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Abstract: Inland freshwater lake wetlands play an important role in regional ecological balance. Hongze Lake is the 
fourth biggest freshwater lake in China. In the past three decades, there has been significant loss of freshwater wet-
lands within the lake and at the mouths of neighboring rivers, due to disturbance, primarily from human activities. The 
main purpose of this paper was to explore a practical technology for differentiating wetlands effectively from upland 
types in close proximity to them. In the paper, an integrated method, which combined per-pixel and per-field classifi-
cation, was used for mapping wetlands of Hongze Lake and their neighboring upland types. Firstly, Landsat ETM+ 
imagery was segmented and classified by using spectral and textural features. Secondly, ETM+ spectral bands, textural 
features derived from ETM+ Pan imagery, relative relations between neighboring classes, shape features, and elevation 
were used in a decision tree classification. Thirdly, per-pixel classification results from the decision tree classifier were 
improved by using classification results from object-oriented classification as a context. The results show that the 
technology has not only overcome the salt-and-pepper effect commonly observed in the past studies, but also has im-
proved the accuracy of identification by nearly 5%. 
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1  Introduction 
 
Freshwater lake wetlands play a key role of social, eco- 
nomic and cultural importance not only at a local scale, 
but also at a global scale (Podolsky and Conkling, 1991; 
Harvey and Hill, 2001). They constitute essential links 
of the hydrological and biogeochemical cycles, and in-
fluence many aspects of ecology, economy, and human 
welfare (Lehner and Döll, 2004). Fresh wetlands sup-
port a unique habitat for a great variety of hydrophytic 
plants, fish, and wildlife (Töyrä et al., 2001). They im-
prove water quality, recharge groundwater and control 
floods. However, over the past three decades, freshwater 
lake wetlands have been greatly lost in China due to  
development, filling, reclamation, or damaged due to the 
changes of surrounding upland. Some of wetlands, es- 

pecially those near lakes, have been reclaimed for eco- 
nomic activities such as rice farming and fish-raising.  
Some wetland functions have been damaged by network 
fishing. Some wetlands are damaged by periodical lack 
of water. Therefore it is becoming increasingly impor- 
tant to identify and inventory the extent and condition of 
present freshwater wetlands. The information on the 
quantity and quality of wetlands and their distribution is 
essential to wetland managers. In the past, the informa- 
tion on wetlands was usually collected by field investi- 
gation. The physical characteristics of wetlands make 
fieldwork expensive, time-consuming and often inexact 
(Harvey and Hill, 2001). The development of spatial 
technologies, including remote sensing, opens a door for 
the acquisition of wetland information. More and more 
wetland researchers use remotely sensed data in their  
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researches (Ozesmi and Bauer, 2002).  
In the past two decades, knowledge rule-based meth-

ods have been applied extensively to land use/cover 
classification and have proven to be effective (Moore et 
al., 1991; Friedl et al., 1999; DeFries and Chan, 2000; 
Pal and Mather, 2003; Carvalho et al., 2004; Mitra et al., 
2004; Na et al., 2009). However, little effort has been 
made on research on freshwater wetlands using ob-
ject-oriented relationship features in space as an aid for 
the classification of wetlands (Huang and Jensen, 1997; 
Liu et al., 2006). In this paper, the relationship between 
neighboring objects has been used as variables for the 
classification of wetlands.  

Wetlands can be described as transitional zones with 
a mix of characteristics of terrestrial areas and the char-
acteristics of aquatic environments and they are the 
edges of rivers and lakes and in the inter-phase between 
uplands and adjacent water bodies. They exhibit a mix 
of characteristics of uplands and water bodies. Since 
Hongze Lake is a transitional lake, the water levels 
change frequently. This variable hydrological regime 
brought about variable soil and vegetation. The combi-
nation of hydric soils, hydrophytic plants and wetland 
hydrology exhibits colorful wetland characteristics 
which lead to the colorful display of wetlands on re-
motely sensed imagery. The complexity of wetland 
conditions makes it difficult for traditional pattern rec-
ognition methodology to identify them. The combina-
tion of object-oriented method and the knowledge-based 
rule method can explore further the potential of rela-
tionship features in identification of wetlands from up-
lands. In this paper, several relationship features have 
been used for the identification of different kinds of 
wetland vegetation in the study area.  

 
2  Methodology 
 
2.1  Study area 
Hongze Lake is the fourth biggest freshwater lake in 
China, located between 33º06'–33º40′N, 118º10'– 
119º00′E (Fig. 1). It covers approximately 1597 km2 at 
an average lake elevation of 12.5 m (Wang and Chen, 
1999). Of the major rivers that drain into the lake, the 
Huaihe River contributes about 87.3% of the fresh water 
(Wang and Dou, 1998). The lake mainly drains through 
the Sanhe River and Gaoyou Lake into the Changjiang 

(Yangtze) River, accounting for 60%–70% of the out-
flow (Chu, 2001). Other outlets for draining the lake are 
the northern Jiangsu Main Irrigation Canal and the New 
Huaishu River (Gao et al., 2010). The maximum depth 
of the lake is 4.37 m with an average depth of 1.71 m. 
There are a variety of wetland plants in Hongze Lake 
and nearby riparian zones, especially in the area sur-
rounding the mouth of the Lihe River which meets the 
lake. From the bank of the lake to deeper parts of the 
lake, Phragmites communis, Nelumbo nucifera, Zizania 
Caduciflora, Euryale ferox, Trapa bispinosa, Pota-
mogeton malaianus, and Myriophyllum spicatum are the 
dominant plant types (Dai and Yang, 2002; Hu and 
Yang, 2004). The wetlands are of great importance for 
wintering waterfowl, particularly Otis tarda, Ciconia 
nigra, Ciconia ciniconia and Grus japonensis. Two spe-
cies of cranes (Grus Japonensis and Grus grus) winter 
here in large numbers (Lu, 1995; Hu and Yang, 2004; 
Gao et al., 2010).  

In the last three decades, due to severe anthropogenic 
disturbances, approximately 209 km2 of wetlands have 
been lost, accounting for nearly 13% of the total area of 
the lake (Ruan et al., 2005). A lot of natural wetlands 
have been reclaimed for crab aquaculture (Gao et al., 
2010). Many tributaries of the Huaihe River are parallel. 
This often leads to drainage into the Huaihe River at 
nearly the same time as precipitation occurs in the wa-
tershed, which causes flooding. Since Hongze Lake is a 
transitional lake and the Huaihe River drains its water 
into Hongze Lake, the water levels of the lake often un-
dergo large changes, both annually and seasonally 
(Wang and Chen, 1999). The annual and seasonal changes 
of water levels in the lake significantly influence the 
quality and quantity of wetlands (Gao et al., 2010). 

The study area includes most parts of the National 
Jiangsu Sihong Hongze Lake Wetland Nature Reserve. 
The reserve lies between 33º10′40″–33º20′27″N and 
118º13′09″ –118º28′42″E (Wang et al., 2006). The total 
area of the reserve is 23 453 ha, in which the core area is 
2205 ha, the buffer area 4659 ha, and the test area 16 589 
ha, accounting for 9.4%, 19.9% and 70.7% of the total 
area of the reserve, respectively (Yang, 2003). The re-
serve is set up for the protection of Hongze Lake wet-
land ecosystem and rare birds. The study area is charac-
terized by a great diversity of landscape, and there is a 
variety of wetlands in this area (Table 1). 
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Fig. 1   Location of study area 

 
Table 1  Land use/cover classification for study area 

 noitpircseD ssalC edoC

1 Submerged Potamogeton malaianus, Myriophyllum spicatum, etc. 

2 Emergent Phragmites autralis, Zizania caduciflora and floating-leaved plants such as Euryale ferox, Trapa natans 

3 Open water Lake water body, natural river, canal, channel, reservoir and ponds, without any wetland plants 

4 Aquaculture Fish ponds 

5 Farmland Rice paddy and dryland 

6 Forest Include natural and planted forest 

7 Impervious Land for settlement, communication, other industry and consolidated bare soil 

 

2.2   Data preprocessing 
In this study, a Landsat ETM+ imagery acquired on 
September 22, 2002 was used as the main data source. 
Autumn is selected for the time of mapping because the 
variation of water levels and water quality in Hongze 
Lake in autumn is smaller than that in other seasons. 
Moreover, the water level of the lake in autumn is more 
stable than that in summer and spring. In winter, most 
kinds of wetland vegetation are dead. Therefore, autumn 
is the best time in one year for the mapping of wetland 
vegetation in Hongze Lake. The imagery was geometri-
cally corrected by using ground control points from the 
topography at the scale of 1∶50 000 with less than 1 
pixel root mean square (RMS) error. The Universal 
Transverse Mercator (UTM) map projection was 
adopted with the World Geodetic System 1984 (WGS84) 
datum, zone 50. Nearest re-sampling method was used. 

Then the imagery was cropped to cover the core part of 
Jiangsu Sihong Hongze Lake Natural Wetland Reserve 
and its buffer area. The reserve is the only area where 
wetland vegetation has been less influenced by reclama-
tion. Since the study area is relatively flat, the image 
was not orthorectified.  

 
2.3  Field investigation and reference data collection 
Reference data to verify satellite image interpretation 
include field measurements coupled with ancillary data, 
such as maps, aerial photos and interviews with local 
people. Field investigations were conducted in spring 
and late autumn and as possible as in the seasons close 
to the satellite overpasses, i.e. during March 26 to 31, 
2002, September 16 to 25, 2004, and October 25 to No-
vember 1, 2004. At first, 450 samples were generated 
randomly using pre-classified imagery and maps. Then 
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the samples were overlaid over imagery and maps for 
checking to make sure that they were not near or at the 
edges of different types of objects. If they were near or 
at the boundaries, other replacement points were sought 
within a radius of 500 m. Then the samples were up-
loaded into handheld GPS receiver for guidance of the 
field investigation. Representative areas of each type of 
wetlands were visited in the field. For each type, domi-
nant species, percent coverage, and the intermediate 
environment were recorded.  

2.4  Image segmented as classification context
Bands 1 to 5 and 7 of Landsat 7 ETM+ imagery were 
used for segmentation and classification by using De-
finiens Professional 5. The main purpose of segmenta-
tion was to overcome the ′salt and pepper′ effect existing 
in per-pixel classifications (Stuckens et al., 2000; Voorde 
et al., 2007). The segmentation routine in Definiens is 
based on a multiresolution segmentation strategy that 
utilizes a type of region growing approach (Stow et al., 
2008). Segmentation is controlled by scale and shape. 
After trial and error, the parameter scale was set to 10 to 
achieve realistic segmentation of wetland vegetation 
types. Other parameters were set as follows: Color∶ 
shape = 7∶3, Compactness∶Smoothness = 3∶7. Based 
on experiments, segmentation was run at only one level.  

A total of 126 Representative areas of wetlands and 
other types of objects were selected for training based 
on the field investigation and visual interpretation of the 
imagery. In this paper, the Standard Nearest Neighbor 
Classifier in Definiens, which is based on a feature 
space distance to training samples, was used for the 
classification of the segments (Yu et al., 2006; Stow et 
al., 2008). 

The accuracy of the object-oriented classification re-
sults were examined using an object-based accuracy 
assessment approach. Object-based accuracy was as-
sessed by first selecting test objects, defined as im-
age-derived segments that correspond to field-observed 
types and visually interpreted objects of wetland vegeta-
tion and other land cover. None of these segments were 
used for training purpose (Stow et al., 2008).    

The object-oriented classification results were used 
as a context for further rule-based classification. The 
patch-based GIS features such as neighboring relations 
were computed as variables for further rule-based clas-
sification (Fig. 2).  

 
 

Fig. 2  Object-oriented classification results 
 

2.5  Feature selection and derivation 
When identifying wetlands, relations to neighbor objects 
may be useful feautures because of the spatial rela-
tionship of objects in distribution. These relations can be 
represented by using measures such as ′Distance to′, 
′Border to′, ′Relative border to′, etc. (Benz et al., 2004). 
In this paper, the relationships were rasterized into 
layers to aid the identification of wetlands and improve 
the accuracy of classification (Fig. 3).   

In general, texture consists of visual patterns or 
spatial pattern of pixels that may have statistical pro-
perties, structural properties, or both (Haralick et al., 
1973; Laba et al., 2010). Texture of imagery has been 
widely applied to the classification of wetlands and 
proven to be effective (Wright and Gallant, 2007; Laba 
et al., 2010). There are many ways to descripe texture. 
The Gray-level Co-occurrence matrix put forward by 
Haralick has been proven effective for the identification 
of wetlands (Armenakis et al., 2003; Töyrä and Pie-
troniro, 2005). In their paper, eight statistical metrics 
were adopted, including mean, variance, homogeneity, 
constrast, dissimilarity, entropy, angular second moment,  

 

 
 

Fig. 3  Object-relation feature: Relative border to submergent 
features 
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correlation (Haralick et al., 1973; Haralick, 1979). The 
size of moving windows, step and direction are three 
important parameters of a Gray-level Co-occurrence 
matrix.  After several experiments, it was found that 
setting the size of the moving window, step and 
direction to 5 × 5, 1, and 45º achieved the best 
separability of wetlands and upland objects. 

Since artifical wetlands such as rice paddy and fish 
ponds have more regular boundaries than natural 
wetlands, shape index may be an effective feature to 
separate natural wetlands from artifical wetlands such as 
rice paddy and fish ponds. The formula of the shape 
index is as follows: 

0.25PS
A

=                                 (1) 

where S is shape index of each patch, P and A are the 
perimeter and area of each patch, which are generated in 
image segmentation. 

Water depth is one of the important physical factors 
influencing the wetland vegetation development and its 
density (Davranche et al., 2010). The distribution of 
aquatic vegetation and their variability in space are to 
some degree controlled by the water depth (Narumalani 
et al., 1997). According to field investigations, erect 
macrophytes usually grow at the water level of 12 m to 
13 m, floating-leaved macrophytes at the water level of 
11.5 m to 12.0 m and submerged aquatic vegetation at 
11.0 m to 11.5 m.  In this study, a Digital Elevation 
Model (DEM) was derived from field measurements 
and from topography of 0.5-m accuracy (Fig. 4). The 
DEM was generated in ArcGIS at the same spatial 
resolution as that of the ETM+ image. Then the DEM 
was superimposed over the image and the non-overlayed 
part was excluded.  
 

 
 

Fig. 4  Digital Elevation Model of study area 

2.6  Rule generation and pruning 
Rules for the division of decision space can be gene-
rated using experts′ expertise and experience or gene-
rated automatically from computer algorithms. Graph-
ically a set of decision rules are like an up-down tree, 
called a decision tree. In the process of recognition, a 
dataset is partitioned into smaller subdivisions on the 
basis of tests defined at each branch. A dataset is 
classified squentially untill the preset conditions are met. 
Then a class label is assigned to each observation of a 
leaf node into which the observation falls (Friedl and 
Brodley, 1997). Classification and Regression Tree 
(CART) is an increasingly popular decision tree algo-
rithm available through widely used statistical packages, 
such as S-Plus (Venables and Ripley, 1997; Lanrence 
and Ripple, 2000). It operates by recursively splitting 
the dataset based on statistical test that increases the 
homogeneity of observations in the resulting descendant 
nodes (Breiman et al., 1984; Friedl and Brodley, 1997). 
The result of the CART algorithm is a classification tree. 
Each path through the tree will be a series of 
dichotomous splits and the tree is composed of a series 
of knowledge rules (Lawrence and Wright, 2001). In 
this paper, CART was adopted for the generation of 
rules using 450 reference samples as training data. Each 
sample has a series of attributes such as x, y coordinates, 
six channels of ETM+, eight texture metrics, elevation, 
relationship of neighbors, etc. The training samples 
were introduced into CART4.0 algorithm and rules were 
obtained.  

 
2.7  Classification of imagery 
The decision tree was pruned and imported into the 
Environment for Visualizing Images (ENVI) decision 
tree classifier for the classification of the study area 
using the combination of different sources of data. 
Finally, the classification results from the decision tree 
was integrated and further improved by using the 
object-oriented classification results. The patches of 
object-based classification were used as units for the 
final classification. First, the class label for the majority 
of pixels within a patch defined by the decision tree is 
determined. Then if the class label of the patch 
determined by decision tree matches that determined by 
the object-based classifier, the class label will be the 
final class label of the patch. If the class label of the 
patch determined by decision tree does not match the 
one determined by object-based classifier, the final class  
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label of the patch will be the one determined by the 
decision tree because the decision tree has used more 
variables in its determination than object-based classifier, 
especially the elevation data, which is a good variable 
for the identification of the wetlands from upland 
vegetation.  

 
2.8  Evaluation of classification accuracy 
The accuracy of classification results were estimated by 
samples obtained from a randomly stratified sampling 
method with a minimum of 30 samples per class 
(Congalton, 1991). This was done by creating a mask 
that covered areas with reference data. The mask was 
superimposed over one of classification maps and 
samples were extracted randomly from each class within 
the mask. Sampled data were compared against refer-
ence data to define the correct class attribute. While 
overlaid over reference data, the points at the edge of 
objects are removed for the class uncertainty deter-
mination. In total, 450 samples were derived, but after 
removing the points measured at the edges of objects, 

416 points remained for the evaluation of the classi-
fication accuracy. A confusion matrix was used to 
evaluate classification accuracy (Table 2 and Table 3). 
 
3  Results and Analyses 

  
Object-based classification shows that there is some 
confusion between upland objects and wetlands. For 
example, rice paddies are misclassified as emergent 
wetland vegetation. Classification results of the decision 
tree, to some degree, eliminated the misclassification 
between wetland and upland objects due to the use of 
spatial relationship such as the elevation, the relative 
location of objects in space, etc. In most cases, an 
upland object is adjacent to other upland objects and 
aquatic objects neighbor aquatic objects. In the study 
area, it is noticeable that submerged aquatic vegetation 
is usually adjacent to open water or emergent vegetation. 
Agricutural landscape types such as rice paddy and 
dryland are usually adjacent to impervious types such as 
built-up areas. 

 
Table 2  Accuracy assessment of classification without object-oriented constraint 

Class name Class 
code 1 2 3 4 5 6 7 Row 

total 
User's accuracy 

(%) 
Submerged 1 87 2 1 1 0 0 0 92 94.57 

Emergent 2 6 34 0 7 2 0 0 51 66.67 

Open Water 3 5 2 51 2 0 0 0 63 80.95 

Aquaculture 4 1 0 0 45 3 2 1 56 80.36 

Farmland 5 1 0 0 2 60 7 9 84 71.43 

Forest 6 0 0 0 8 13 21 2 50 42.00 

Impervious 7 0 0 0 0 0 0 41 48 85.42 

Column total  100 38 52 65 78 30 53 416  

Producer's accuracy (%)  87.0 89.4 98.0 69.2 76.9 70.0 77.3   

Notes: Overall accuracy = 81.49%; Overall kappa statistics = 0.7676 

 
Table 3  Accuracy assessment of classification with object-oriented constraint 

Class name Class 
code 1 2 3 4 5 6 7 Row 

total 
User's accuracy 

(%) 
Submerged 1 87 2 1 3 0 0 0 94 92.55 
Emergent 2 6 35 0 5 1 0 0 49 71.43 
Open water 3 5 1 51 1 0 0 0 61 83.61 
Aquaculture 4 1 0 0 51 4 2 1 63 80.95 
Farmland 5 1 0 0 4 66 7 9 92 71.74 
Forest 6 0 0 0 1 6 21 0 34 61.76 
Impervious 7 0 0 0 0 1 0 43 51 84.31 
Column total  100 38 52 65 78 30 53 416  
Producer's accuracy (%)  87.00 92.11 98.08 78.46 84.62 70.00 81.13   

Notes: Overall accuracy = 85.10%; Overall kappa statistics = 0.8204 
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However, the ′salt and pepper′ effect is still a serious 
problem in the classificaion results of per-pixel decision 
trees. For example, edges of fish ponds with grasses 
were classified as emergent wetland vegetation, while 
edges without grasses were classified as impervious 
land cover types (Fig. 5). While in the object-based 
classification, the edges were classified as aquaculture 
objects because of use of texture when classifying the 
fish ponds. However, there were also some problems 
with the classification results by the object-based 
classifier. For example, at the edge of the lake, some 
segments extend into the lake because of the similarity 
of textural features of the upland objects and the 
wetland objects. Per-pixel classification of decision 
trees has to some degree overcome the problem due to 
the use of more variables in determining the class label. 
The constrained classification results have eliminated 
the ′salt and pepper′ effect (Fig. 6). In total, 416 points 
were used for the accuracy assessment of classification 
without object-oriented constraint and the one with  
object-oriented constraint (Table 2 and Table 3). 

Submerged aquatic vegetation occupied a large part 
of the study area, accounting for 28.87% of the study 

    

 
 

Fig. 5  Classification without object-oriented constraint 
 

 
 

Fig. 6  Classification with object-oriented constrai 

area (Fig. 6). Due to the action of flow from the Huaihe 
River, the suspended matter carried by the Lihe River 
and other rivers are deposited in the area (Fig. 1). Most 
of time, the water level here is from 0.7 to 2.0 m, and 
the lake bottom can be seen from the water surface. 
Since it has been protected by the establishment of the 
Jiangsu Sihong Hongze Lake Wetland National Reserve, 
the big patch of emergent vegetation exists in the study 
area. Phragmites communis is the dominant species of 
emergent vegetation, which accounts for 9.63% of the 
study area.  

As shown in Table 2 and Table 3, submerged aquatic 
vegetation is misclassified as emergent vegetation, open 
water, and aquaculture. Submerged aquatic vegetation is 
misclassified as emergent vegetation because sparse 
emergent vegetation and open water have similar repre-
sentation in imagery to submerged aquatic vegetation. 
Due to the sparse density of submerged aquatic vegeta-
tion or the influence of deeper water, some has been 
misclassified as open water. As for submerged aquatic 
vegetation, the classification accuracy of both methods 
is nearly similar. The producer′s accuracies for open 
water are the same for both methods at 98.08%, indicat-
ing that open water is more easily identified than other 
objects in the study area. The producer′s accuracy for 
emergent wetland vegetation with the decision tree clas-
sifier (method 1) is a bit lower than the corresponding 
number with decision tree constrained with object-based 
classification results (method 2). The producer′s accu-
racy for aquaculture with method 2 was improved by 
9% more than that with method 1, indicating that 
method 2, with constraint of segments has not only 
overcome the ′salt and pepper′ effect, but also solved the 
problems relative to the classification of complex ob-
jects. Fish ponds are complex objects, consisting of 
standing water and pond edges. In the study area, 
grasses or trees usually grow over the edge of fish ponds. 
The per-pixel classifier can classify the standing water 
of fish ponds as open water and the edges of fish ponds 
as farmland or forest objects while the object-based 
classifier can overcome the problems by processing the 
standing water of a fish pond and its edges as a whole 
object. That is why method 2 with constraint from re-
sults of object-based segmentation can improve the 
producer′s accuracy for aquaculture.  

The producer′s accuracies for farmland and impervi-
ous objects with method 2 were also higher than method 



 RUAN Renzong et al. Mapping of Freshwater Lake Wetlands Using Object-Relations and Rule-based Inference 469 

1, proving that object-based classification constraint can 
to some degree solve the problems of transition zones 
between two kinds of objects. As for the farmland, there 
is variation even within one field. Per-pixel classifiers 
can not solve this problem. For the impervious objects, 
there is a lot of disturbed land between houses. The land 
is usually used for growing vegetables or just left as 
weed land although they are actually transitions between 
houses. Object-based classifier can process them as a 
whole unit while per-pixel can not. The producer′s ac-
curacy for method 2 is similar to that for method 1. The 
user′s accuracies for submerged aquatic vegetation are 
nearly the same with both methods. Some emergent 
vegetation, aquaculture and open water were misclassi-
fied as submerged aquatic vegetation due to the sparse 
density of emergent vegetation, being too wet for rice 
paddies. The existence of grass on the water surface in 
some fish ponds function as food for fish or crabs. Pond 
weed (Potamogeton crispus) and goldfish weed (Cera-
tophyllum demersum) are common aquatic vegetation 
placed in fish ponds as fish and crab food. The pro-
ducer′s accuracies and the user′s accuracies for forest 
with both methods are less than the ones for other types 
of objects. The user′s accuracy for emergent vegetation 
with method 1 is lower than the corresponding value for 
method 2, but both are not high. Due to the mixed pixels 
consisting of open water and emergent vegetation or 
submerged aquatic vegetation, misclassification of such 
mixed pixels as emergent vegetation or other classes 
degrades the user′s accuracies or producer′s accuracies 
for emergent vegetation. In some parts of the study area, 
due to the high density of submerged aquatic vegetation 
and exposure at the water surface, submerged aquatic 
vegetation appears similar to emergent vegetation in 
spectral characteristics sometimes. This caused the mis-
classification of submerged aquatic vegetation as emer-
gent vegetation. In some fish ponds, plants such as wa-
ter hyacinth are used as food for fish or crabs. This 
caused the misclassification of aquaculture as emergent 
vegetation. The narrow strips of fish pond edges caused 
the existence of mixed pixels and the misclassification 
of parts of aquaculture as emergent vegetation. 

Linear features or narrow strips such as small rivers 
or channels have been misclassified as other classes. 
These linear features or narrow strips usually consist of 
only one pixel in width. This caused them to be classi-
fied as other classes by method 2 when constrained by 

segments from object-based classification than by 
method 1. The user′s accuracy for open water with 
method 2 is the same as method 1. The user′s accuracy 
for aquaculture with method 2 is the same as method 1. 
The overall accuracy of method 2 is nearly 4% higher 
than the corresponding class type with method 1.   
 
4  Conclusions 
 
Decision tree classifiers can fully explore the variables 
and find the optimal variables for the identification of 
wetlands in this study. Not only the traditional variables 
such as spectral, textural and elevation features can be 
included in the dataset for decision tree classifiers, but 
also the variables such as spatial relations can be in-
cluded in the dataset. In this paper, the variables such as 
elevation, relationships such as ′Distance to′, ′Border to′, 
′Relative border to′ have been used for identification of 
wetlands. This, to some degree, has improved the 
identification of wetlands. It is shown that the use of 
object-oriented classification results as a constraint has 
improved the overall accuracy from 81.49% to 85.10%, 
the kappa coefficient from 0.7676 to 0.8204.  

The submerged aquatic vegetation accounts for 
28.87% of the study area, emergent aquatic vegetation 
9.63% of the study area. Due to the protection of the 
Jiangsu Sihong Hongze Lake Wetland Natural Reserve, 
there are two relatively complete patches of erect emer-
gent in the area. Phragmites communis is the dominant 
species of the emergent wetland landscape in the study 
area.  
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