sensed imagery which hampers the accuracy of information extraction and 
change detection. In these images, shadow is generally produced by different objects, namely, cloud, mountain and urban materials. The 
shadow correction process consists of two steps: detection and de-shadowing. This paper reviews a range of techniques for both steps, 
focusing on urban regions (urban shadows), mountainous areas (topographic shadow), cloud shadows and composite shadows. Several 
issues including the problems and the advantages of those algorithms are discussed. In recent years, thresholding and recovery tech-
niques have become important for shadow detection and de-shadowing, respectively. Research on shadow correction is still an important 
topic, particularly for urban regions (in high spatial resolution data) and mountainous forest (in high and medium spatial resolution data). 
Moreover, new algorithms are needed for shadow correction, especially given the advent of new satellite images. 
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1  Introduction 

The atmosphere, land, and water of the Earth are amaz-
ingly complex and do not lend themselves well to being 
recorded by remote sensing devices that have con-
straints such as spatial, spectral, temporal and radiomet-
ric resolution (Jensen, 2007). Therefore, Earth′s com-
ponents can introduce a range of errors such as geomet-
ric errors, atmospheric effects, and topographic effects 
into the remote sensor data. Such errors can attenuate 
quality of remote sensor data recorded and in turn may 
have an impact on the accuracy of remote sensing re-
search such as change detection and land cover mapping. 
Hence, employing image preprocessing operations is a 
necessary and crucial step in order to produce corrected 
image or at least reduce impacts of these errors.   

One of the most common types of error encountered 
in remotely sensed data is shadow. This problem is a 
major source of confusion and misclassification in ex-
tracting land cover information from remote sensing 
data (Saha et al., 2005). In addition, the presence of 
shadow can also lead to misleading results if change 
detection is applied to a ground surface because of 
changes in the shadows, depending on the time and 
season (Liu and Yamazaki, 2012). 

So far, different shadow correction methods have 
been developed in order to produce shadow-free im-
agery or at least imagery with relaxed impacts due to 
shadow (Nakajima et al., 2002; Arellano, 2003; Riano et 
al., 2003; Saha et al., 2005). A shadow correction algo-
rithm is relied a two-step process: detecting the location 
of shadow and de-shadowing. However, only a few pa-



404 Chinese Geographical Science 2013 Vol. 23 No. 4 

pers have described this topic in detail (Riano et al., 
2003; Mather, 2004; Dare, 2005; Jensen, 2007; Ren et 
al., 2009; Shahtahmassebi et al., 2011). In particular, the 
investigations on the sequence of shadow correction 
(detection and de-shadowing) with respect to topog-
raphic shadow, urban shadow, cloud shadow, and com-
posite shadow are missing. A synthesis of these studies 
is needed but thus far has fallen outside the scope of any 
single paper.  

Motivated by this fact, this paper reviews the domi-
nant shadow correction methods for both steps (detec-
tion and de-shadowing). Some advanced topics like the 
impacts of shadow on microwave imagery (Mather, 
2004) are not discussed in this paper because they are 
specific to a selected research sub-field and limited by 
the data available. 

2  What Is Shadow? 

Shadow occurs when an object totally or partially oc-
cludes light directly from the light source (Arevalo et al., 
2008). Shadows can be divided into two classes: cast 
and self (Arevalo et al., 2005) (Fig. 1). A cast shadow is 
projected by the object in the direction of the light 
source; a self shadow is the part of the object which is 
not illuminated by direct light. The part of a cast shadow 
where direct light is completely blocked by its object is 
called umbra, while the part where direct light is par-
tially blocked is called penumbra (Arevalo et al., 2008). 
Self and cast shadows produce different brightness val-
ues. Self shadows usually have a higher brightness than 
cast shadows since they receive more secondary lighting 
from surrounding illuminated objects (Dare, 2005). Cast 
shadows can, however, cause a significant reduction in 
spectral variation thereby causing correlation failure 
(Bishop et al., 2003). 

The causes of shadow in remotely sensed imagery 
can be grouped into three categories: 1) Shadow by ur- 

 

 
 
Fig. 1  Shadow types (Arevalo et al., 2005) 

ban materials such as building and trees. This is a spe-
cial problem in high spatial resolution imagery. 2) 
Shadow by mountain (topographic shadow). This can be 
a major difficulty in medium spatial resolution imagery 
and high spatial resolution imagery as well. 3) Cloud 
shadows. This problem can occur in high, medium, and 
coarse spatial resolution imagery.   

It is noteworthy that cloud shadow and topographic 
shadow are not spectrally distinguishable in optical im-
agery (Martinuzzi et al., 2007). However, their differ-
ences can be determined by geographic position. The 
direction of shadow occurrence relative to the cloud is 
the same for the entire scene as it depends on the sun 
illumination angle, a constant for any given scene (Mar-
tinuzzi et al., 2007). 

In remote sensing, many research endeavours have 
been oriented towards the removing shadow from satel-
lite imagery such as IKONOS and QuickBird (Nakajima 
et al., 2002; Sarabandi et al., 2004; Chen et al., 2007; 
Arevalo et al., 2008), Landsat ETM (Arora and Mathur, 
2001; Riano et al., 2003; Saha et al., 2005; Yang et al., 
2007; Richter et al., 2009), and National Oceanic and 
Atmospheric Administration-Advanced Very High Reso-
lution Radiometer (NOAA-AVHRR) (Simpson and Stitt, 
1998; Arellano, 2003). However, we can derive benefit 
from shadow. For instance, the characteristics of stand 
structure of the forest can be modeled by estimating 
shadow lengths and crown diameters of individual trees 
using high-resolution sensors like IKONOS data (Asner 
and Warner, 2003). In another example from Turkey, 
tree stem length was estimated from tree crown area and 
tree shadow area by using QuickBird imagery (Ozdemir, 
2008). A low sun-angle image gives long shadows, and 
for this reason might be preferred by geological users 
because these shadows may bring out subtle variations 
in topography (Mather, 2004). 

3  Shadow Detection Methods 

3.1  Background 
A lot of research has been conducted on the detection of 
shadow regions in remotely sensed imagery. Table 1 
summarizes the major techniques. The type of method 
implemented can profoundly affect the qualitative and 
quantitative estimation of the shadow regions. In general, 
shadow detection algorithms are organized into two 
categories: thresholding and modelling (Liu and Yama- 
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Table 1  Summary of shadow detection methods 

Technique Advantage Disadvantage Characteristic Reference 
Thresholding Simple, quick and easy It can not well identify sha-

dow regions from other dark 
objects 

Based on spectral value, 
band ratio 

Earthquake zeon (Miura and 
Midorikawa, 2006); forestry 
(Shahtahmassenbi et al., 
2011); glacier detection (He-
iskanen et al., 2002) 

Modeling Determining location of 
shadow precisely 

Geometry of scene and light 
sources unknown, too restric-
tive 

Use information of sensor, 
light source direction and 
geometry of observed ob-
jects 

Urban (Nakajima et al., 
2002; Zhan et al., 2005; 
Arevalo et al., 2008) 

Invariant color model Being sensitive to shadow 
and able to discriminate 
between shadow and other 
dark objects in image 

Instability for certain color 
values which leads to the 
misclassification of non- 
shadow pixels as shadow 

Calculate ratio Hue-Satura-
tion-Value (HSV) or ratio 
of Red, Green and Blue 
bands, color space C1C2C3 

Segmenting shadow (Tsai, 
2006); urban (Sarabandi et 
al., 2004; Arevalo et al., 
2008) 

Shade relief Simple, easy, and available 
in most remote sensing 
software 

It does not calculate shadow 
that is cast by topographic 
features onto surrounding 
surface 

Shaded relief technique 
based on solar elevation, 
solar zenith and Digital 
Elevation Model 

ERDAS IMAGINE (9.1) 

 
zaki, 2012). The first class includes the methods that 
elect a threshold value of the digital number (DN) (e.g., 
based on the histogram) to determine shadow areas from 
non-shadow regions. Most documented shadow detec-
tion techniques are based on the first class because they 
are not very complicated. The second group is based on 
a mathematical concept, which uses prior information, 
in order to simulate shadow regions. 

Apart from these methods, there are other less-com-
monly used algorithms for detecting shadow regions, for 
example, the automatic cloud/shadow detection method 
(Hegarat-Mascle and Andre, 2009), the Self-Adaptive 
Feature method (Liu et al., 2011), the detection of 
shadow based on pulse coupled neural networks (Huang 
et al., 2011), object-based shadow extraction (Liu and 
Yamazaki, 2012), and visual interpretation (Ortega- 
Huerta et al., 2012). However, we do not explore these 
methods here because they are often only appropriate 
for very specific uses and because it was not practical to 
analyze the precise contribution of each paper due to 
their specific nature. Further information can be found 
in Prati et al. (2003) and Al-Najdawi et al. (2012). 

3.2  Thresholding 
Thresholding is a range of techniques (e.g., Histogram-
ing, Vegetation Indices) to discriminate between shadow 
regions and non shadow areas (Nagao et al., 1979; 
Cheng and Thiel, 1995; Rosin and Ellis, 1995; Shetti-
gara and Sumerling, 1998). Thresholding can be per-
formed by selecting only pixel values of shadowy re-
gions. Speed and simplicity are the main advantages of 
thresholding techniques. One disadvantage of thresh-

olding techniques is the difficulty in selecting suitable 
thresholds in order to distinguish shadow from similar 
objects due to the pixel similarity between them, for 
instance, water bodies and shadowy areas. Also, it might 
be difficult to discriminate between cloud shadow and 
topographic shadow (Martinuzzi et al., 2007). 

Miura and Midorkawa (2006) applied a thresholding 
technique on near infrared band of IKONOS data to 
eliminate shadow areas in an earthquake zone. Song and 
Civco (2002) used the brightness value in Landsat TM 
bands 1 (blue) and 4 (near infrared) to detect clouds and 
shadows in Madagascar. In another study, Dozier (1989) 
used a thresholding technique to discriminate snow from 
other materials in shadow. Shettigara and Sumerling 
(1998) thresholded SPOT (System for Earth Observation) 
images to extract shadows of buildings and trees, but 
due to the low resolution, there was no distinct peak in 
the histogram denoting shadow pixels. Heiskanen et al. 
(2002) successfully delineated glacier borders in cast 
shadows in the Svartisen ice cap in Norway by applying 
threshold values to the ETM+ thermal infrared band. 
Hendriks and Pellikka (2004) experimented with a gla-
cier masking procedure combining a thresholded Nor-
malised Difference Snow Index (NDSI) image and the 
thermal band of ETM+. Cheng and Thiel (1995) used an 
adaptive threshold method in their measurement of 
building heights from shadows in SPOT images. Build-
ing on these, Chen et al. (2007) developed the Spectral 
Shape Index (SSI) to distinguish shadow from water 
body. Most recently, Martinuzzi et al. (2007) used the 
brightness values in band 4 to differentiate cloud areas 
from non shadow areas. However, some topographic 
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shadow in certain urban areas and land-water transition 
zones was included in cloud shadow regions.  

Moreover, Lu (2006) detected clouds/hazes and their 
cast shadows on IKONOS images by thresholding tech-
nique which was based on the maximum and minimum 
filters and second-moment texture measures. However, 
this algorithm may not be appropriate for medium or 
coarse spatial resolution images because of the mixed 
spectral features from different land covers and clouds/ 
hazes or shadow, and the lack of spatial information. In 
addition, this study highlighted that detecting haze or 
light shadow from other land covers is a challenging 
task because they have a mixture between hazes or light 
shadow with other land covers, thus they are often con-
fused with bare soils or crown-cast shadow.  

3.3  Modeling 
Using model-based methods is another way to predict 
shadow, especially in urban areas. These methods in-
clude the sensors/camera localization, the light source 
direction and the geometry of observed objects, from 
which a priori knowledge of shadow areas is derived 
(Arevalo et al., 2008). However, in most applications 
the geometry of scene and/or the light sources are un-
known. Another disadvantage is in complex scenes with 
a great diversity of geometric structures, as is usually 
the case of QuickBird imagery, where these models are 
too restrictive to provide a good approximation. 

Airborne Laser Scanner (ALS) data can also be used 
to simulated and detect shadow regions (Nakajima et al., 
2002, Zhan et al., 2005). In this way, high quality and 
homogenous Digital Surface Models (DSM) can be di-
rectly derived from ALS data. Then the location of 
shadow is simulated by using sun angle and azimuth, 
which are taken from high spatial resolution data (e.g., 
IKONOS imagery) and height from DSM. Though 
valuable, this sort of data is rare, requires aircraft use, 
and is frequently prohibitively expensive. 

3.4  Invariant color model 
Shadow can also be detected by invariant color models. 
Tsai (2006) presented a method which uses the spectral 
ratio image in hue, intensity and saturation (HIS) space 
to segment shadow, but dark blue objects and dark ob-
jects in images were incorrectly segmented. Susuki et al. 
(2000) presented a method that applies separation of 
spatial frequency components and probabilistic shadow 

segmentation in the Red-Green-Blue (RGB) space and 
compensations of intensity and saturation values to im-
prove the visibility of features in shadow region while 
retaining non-shadow region and the natural tint of 
shadow region. The parameters of the above methods 
only fit for limited illumination conditions and cannot 
be applied to complex images that include shadow cast 
by various features in complex environments (Tsai, 
2006). Among many color spaces that are invariant to 
shadow such as Hue-Saturation-Value (HSV) or ratio of 
Red (R), Green (G) and Blue (B) bands, color space (C1, 
C2, C3) can be used as the best non-linear transformation 
for purposes of shadow detection (Sarabandi et al., 
2004). These indices are defined as follows: 

( )1 arctan max( , )C G R B=
 

(1) 

( )2 arctan max( , )C R G B=
 

 (2) 

( )3 arctan max( , )C B R G=
 

(3) 

where R, G, and B correspond to the red, green and blue 
values of each pixel in the image, respectively. More-
over, this technique is sensitive to shadow and is able to 
discriminate between shadow and other dark objects in 
the image. However, one of the problems when using 
the C3 component is its instability for certain color val-
ues which leads to the misclassification of non-shadow 
pixels as shadow (false positives) (Arevalo et al., 2008). 
This occurs for both pixels with low values of saturation 
and for pixels with extreme (i.e., low and high) intensity 
values (Gevers and Smeulders, 1999; Salvador et al., 
2001). 

3.5  Shaded relief  
Shadow can also be detected by the shaded relief algo-
rithm. This is based on solar elevation, solar zenith and 
a Digital Elevation Model (DEM). According to the 
above parameters, areas that would be in sunlight are 
highlighted and areas that would be in shadow are 
shaded. It is important to note that the relief algorithm 
identifies shadowed areas, i.e., those that are not in di-
rect sun (Fig. 2). However, this algorithm does not cal-
culate the shadow that is cast by topographic features 
onto the surrounding surface (ERDAS IMAGINE 9.1).  

In summary, thresholding is the most common ap-
proach for detecting shadow regions. This method is 
useful in many shadow detection applications, since it is  



 AmirReza SHAHTAHMASSEBI et al. Review of Shadow Detection and De-shadowing Methods in Remote Sensing 407 

 

 
 

Fig. 2  Shade relief program in ERDAS imaging software. The contour values (30, 40 and 50) on image represent elevation. (ERDAS 
IMAGINE 9.1) 
 

simple, quick and available in most commercial and 
non-commercial remote sensing software. 

4  De-shadowing Methods 

4.1  Background 
After shadow detection, the next step is removing 
shadow or reducing impacts of shadow. Many algo-
rithms have been developed to attain this objective. Ta-
ble 2 provides brief description of these techniques. 
Shadow correction algorithms can be divided into two 
main groups: objects and techniques. From objects as-
pect, these algorithms fall into four classes—correcting 
topographic shadow, correcting shadow of urban com-
ponents, correcting cloud shadows and correcting com-
posite shadow. In terms of techniques, shadow correc-
tion algorithms are grouped into different categories 
based on corresponding objects. In the following sub-
section, we present details of these techniques. 

It is noteworthy that more recent studies have been 
focused on recovery of information in shadow instead of 
eliminating shadowy regions or relaxing the effects of 
shadow (Nakajima et al., 2002; Massalabi et al., 2004; 
Zhan et al., 2005; Liu and Yamazaki, 2012; Wan et al., 
2012). There are two major reasons to support this novel 
approach. First, although the reflectance recorded in the 
shadow regions is weak, there is still useful information 
in these areas which makes shadow restoration possible 
(Chen et al., 2007; Wang et al., 2008). Second, it may use 
surrounding information of shadowy areas (spatial in-
formation) in order to fill shadowy regions (Rossi et al., 
1994; Addink and Stein, 1999; Kouchi and Yamazaki, 
2007; Shahtahmassebi et al., 2011; Nole et al., 2012).  

4.2  De-shadowing technique in mountainous re-
gions  
In mountainous regions, shadows frequently occur in 

terrain areas with steep slopes when the sun elevation 
angles are low. Shadow areas show less reflectance than 
sunny areas which causes variation in the reflectance 
response, particularly when similar land covers appear 
with the different digital number (DN) (Riano et al., 
2003; Yang et al., 2007). Fahsi et al. (2000) demon-
strated that the strong topographic variations in moun-
tainous terrain may cause pixels of the same forest cover 
type to be spectrally heterogeneous and pixels of differ-
ent types to have similar spectral characteristics. As a 
result, the accuracy of forest maps produced from an 
automatic mapping procedure over steep mountainous 
terrain is often low (Dorren et al., 2003). For this pur-
pose, several methodologies have been proposed for 
removing or at least reducing the effects of mountainous 
shadows from remotely sensed data (Yang et al., 2007; 
Gao and Zhang, 2009; Ren et al., 2009), due to a strong 
influence of topography on the signal recorded by space 
borne optical sensors (Richter et al., 2009). 
4.2.1  Band ratio, vegetation indices and multisource 
classification 
Band ratio and vegetation indices are the most common 
and simple approaches for decreasing impacts of topog-
raphic shadow (Riano et al., 2003; Mather, 2004; Yesil-
nacar and Suzen, 2006; Jensen, 2007; Lu and Weng, 
2007). For example, the NDVI strongly reduces the im-
pact of varying illumination conditions and shadowing 
effects caused by variations in solar and viewing angle 
(Sotomayor, 2002). However, these techniques have 
some drawbacks. First, the band ratio is nonlinear and 
can be influenced by additive noise effects such as the 
atmospheric path radiance (Mather, 2004; Jensen, 2007). 
Second, spectral resolution will be lost when the band 
ratio is used (Riano et al., 2003). Furthermore, some 
vegetation indices based on the constants such as En- 
hanced Vegetation Index (EVI) are more sensitive to the 
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topographic effects than band ratio indices (NDVI) 
(Matsushita et al., 2007). This is because their constants 
(e.g., soil adjustment factor in the EVI) make these in-
dices much more sensitive to the direct effects of topog-
raphy.  

Applying multisource classification with the help of 
ancillary data such as Digital Elevation Models (DEM) 
and NDVI is another way to reduce the impacts of 
shadow (Giles et al., 1994; Dorren et al., 2003; Saha et 
al., 2005). The use of NDVI imagery as an additional 
layer has been recommended, since the band ratio de-
rivatives may help in nullifying the topographic com-
ponent to some extent (Holben and Justice, 1981; Apan, 
1997). Eiumnoh and Shrestha (2000) exploited the ad-
vantages of incorporating both NDVI and DEM in the 
classification process and showed an improvement in 
the classification accuracy on the order of 10% to 20%. 
However, using DEM as an additional band for shadow 
correction also poses some difficulties. First, the resolu-
tion and accuracy of DEM would influence the per-
formance of topographic correction (Conese et al., 1993; 
Law and Nichol, 2004; LeciaGeosystems, 2008). Sec-
ond, the additional input bands do not always guarantee 
better classification results (Blesius and Weirich, 2005).  
4.2.2  Topographic models 
Many researchers have attempted to improve land cover 
classification in mountainous regions by using topog-
raphic correction models such as cosine correction, C 
correction, and Minnaert correction (Ekstrand, 1996; 

Tokola et al., 2001; Bishop et al., 2003). Colby (1991) 
developed a backward radiance correction model which 
utilizes the Minnaert constant based on the non-Lamber-
tian assumptions. The method can be used to minimize 
differences in values of brightness for similar surface 
materials caused by topographic conditions, shadows or 
seasonal changes in sun illumination factors. The Sun- 
canopy-sensor (SCS) correction is the appropriate 
method in forested terrain since it normalizes the area of 
sunlit canopy rather than the underlying terrain (Gu and 
Gillespie, 1998). However, they still do not fully explain 
the relationship among terrain, crown structure, shad-
owing and mutual shadowing within a forest and tree 
canopies (Soenen et al., 2007). Topographic models 
may also not be suitable for classification of vegetation 
cover in rugged terrain areas, because tree crowns are 
usually in certain shapes and can not be considered as a 
plane. Other disadvantages include a lack of compre-
hensive physical analysis, subjectivity in operation and 
separation of atmospheric correction (Yang et al., 2007).  
4.2.3  Recovery information in topographic shadow 
Another possible approach to reduce the effects of to-
pographic shadow is restoring information in shadow 
areas based on surrounding information. In this tech-
nique, Shahtahamssebi et al. (2011) restored the infor-
mation in topographic shadow by using two filling 
methods in order to improve the accuracy of a forest 
map over mountainous regions (Fig. 3). The results 
suggest that filling algorithms were simple and cost- 

 

 
 

Fig. 3  Forest cover map before and after shadow correction (Bada Town land cover and forest map derived from Landsat ETM + Sep-
tember 2000). Roifill is one of the filling algorithm (Shahtahmassebi et al., 2011) 
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efficient for reducing effects of topographic shadow. 
However, these techniques may meet difficulties in 
complex landscapes with the ′mixed pixel′ problem, 
especially on forest borders (Shahtahmassebi et al., 
2011). Moreover, this technique is based on conven-
tional interpolation techniques which consider uniform 
variability throughout the whole image. However, spa-
tial structure occurs in remotely sensed images and 
spectral information is not uniformly distributed across 
the landscape (Zhang et al., 2011). 

4.3  De-shadowing technique in urban areas 
High spatial resolution images such as QuickBird have 
opened a new window of using remotely sensed imagery 
in urban regions because of the possibility of extracting 
detailed information. However, the improvement in spa-
tial resolution of satellite imagery affects shadows such 
that it causes the partial or total loss of radiometric in-
formation in the affected areas (Arevalo et al., 2005). 
Therefore shadow regions decrease the quality of these 
data in terms of visual interpretation and classification. 
For example, there are many shadow areas in urban ar-
eas, and it becomes difficult to extract information in 
these areas from high-resolution satellite imagery like 
IKONOS due to the high object density and the rela-
tively high proportion of the shadow-covered areas 
(Nakajima et al., 2002).  

Recently image restoration has become an active area 
of remote sensing research for de-shadowing in urban 
areas in high spatial resolution imagery (Fig. 4). The 
core hypothesis of this technique is that there is still 
useful information in shadow regions though the signals 
recorded in these areas are quite weak (Sarabandi et al., 
2004; Chen et al., 2007; Liu and Yamazaki, 2012). 
Therefore, it is likely to improve signals in the shadow 
regions instead removing the signals. As sunlight is the 
primary energy source of passive remote sensing, it is 
assumed Rs (Reflectance of atmospheric elements (sky-
light)) and Rsr (Reflectance of a ground object caused by 
scattered sunlight) are both in proportion to Rdr (Reflec-
tance of a ground object caused by direct sunlight) 
(Chen et al., 2007).. Accordingly there should be a linear 
relationship between radiance in the shadow area and in 
the non-shadow area, and the relationship is actually the 
relationship of illumination condition between shadow 
area and non-shadow area. Different equations can be 
used to recover information in shadow. For example, 

several studies have adopted the amount conversion of 
statistics for this purpose as described in Equation (4) 
(Nakajima et al., 2002; Zhan et al., 2005; Chen et al., 
2007) (Fig. 4-third line): 

( )m m
y

x

Sy x x yS= − +
 

 (4) 

where x is the grey value of shadow area, y is the grey 
value of output, and Sx and Sy are the standard deviation 
of shadow area and non-shadow area, respectively. xm 
and ym are the mean values of shadow area and non- 
shadow area, respectively. Some researchers have used 
gamma correction techniques (Nakajima et al., 2002) 
(Fig. 4-second line), object-based approach (Zhan et al., 
2005), linear-correlation and histogram matching (Sara-
bandi et al., 2004). Although the recovery techniques 
make certain improvements in recovering information, 
they also have shortcomings. For instance, the gamma 
correction approach uses a single gamma parameter for 
all pixels, thus ignoring the existence of different back-
grounds of shadow areas. It is also time-consuming to 
manually determine the category of a shadow area 
(Zhan et al., 2005).  

Histogram matching is one of the classical methods 
used to bring the brightness distributions of two given 
images as close as possible to each other (Sarabadni et 
al., 2004; Dare, 2005). This method is used to recover 
the DN values of the shadow-covered pixels by match-
ing the histogram of the shadow regions to the histo-
gram of the non-shadow areas of the same class. How-
ever, this operation is sensitive to the window size in 
which the histograms are matched. Detailed descriptions 
of histogram matching can be found in Shu and Free-
man (1990), and Rau et al. (2002). 

Multisource data fusion and multi-temporal imagery 
are other techniques for reducing the effects of shadow 
in high-resolution imagery (Dare, 2005). Multisource 
data fusion works by replacing shadow pixels in one 
image with non-shadow pixels of the same region on the 
ground from another image acquired at a different time. 
In terms of multi-temporal imagery, multiple images are 
acquired at different time over a specific region (Tseng 
et al., 2008). Zhou et al. (2009) compared three methods 
for land cover classification of shaded areas from high 
spatial resolution imagery in an urban environment. The 
result showed that multisource data fusion provides a 
significantly better means for shadow classification than 
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Fig. 4  Two examples of recovery information in shadow. Images in first line are original IKONOS images, which are building, tree, 
road and ground from the left to right; the second line shows images after using gamma correction; the third line indicates the result after 
using the amount conversion of statistics shadowing based on Equation (4) (Nakajima et al., 2002) 
 
the other two methods. Gotez et al. (2003) demonstrated 
that multi-temporal imagery could be useful for reduc-
ing impacts of shadowing within the forest canopy from 
adjacent trees. 

However, there are a number of problems with ap-
plying multisource imagery fusion to high-resolution 
satellite imagery (Dare, 2005). First, it is unlikely that 
non-shadowed data can be extracted from another 
high-resolution satellite image since the limitations on 
image acquisition time (described above) will lead to the 
same regions on the ground being in shadow. Second, 
the images must be accurately registered to each other to 
ensure the correct pixels are being used in the fusion 
procedure. In a high density urban environment accurate 
image registration poses significant problems. Also re-
garding multi-temporal imagery, this process would be 
logistically difficult to accomplish in many areas, and 
cost-prohibitive for most applications using IKONOS 
(Goetz et al., 2003). 

4.4  De-shadowing cloud shadow 
The average percentage of cloud cover in equatorial 
regions is on the order of 75% and in some regions like 
northwestern Europe—during the least cloudy months— 
cloud coverage remains around 40% (Arellano, 2003). 
In optical remote sensing, cloud shadows caused by 

spectral irradiance reaching the ground in cloud-shadow 
areas is both reduced in intensity and altered in its spec-
tral properties (Choi and Milton, 1999; Lu, 2007). As a 
result, clouds and their shadows decrease the quality of 
remotely sensed data. Simpson and Stitt (1998) found 
that cloud shadow can produce both negative and low- 
positive values of NDVI, especially in highly vegetated 
areas where cloud shadow attenuates. Because of this 
natural variability in NDVI, simple thresholding 
schemes can not accurately classify pixels contaminated 
by cloud shadow in an arbitrary scene.  

The first solution might be to use radar data because 
radar operates in the microwave range of the electro-
magnetic spectrum and has no cloud contamination 
problem (Arellano, 2003). However, radar does not al-
ways provide promising results. In fact, the emitted ra-
diation in the microwave range is very low while in the 
visible range the maximum energy is emitted. As a re-
sult, in order to obtain imagery in the microwave region 
and measure these signals, which are weak, large areas 
are imaged; consequently, this results in relatively poor 
spatial resolution (Arellano, 2003).  

Richter and Muller (2005) conducted the hybrid algo- 
rithm by using visible channel and shortwave infrared 
bands to de-shadow cloud shadow satellite and airborne 
imagery. The advantage of the presented method is its 
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fast processing performance, because it relies exclu-
sively on spectral calculations and avoids time-consu-
ming geometric cloud/shadow pattern considerations. 
This algorithm consists of five major components: 1) 
calculation of the covariance matrix and zero-reflec-
tance matched filter vector; 2) derivation of the unscaled 
and scaled shadow function; 3) histogram thresholding 
of the unscaled shadow function to define the core 
shadow areas; 4) region growing to include the sur-
roundings of the core shadow areas for a smooth 
shadow/clear transition; and 5) de-shadowing of the 
pixels in the final shadow mask. The drawback is that 
useful geometric information is neglected. 

For many other areas, cloud cover is a confounding 
factor and precludes the use of single image updates of 
land cover per year, and thus per pixel processing me-
thods using multisource data fusion or multi-date im-
agery are required for such areas (Wang et al., 1999; 
Hansen and Loveland, 2012). Roy et al. (2008) devel-
oped a semi-physical fusion approach that used Moder-
ate Resolution Imaging Spectro radiometer (MODIS) 
and Landsat ETM + data to decrease impacts of cloud 
shadow (Jin et al., 2013). Using robust nonlinear wave-
let regression is another way to reduce impacts of clouds 
and their shadows (Carvalho, 2001). This approach pre-
dicts the reference values for clouded areas better that 
all other approaches do, and performs almost as well, 
equivalent to linear prediction in shadow areas. In an-
other study, wavelet image fusion was applied to detect 
clouds and their shadow and subsequently fill out the 
missing information in a multi-temporal set of ASTER 
images (Arellano, 2003). However, the author warned 
that this method could not perform well for smaller 
clouds compared to bigger clouds because the borders of 
small clouds were not detected during cloud detection. 
In other words, the success of this technique depends on 
the detection of clouds and their shadows. As stated in 
the previous subsection, the major problems of the multi- 
temporal technique and data fusion are also co- registra-
tion, computing sensor viewing and solar geometry 
(Roy et al., 2008).  

Another technique employs unmixing of atmospheri- 
cally corrected data using the concept of spectral end- 
members (Richter and Muller, 2005) (Fig. 5). Shadow is 
defined as a zero-reflectance endmember, and the sum 
of all endmember weights is constrained to 1. After un-
mixing, the de-shadowing operation divides the reflec-

tance by 1 minus the sum of the non-shadow endmem-
ber weights. Problems with this approach include the 
dependence of the results on the choice of endmembers 
and the neglecting of the diffuse skylight. 

4.5  De-shadowing composite shadow 
The previous section discussed about a certain type of 
shadow and corresponding de-shadowing techniques. 
However, it is interesting to consider the relationship 
between different shadow types and composite situation 
because sometimes all the shadow type might be simul-
taneously appeared within an image scene in the certain 
situation. For example, Lu (2007) found that cloud 
shadow and tree crown shadow could appear together in 
the forest region within the IKONOS image. This situa-
tion poses substantial new challenges for correcting im-
pacts of different shadow simultaneously or sequentially. 

So far most of the approaches for de-shadowing have 
been developed for correcting impacts of one type of 
shadow. However, relatively little research has been 
conducted on the de-shadowing composite shadow. This 
can be partially explained by three factors. Firstly, each 
shadow condition has its own characteristics and correc-
tion techniques as discussed in the previous sections. In 
addition, different shadow types have different effects 
on ground-measured visible and near infrared shadow 
reflectance (Leblon et al., 1996). Secondly, de-shadow-
ing algorithms have been generally specified for one 
type of sensor. For example, the gamma technique is 
more appropriate for high spatial resolution imagery 
than medium spatial resolution data. Third, there is no 
universal rule to determine the sequence of de-shadow-
ing.  

Although there is a lack of reference concerning a 
standard procedure for correcting impacts of composite 
shadow, the following points might be useful to do this 
task. 
4.5.1  Sequence 
If the image scene has been contaminated by different 
types of shadows, the question for this situation be-
comes which type of shadow is important and should be 
corrected first. As already mentioned, there is no suffi-
cient citation to support a sequence of de-shadowing in 
this aspect. 

Nevertheless, it might be possible to determine this 
sequence through understanding importance of each 
type of shadow separately. The result of a literature 
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Fig. 5  Landsat ETM + before (left) and after (right) de-shadowing (Richter and Muller, 2005) 
 

 
 
Fig. 6  Yearly publications from 1993 to 2012 and from 1994 to 2013 indexed by web of knowledge. The search was conducted on 
November 29, 2012 in order to determine sequence of de-shadowing in composite condition 
 
search via web of knowledge, the largest abstract and 
citation database of Science Citation Index (SCI) journal 
publications, indicates that more weight has been given 
to the cloud shadow correction and topographic shadow 
correction, respectively (Fig. 6). The last priority is cor-
recting small ground features shadow like urban shadow 
and crown tree shadow. 

It should be made clear that topography shadow and 

clouds shadow causes serious interferences in remotely 
sensed and some target occlusion (Statella and Da Silva, 
2008). These authors also found that clouds can also 
reduce the useful area of the image as much for the oc-
clusion as for their projected shadows on the ground. By 
contrast, the problem of the ground features shadows is 
only significant for a particular part of the image such as 
urban environment or forest (Zhou et al., 2009). Ac-
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cordingly, if all types of shadows have existed in the 
image scene, it would be better to carry out the follow-
ing sequence respectively: 1) de-shadowing cloud 
shadow, 2) de-shadowing topographic shadow, and 3) 
de-shadowing ground features shadows. 
4.5.2  Sensor 
In the composite situation, the de-shadowing process 
may also depend on the spatial resolution of sensor. 
Shadow correction approaches for medium and coarse 
resolution data are generally limited to the cloud shadow 
and topographic shadow correction. In high spatial 
resolution data, however, ground features shadows are 
added to the scene, for example, tree shadow and built- 
up shadow. Beside this, the region under shadow is more 
heterogeneous in these images compared to the medium 
and coarse spatial resolution data. Therefore, the remote 
sensing community should develop a technique/tech-
niques not only to detect and correct cloud and topog-
raphic shadow in high spatial resolution imagery but 
also to do similar jobs for ground features′ shadows.  
4.5.3  Technique 
Supposing that all kinds of shadow simultaneously oc-
cur within an image scene, it is clear that the range of 
possible techniques that can be used for shadow correc-
tion is extremely limited. In this spirit then, the basis for 
correcting the impacts of a composite shadow should be 
focused on cost-effective techniques (it can be used for 
all types of shadows and sensors) and on decreasing 
impacts of shadow either simultaneously or sequentially.  

Vegetation Indices and multiple techniques (multi-
source and multi-temporal) approaches may more gen-
erally be appropriate for this situation, partly because 
they may use for all type of shadows and for all sensors, 
and partly because they can simultaneously carry out. In 
other words, we do not need follow a sequential proce-
dure. The strength of the Vegetation Indices such as 
NDVI is in its ratioing concept, which reduces many 
forms of noise (e.g., cloud shadows, illumination dif-
ferences and certain topographic variations) present in 
multiple bands (Ahmad, 2012).   

Recently, with the wide availability of the different 
types of satellite data, there is a possibility of using mul-
tiple techniques (multisource and multi-temporal) for de- 
shadowing impacts of composite shadow. These tech-
niques can reduce the uncertainty associated with data 
acquired by different sensors or by same sensor with 
temporal variation (Nizalapur, 2008). Zhou et al. (2009) 

compared three methods for land cover classification of 
shaded areas from high spatial resolution imagery in an 
urban environment. They found that multisource data 
fusion achieved the best accuracy. A number of studies 
indicated that wavelet merging techniques yielded a 
better improvement of spectral and spatial information 
contents (Lu, 2006). It should be noted that these studies 
have be focused on one type of shadow. Nevertheless, 
their algorithms would be a useful example for reducing 
effects of a composite shadow.  

5  Software 

In this sense, remote sensing software packages have 
provided some choices in order to detect and remove 
shadowy regions. Variety of remote sensing software 
(commercial and non-commercial) can be used for 
shadow detection by histogram thresholding. In addition, 
commercial software such as ERDAS IMAGINE and 
IDRISI Andes offer the shade relief technique to simu-
late shadow areas. However, shade relief technique does 
not simulate cast shadow regions.  

It is noteworthy that VIPER TOOL 1.5 has provided a 
relatively complete package for detecting and removing 
shadow. The primary advantage of this package is that it 
can explore the best relationship between image bands 
and cosine of the incidence angle for modeling and re-
moving topographic shade. The VIPER TOOL 1.5 is 
free of charge and must be added to ENVI. 

Another software is Atmospheric and Topographic 
Correction for satellite imagery (ATCOR). In this soft-
ware, cast shadow can be calculated based on solar ze-
nith and azimuth angle employing a ray tracing program. 
This software is add-on ERDAS IMAGINE 9.1. 

Last but not least, at an advanced level, programming 
is an independent and a practical way for shadow cor-
rection. For example, cloud shadow pixels in image date 
1 can be replaced by corresponding pixels from image 
date 2 by writing some simple code in the ENVI equa-
tion menu (Lu, 2007). 

6  Discussion and Recommendation 

Shadow correction consists of a sequence of two proc-
essing steps: shadow-detection and de-shadowing. The 
crucial factors for successfully implementing shadow 
correction are the object of shadow (e.g., topographic 
shadow), the spatial resolution of the sensor and the type 
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of shadow. Also identifying a suitable shadow detection 
technique and de-shadowing method has considerable 
significance for precise shadow correction procedure in 
order to produce shadow-free imagery or to at least re-
duce impacts of shadow.   

Those shadow detection methods based on a deter-
mination of thresholds for identifying shadow from 
non-shadow areas have a common problem: it is diffi-
cult to discriminate true shadow pixels from non-shadow 
regions such as water due to the pixels′ similarity phe-
nomena. Although shadow detection based on non-   
linear techniques is very sensitive to shadow area, they 
cause the mixed pixel problem between shadow and non- 
shadow areas similar to thresholding techniques. Shadow 
detection techniques based on the shaded relief tech-
nique can avoid such problems but require highly accu-
rate DEMs and it does not detect cast shadow as well. 

In terms of de-shadowing techniques, these approa-
ches may vary with the objects of shadow and sensor 
types. For example, the impacts of shadow due to urban 
material in high resolution imagery may be relaxed by 
using recovery techniques (Liu and Yamazaki, 2012). 
For medium spatial resolution data, however, these 
techniques may not provide promising results for re-
ducing impacts of topographic shadow. One common 
technique for removing shadow regardless of shadow 
object is band ratio which can be used for coarse, me-
dium and high spatial resolution data (Yesilnacar and 
Suzen, 2006; Lu and Weng, 2007). However, this tech-
nique is nonlinear and might be influenced by additive 
noise effects such as atmospheric path radiance (Mather, 
2004; Jensen, 2007). Also, topographic effects such as 
shadow may produce more error on some vegetation 
indices based on the constant value (e.g., EVI) (Matsu-
shita et al., 2007). Advanced de-shadowing techniques 
such as topographic models (for removing topographic 
shadow), and recovery approaches (for retrieving in-
formation in shadow in urban regions) and wavelet 
transformation (for cloud shadow removing) appear to 
be choices, but still some difficulties exist over them. 
For example, using recovery techniques in high spatial 
resolution image is manual and time consuming. More-
over, although topographic correction models are effi-
cient, they are very complex.  

The merits and demerits of shadow correction tech-
niques discussed in this paper could be considered as a 
guideline to improve previous techniques or develop 

new methods. Our general recommendations of im-
proving previous techniques are: 

(1) Shadow correction algorithms (detecting and 
de-shadowing) are generally required to be robust, fast, 
accurate and automatic.  

(2) These algorithms should reduce impacts of mixed 
pixel problem between shadow regions and similar ob-
jects to the shadow (e.g., water body, forest and build-
ings) that appear dark on images, thus, improving accu-
racy of land cover mapping.  

(3) In developing and improving shadow correction 
techniques, one should also bear in mind the needs of 
purifying information in shadow as much as possible 
instead removing or losing this information.  

(4) Several studies demonstrated that shadows are an 
accentuated problem in medium spatial resolution im-
agery (Asner and Warner, 2003; Saha et al., 2005; Gitas 
and Devereux, 2006; Shahtahmassebi et al., 2011) and 
high spatial resolution imagery (Nakajima et al., 2002; 
Zhan et al., 2005; Chen et al., 2007; Lu, 2007).In addi-
tion, the amount of such data is growing sharply. As a 
result, it is necessary for future research to develop 
guidelines on correcting shadow regions on these im-
ages, especially topographic shadow and shadow in ur-
ban regions.  

The following specific recommendations may help to 
develop new shadow correction algorithms: 

(1) Shadow regions can be considered as abnor-
mal/noisy areas within the remotely sensed image. As a 
result, the integration of target/outlier detection tech-
niques (e.g., clustering) might be an appropriate way to 
detect location of shadowy regions instead simple 
thresholding techniques.   

(2) Although many studies are focused on improving 
shadow detection techniques, few methods have devel-
oped for detecting cast shadow (Giles, 2001; Dare, 2005; 
Lu, 2007). Therefore, future research should be focused 
on discerning differences between cast and self shadow 
on remote sensing data, thus detecting accurately shad-
owy regions.  

(3) Technically speaking, shadow regions can be con-
sidered as missing areas within a remotely sensed image. 
Although conventional interpolation techniques such as 
bilinear interpolation would be suitable to fill shadowy 
pixels in images, these techniques might be inappropri-
ate for this attain. The reason is that these techniques 
consider uniform variability throughout the whole image 
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while spatial structure occurs in remotely sensed images 
and spectral information is not uniformly across the 
landscape (Zhang et al., 2011). Therefore, it should be 
evaluated the use of other approaches, particularly based 
on geostatistical techniques, which take into account 
spatial autocorrelation (Tobler, 1970; Rossi et al., 1994; 
Addink and Stein, 1999; Zhang et al., 2007; Pringle et 
al., 2009; Zhang et al., 2009; Zhang et al., 2011; Nole et 
al., 2012; Zhu et al., 2012), in order to retrieve missing 
values in shadow areas.  

(4) The comparative performance of various algo-
rithms in different regions (e.g., rugged terrain, hills, 
plant canopy) must be examined quantitatively, other-
wise those interested in correcting shadow in a specific 
regions may not obtain optimal results because of lack 
of information about tried and evaluated steps of 
shadow correction. Remote sensing communities need 
to know which techniques to apply in which situations. 
In addition, most remote sensing software programs are 
composed of atmospheric correction, geometric correc- 
tion, and radiometric correction tools but such software 
do not offer any special tool or menu for shadow correc- 
tion procedure (detection and de-shadowing). To this 

end, we suggest following a sample decision tree algo-
rithm to be evaluated and then added to the remote 
sensing software for deciding which technique should 
be used in a given situation (Fig. 7). It should be noted 
that the structure of this algorithm (shadow correction 
parts) is important, not any specific method in it, be-
cause one may select another technique.  

(5) Many studies are focused on correcting impacts of 
one type of shadow. However, all types of shadow might 
appear in the image at the same over certain situation 
(e.g., forest, urban). Therefore, more research is needed 
to develop advance techniques for correcting impacts of 
composite shadow.  

7  Conclusions 

Image pre-processing has different steps, among which 
shadow correction is one of the crucial steps. In a way, 
the accuracy of land cover classification and change 
detection relies on this step. The objective of shadow 
correction (shadow detection and de-shadowing) in land 
cover remote sensing represents a significant challenge 
and it has led to some the most innovative algorithms in 

 

 
 

Fig. 7  A sample shadow correction decision tree for adding to remote sensing software. Ancillary data includes DEM, temperature 
image, Lidar data, etc. 



 AmirReza SHAHTAHMASSEBI et al. Review of Shadow Detection and De-shadowing Methods in Remote Sensing 417 

 

image pre-processing and related fields in recent years, 
particularly predicting information in shadow regions 
(recovery). The ability to correct shadow regions de-
pends on an accurate and effective strategy of both de-
tecting shadow and de-shadowing, both of which are 
fundamentally important to our conception and under-
standing of producing a shadow-free image.  

The commonly used shadow detection techniques and 
de-shadowing methods in the shadow correction proce-
dure are thresholding and recovery information in 
shadow, respectively. There is a need for classification 
of various algorithms that have been employed in 
shadow correction research to allow greater under-
standing of their disadvantages and advantages. Also, by 
increasing the amount of remotely sensed data, particu-
larly new data, there is a need to develop new shadow 
correction algorithms. In addition, a standard shadow 
correction tool should be added to remote sensing soft-
ware.   

Moreover, future research is likely to be focused on 
using target detection techniques and geostatistics in 
order to detect shadow regions and predict information 
in corresponding regions, respectively. In addition, fu-
ture research needs to develop appropriate algorithms 
for de-shadowing effects of composite shadow. 
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