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Abstract: A coupled system of the interdecadal sea-air oscillator model is studied. The El Niño-southern oscillation 

(ENSO) atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere 

interactions. The oscillator model is involved with the variations of both the eastern and western Pacific anomaly pat-

terns. This paper proposes an ENSO atmospheric physics model using a method of the perturbation theory. The aim is 

to create an asymptotic solving method for the ENSO model. Employing the perturbed method, the asymptotic solution 

of corresponding problem is obtained, and the asymptotic behaviour of the solution is studied. Thus we can obtain the 

prognoses of the sea surface temperature anomaly and related physical quantities. 
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1  Introduction 
 

Interactions between the ocean and atmosphere contrib-
ute to climate fluctuations over a broad spectrum of time 
scales. Studies on those interactions have focused on El 
Niño-southern oscillation (ENSO) phenomena that have 
a period of 3–4 years and whose principal signature is in 

the tropical Pacific. Superimpositions on this natural 
mode of the coupled ocean-atmosphere system are in-
terdecadal fluctuations that contribute to the irregularity 
of the southern oscillation. The southern oscillation in-
volves an east-west redistribution of warm surface wa-
ters. In the eastern equatorial tropical Pacific a shoaling 
of subsurface isotherms signals the end of El Niño and 
the return of colder surface waters.  

The ENSO is an interannual phenomenon involved in 

the tropical Pacific ocean-atmosphere interactions, and a 
very attractive object of study in the international aca-
demic circles. Many scholars have investigated the cir-
culation in the upper Pacific (McPhaden and Zhang, 
2002), the decadal climate variability (Biondi et al., 
2001), the interdecadal climate variability (Gu and Phi-
lander, 1997; Wang et al., 1999), the ENSO mechanisms 
(Wang, 2001; Kushnir et al., 2002), the air-sea coupled 
model in the tropics (Lin and Fu, 2001), the evolution 
equations (Lin et al., 2002) and the instability evolution 
of air-sea oscillator (Feng et al., 2002). 

Some researchers considered the approximate solu-
tions for a class of problems in atmospheric physics, 
solving method in equator Pacific (Mo et al., 2006), the 
singularly perturbed solution of coupled model (Mo et 
al., 2008), the global climate model (Mo et al., 2009a; 
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2009b), the approximate solution for wind-driven ocean 
circulation (Mo et al., 2010), and the dissipative travel-
ling wave solution for ENSO (Wen et al., 2010). 

The essence of ENSO oscillation requires both posi-
tive and negative ocean-atmosphere feedbacks. This 
anomaly reduces the zonal sea surface temperature (SST) 
gradient and hence the strength of the southern oscilla-
tion circulation, resulting in weaker trade winds around 
the equator. The weaker trade winds in turn drive the 
ocean circulation changes, thereby reinforcing SST 
anomaly. This positive ocean-atmosphere feedback or 
coupled ocean-atmosphere instability leads the equato-
rial Pacific to a never-ending warm state.  

Recently, many scholars have investigated the non-  
linear problem (Sagon, 2008; Barbu and Cosma, 2009; 
Ramos, 2009). Approximate methods have been refined, 
including the method of averaging, the matched asymp-
totic expansion method, the boundary layer method, and 
the multiple scales method. In this paper, we consider a 
sea-air oscillator model using a simple and valid method 
of the perturbation theory. 

The response of the atmosphere to the warming in the 
tropics involves an intensification of the extratropical 
westerlies, leading to colder surface waters in ex-
tratropical regions that happen to be windows to the 
equatorial thermocline. It implys a continual, interde-
cadal climate fluctuation with a period that depends on 
the time it takes for water parcels to travel from the ex-
tratropics to the equator. 

 
2  A Sea-air Oscillator Model  
 
The coupled system for a sea-air oscillator time delay 
model of interdecadal climate fluctuations (Gu and Phi-
lander, 1997) is 
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where T1 is the extratropical temperature at approximate 
region 25°N to 50°N (and 25°S to 50°S); T2 is the tropi-
cal temperature at approximate region 20°S to 20°N; t 
denotes the time; α is the fraction of poleward atmos-
pheric heat transport that remains in the extratropical 
regions; λ1 is the negative constant; λ2 is the feedback 
parameter; γ, δ1 and δ2 are positive constants; d1 and d2 

are the delay time and )2,1(0)(lim
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 rep-

resent stochastic forcing from weather systems unrelated 
to tropical temperature variations for T1 and T2, respec-
tively. In this paper, we assume that ε = d1 = d2 are the 
small positive parameters.  

We first consider ε = d1 = d2 = 0 and corresponding 
linear equations (1) and (2): 
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From the fraction of poleward atmospheric heat trans-

port  )1(21   and 1  , we know that the 

characteristic roots r1 and r2 possess different positive 
real parts. Thus the zero point for the linear system is 
unstable.  

From the nonlinear systems (1) and (2), we have 
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Then the singular point of the nonlinear systems (1) 
and (2) is unstable, too. So the path curves on the phase 
plane for the systems (1) and (2) are away from the ori-
gin. 

 
3  Perturbation Solution 
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And developing the time delay functions Tj(t) in ε: 
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Substituting equations (3) and (4) into equations (1) 
and (2), developing nonlinear terms in ε, equating coef-
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ficients of the same powers of ε at both two sides of the 
equations respectively, for i = 1, 2, …, we obtain 
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where Fji (j = 1, 2; i = 1, 2, …) are determined functions 
whose constructions are omitted.  

It is easy to see that the general solution Tj0(t) of the 
systems (5) and (6) is 

2,1),exp()exp()( 210  jtrDtrCtT jjj    (9) 

where rj (j = 1, 2), are characteristic roots of systems (5) 
and (6): 
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From equations (7) and (8) for i = 1, we have 
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We can obtain a set of solution )2,1(1 jT j  for the 

systems (12) and (13) with zero initial conditions that  
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We can also obtain a set of solution Tji (j = 1, 2; i = 2, 
3, …) for the systems (12) and (13) with zero initial 
conditions that 
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Thus from equations (9), and (14)–(17), we have a set 
of the nth order approximation solution of the coupled 
systems (1) and (2) for a sea-air oscillator model: 
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From fixed point theorem, the equations (18) and (19) 

are valid expansions of the coupled system (1)–(2) for a 

sea-air oscillator model. 
 

4  Example 
 
Consider a special coupled system for a sea-air oscilla-
tor time delay model of interdecadal climate fluctuations. 

Let 1 1 1( ) sinP T T , 2 2 2( ) cosP T T . Thus the system 

(1)–(2) is 
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And developing the time delay functions Tj(tdi) = 

Tj(t) in ε: 
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Substituting equations (22) and (23) into (20) and 
(21), developing nonlinear terms in ε, equating coeffi-
cients of the same powers of ε in both two sides for the 
equations respectively, for j = 0, 1, we obtain 
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It is easy to see that the general solution Tj0(t) of the 
systems (24) and (25) is 
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We can obtain a set of solution Tj1 (j =1, 2) for the 
systems (26) and (27) with zero initial conditions that  
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Thus from equations (22) and (28)–(30), we have a 
set of first order approximation solution of the coupled 
system (20)–(21) for a sea-air oscillator model: 
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From fixed point theorem, the equations (31) and (32) 
are valid expansions of the coupled system (20)–(21) for 
a sea-air oscillator model. 
 

5  Discussion 
 
Atmospheric physics is a very complicated natural phe-
nomenon. We consider the coupled system (1)–(2) for a 
sea-air oscillator time delay model of interdecadal cli-
mate fluctuations. In the coupled system, we deduced 
the extratropical temperature at approximate region 
from 25°N to 50°N (and 25°S to 50°S) (T1) and the 
tropical temperature at approximate region from 20°S to 
20°N (T2). From the fraction of poleward atmospheric 

heat transport  )1(21   and αγ > δ1, we know 

that the characteristic roots r1 and r2 possess different 
positive real parts. Thus the singular solution of the 
nonlinear system (1)–(2) is unstable. The path curves on 
the phase plane for the system (1)–(2) are away from 
the origin. Therefore, as the time (t) large enough, the 
solution of the system (1)–(2) may be take on the chaos 
T10

′ behavior and it leads the equatorial Pacific to a 
never-ending warm state.  

From the example, we can conclude that for small 
parameter ε, the asymptotic expansions are the good 
approximate expansions of the disturbed solution for the 
nonlinear model. 

We obtained approximate solution by using the per-
turbation method. And we can obtain the prognoses of 
SST and related physical quantities. 
 

6  Conclusions 
 

We need to reduce basic models for the ENSO sea-air 

oscillator and solve them by using the approximate 
method. The perturbation method is a valid method. 

The perturbed method is an approximate analytic 
method, which differs from general numerical method. 
The expansions of solution obtained through the per-
turbed method can be used analytically. We can further 
study the fixed quality and quantitative behaviors of the 
temperature anomaly in the equatorial eastern Pacific, 
the thermocline anomaly, the zonal wind stress anomaly 
and so on. 
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