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Abstract: Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we 
proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altitude) as the 
primary predictors and incorporates inverse distance weighting (IDW) technique. The method was applied to a 
high-resolution digital elevation model (DEM) to produce a grid map of multi-year mean δD values with 1km spatial 
resolution for Antarctica. The mean absolute deviation between observed and estimated data in the map is about 5.4‰, 
and the standard deviation is 9‰. The resulting δD pattern resembles well known characteristics such as the depletion 
of the heavy isotopes with increasing latitude and distance from coast line, but also reveals the complex topographic 
effects.  
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1 Introduction  
 
Polar ice sheets are archives of a wealth of valuable pa-
leoclimatic information. During the recent decades, 
abundant studies on different deep ice cores from the 
Greenland and Antarctic ice sheets have led to substan-
tial progress in palaeoclimatology (GRIP Members, 1993; 
NGICP Members, 2004; EPICA Community Members, 
2004; Jouzel et al., 2007). Stable hydrogen isotope ratios 
(δD) from ice cores are crucial in reconstructing climate 
because they are regarded as a proxy for temperature 
(Dansgaard, 1964; Jouzel et al., 1997). The basis of the 
use of δD as a palaeothermometer is the strong empirical 
relationship between mean annual temperature (T) and 
the isotopic composition (δ) of snow (δ-T relationship) 
(Dansgaard, 1964; Yurtsever and Gat, 1981; Rozanski et 
al., 1993). Despite the widespread use of the indicator 
(Jouzel et al., 1997; 2003), there is some controversy to 
the extent δD can be used to estimate past temperature 
since the δ-T relationship appears to vary on different 
spatial and temporal scales (Robin, 1983; Cuffey et al., 
1995; Johnsen et al., 1995; Jouzel et al., 1997; 2003; 

Masson-Delmotte et al., 2003). In addition to T (Dans-
gaard, 1964; Yurtsever and Gat, 1981; Rozanski et al., 
1993), many other factors may affect δ-T relationship, 
such as changes in seasonality of precipitation (Noone et 
al., 1999; Schlosser and Oerter, 2002; Masson-Delmotte 
et al., 2005), microphysical processes in clouds during 
snow formation (Fisher, 1991; Ciais and Jouzel, 1994), 
variations in the inversion strength (Van Lipzig et al., 
2002), shifts in large-scale circulation patterns (Noone 
and Simmonds, 2002), and source region distribution 
(Jouzel et al., 1997). Information of δD in Antarctic sur-
face snow mainly recording the present climate change 
from many locations is required to address these issues. 
Unfortunately, it is difficult to determine the exact δD of 
an "average" year (the long-term mean annual δD) at one 
or more locations due to the logistical problems associ-
ated with harsh environmental conditions in Antarctica. 
Spatial interpolation provides a method for estimating 
δD in Antarctic surface snow where data are not avail-
able by generating a smoothed surface trend that captures 
the geographic variability of data. 

Some simple spatial interpolation techniques, such as 
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contouring, triangulation, and inverse distance methods, 
have been attempted to estimate the spatial distribution 
of stable water isotope. However, for limited δD obser-
vation sites, these interpolation methods are usually not 
available for accurate result. Recently, the more com-
plex BW model which combines an empirical model for 
isotopic trends related to latitude and altitude with spa-
tial interpolation (Bowen and Wilkinson, 2002) has been 
applied to deriving spatial distribution of the isotopic 
composition of precipitation all over the world (Bowen 
and Revenaugh, 2003). However, the confidence of δD 
estimates is low in Antarctica, possibly due to sparse 
data coverage or the poor fit of the empirical relation-
ship between latitude and δD (Bowen and Revenaugh, 
2003). In this study, firstly, the dependence of δD on 
latitude and altitude was analyzed. Secondly, we devel-
oped an interpolation method, based on a multiple linear 
regression model incorporating the inverse distance 
weighting (IDW) technique. At last, we drew a 
high-resolution spatial distribution map for δD in Ant-
arctic snow using the interpolation method on a digital 
elevation model (DEM) of Antarctica.   
 
2 Data and Methods 
 
2.1 Data 
Hydrogen isotope data discussed herein are expressed in 
per mille (‰) as the deviation of a sample from the Vi-
enna Standard Mean Ocean Water (V-SMOW) standard. 
Multi-year mean δD data came from Antarctic surface 
snow isotopic composition database by Masson-Delmo- 
tte et al. (2008), which is available at http://www.lsce. 
cea.fr/Pisp/24/valerie.masson-delmotte.html. The data-
base includes δD observations from 938 sampling sites. 
Among them, 567 observations were used for this study. 
The remaining ones were not used as a result of limited 
geographic information (latitude, longitude or elevation). 
As evident in Fig. 1, the sampling sites are not evenly 
distributed within Antarctica. More than 50% of the sites 
are located in the sector from 90°E to 180°E. δD data 
were measured from archival direct precipitation sam-
pling at a few sites (Global Network for Isotopes in Pre-
cipitation stations from the International Atomic Energy 
Agency stations, Neumayer, Dumont d'Urville, Vostok, 
Dome Fuji) over varying durations, snow-pit samples 
typically 1m shallow snow-cores, as well as shallow ice 
cores with a sub-annual resolution. The samples were 

collected from the 1960s to present, but mostly between 
the 1980s and the 1990s. 
 

 
Fig. 1 Spatial distribution of sampling sites for δD 

 in Antarctic surface snow 
 

Continuous grid map of multi-year mean δD was gen-
erated by using the Radarsat Antarctic Mapping Project 
digital elevation model version 2 (RAMP/DEM) provided 
by National Snow and Ice Data Center (NSIDC), USA. 
RAMP/DEM incorporates topographic data from Euro-
pean Remote Sensing Satellite-1 radar altimetry, airborne 
radar echo-sounding surveys, the recently-updated Ant-
arctic Digital Database (version 2), and large scale to-
pographic maps from the U.S. Geological Survey and the 
Australian Antarctic Division (http://nsidc.org/data/docs/ 
daac/nsidc0082_ramp_dem_v2.gd.html). In comparison 
to the original version, version 2 was improved by in-
corporating new topographic data, error corrections, ex-
tended coverage, and other modifications. Vertical accu-
racy of the DEM is ±100m over rugged mountainous 
areas, ±15m for steeply sloped coastal regions, ±1m on 
the ice shelves, ±7.5m for the gently sloping interior ice 
sheet, and ±17.5m for the relatively rough and steeply 
sloped portions of the ice sheet perimeter. For areas 
south of 81.5ºS, within the interior East Antarctic ice 
sheet and away from the mountain ranges, vertical accu-
racy is ±50m (Liu et al., 2001).  
 
2.2 Uncertainty of isotopic composition data  
The δD data used for this study consist of records that 
are obtained irregularly in space and time, covering a 
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wide variety of time periods. Average time intervals 
range from several years to several hundreds of years, 
with the majority of less than 50 years. The standard 
deviation of local δD measurements varies from 3‰ to 
53‰. This might induce misinterpretations when mod-
eling spatial variations statistically in order to define 
optimal interpolation criteria. However, average isotopic 
value over the last 200 or the last 40 years are very 
similar for Dronning Maud land (Graf et al., 2002). The 
local isotopic values remain stable over the last 30 years, 
at least in central Antarctica (Masson-Delmotte et al., 
2008). Stable isotopes do not indicate a drastic change 
during the last 200 years in the East Antarctica (Schnei-
der et al., 2006). For example, δD measurements from 
the snow-pit samples and an ice core at Vostok cover a 
period of about 60 and 170 years, respectively. Despite 
the different average time intervals, they represent very 
similar mean δD values of –440.05‰ (Ekaykin et al., 
2002) and –441.9‰ (Ekaykin et al., 2002), respectively. 
The differences in δD values, which might originate 
partly from the result of the uneven distribution of iso-
tope data over time and seasonal/inter-annual precipita-
tion isotopic composition variability, are small com-
pared to the range of the spatial distribution of annual 
mean δD data (Masson-Delmotte et al., 2008). There-
fore, we think this kind of error could not significantly 
corrupt the quality of a spatially modeled picture of δD.  
 
2.3 Methods 
As expected, there is a strong correlation between δD 
and latitude and altitude, respectively. Therefore, we 
used a linear regression technique to deconvolve the 
effects of latitude and altitude on δD in Antarctic sur-
face snow.  

i i iP a L b A c= ∗ + ∗ +              (1) 
where Pi is the initial estimate of δD of the sampling site 

i (‰), Li is latitude (º) of the sampling site i, Ai is alti-
tude (m) of the sampling site i, and a, b and c are the 
empirical parameters. The best-fit parameters for all the 
temperature data are described by the following poly-
nomial, which accounts for 85% of the δD variance. 

=(5.198 0.25) (0.066 0.001)i iP L± ∗ ± ∗-  

        +(222.754 18.115)iA ±  (R2=0.85)      (2) 
Figure 2 shows the anomalies between the observed 

δD and mean δD estimated by Equation (2). The stan-
dard deviation of the anomalies for δD (27‰) remains 

limited. Positive anomalies (measured values are greater 
than estimated) occur in the central Antarctic Peninsula, 
Marie Byrd land and the flanks of the ice sheet, while 
negative anomalies concentrate in the central East Ant-
arctic Plateau, especially around Dome C and Vostok 
regions and west Antarctic Peninsula. These regional 
anomalies may result from the different histories of dis-
tillations and the different moisture origin and trajecto-
ries. To represent the effects, we interpolated spatially 
δD variability that is not accounted for by Equation (2), 
based on the IDW interpolation technique. Combining 
this interpolation with equations (1) and (2) gives the 
following composite model equation: 

1

1

n
i i

i= i
n

i i

P
d

P
1

d

β

χ

β

δ

δ χ

=

−

= +
∑

∑
           (3) 

where Px and δx are the initial and final estimates of δD 
of grid x respectively, δi and Pi are the observed and the 
estimated δD at the sampling site i, respectively, di is the 
distance between a grid point and sampling site i, and β 
is a distance weighting parameter. Equation (3) allows 
mean annual δD to be estimated at any location where 
the two independent variables are available. Thus, regu-
lar gridded δD was derived from the DEM as the Equa-
tion (3) input. 

  

  Fig. 2 Deviations between observed mean annual δD  
   values and estimated by Equation (2) 
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3 Results and Discussion  
 
3.1 Spatial distribution of δD  
The multi-year mean δD map (Fig. 3) depicts the rela-
tionships between δD and a number of explicit (latitude, 
altitude) and more obscure (vapor sources, storm tracks) 
geographic variables, which may be useful for the forc-
ing of Antarctic ice sheet models using isotopic tracers 
(Lhomme et al., 2005). The predominant features of the 
mean annual δD include the lowest value over the cen-
tral Antarctic Plateau, where the lowest value of tem-
perature may occur, and the strongest isotopic gradients 
can be observed over the steep slopes of East Antarctica, 
corresponding to both the strong temperature gradients 
and the continentality. The spatial distribution of δD 
displays the decrease trend from the middle to high lati-
tudes (latitude effect), low δD at high altitudes (altitude 
effect) (Dansgaard, 1964), depletion of the heavy iso-
topes with increasing distance from the coast line (con-
tinental effect) (Rozanski et al., 1993). The depiction of 
a continental effect depends on the presence of data sta-
tions that document regional heavy isotope depletion in 
the continental interiors.  

Because Fig. 3 takes the effect of local topography on 
δD at a single location into account, estimates of mean 
annual δD may be better than output from general cir-
culation models (GCMs) equipped with isotope tracers 
(AGCMs) and Mixed Cloud Isotopic Model (MCIM). 
The isotope values of snow are overestimated in the east 
Antarctic Plateau for the GCMs and MCIM (Werner and 
Heimann, 2002; Noone and Simmonds 2002; Schmidt et 
al., 2005; Helsen et al., 2007, Masson-Delmotte et al., 
2008). These biases may be due to an underestimation 
of kinetic effects and inadequate representation of large 
scale advection of water vapor in MCIM (Salamatin et 
al., 2004; Masson-Delmotte et al., 2008), and in part due 
to a warm bias found or be linked to their representation 
of the transport of moisture towards central Antarctica 
in the GCMs (Schmidt et al., 2005; Masson-Delmotte et 
al., 2008). Also, GCMs and MCIM do not necessarily 
include the correct topography of Antarctica in their 
boundary conditions, especially for the steep mountain-
ous area of the eastern Antarctic Plateau. 
 
3.2 Estimate of uncertainties 
Uncertainties in the multi-year mean δD map for Ant-
arctica (Fig. 3) may be associated with interpolation 

algorithm and DEM errors. The accuracy of the δD map 
was evaluated based on cross validation techniques. The 
relationship between estimated δD values and 567 
in-situ measurements is linear with a slope of 0.99 and 
R2=0.98 (Fig. 4). We calculated the deviation between 
the measured and the estimated δD values based on 
cross validation techniques. The mean absolute error is 
5.4‰, and the standard deviation is 9‰. δD data from 
station lacking elevation data were not used to fit the 
Equation (3). These data make it possible to further 
compare multi-year mean δD estimated in Fig. 3 and 
field measurements (Fig. 5). A direct linear regression 
with the 44 measurements yields a correlation coeffi-
cient of 0.97 and a regression slope of 1.14. Therefore, 
we think the estimate in Fig. 3 is of high accuracy given 
that measurements mostly cover different periods and 
that DEM bias exists. 

  
Fig. 3 Mean annual δD in Antarctic surface snow 

 

 
Fig. 4 Scatter plot of measured δD values (Vm)  

versus estimated δD values (Ve) 
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Fig. 5 Scatter plot of extra measured δD values (Vm) 

versus estimated δD values (Ve) 

 
4 Conclusions  
 
This paper presented an improved interpolation method, 
based on the DEM to depict the spatial distribution of 
δD in Antarctic surface snow. The approach captures the 
relationship between δD and some explicit (latitude and 
altitude) and implicit (vapor sources, storm tracks) geo-
graphic variables. The mean magnitude of predictor er-
ror of δD is about 5.4‰, and the standard deviation is 
9‰. The high-resolution (1km) δD map reflects effects 
estimated based on theory of Rayleigh type distillation 
or previously observation, including latitudinal, altitud-
inal, and continental effects. Furthermore, it can be used 
as a benchmark for comparison with the output of 
GCMs and MCIM.  

It is needed to point out that the δD map is still influ-
enced by the density of sampling localities. To further 
improve the accuracy of the map, new observations 
from many places of Antarctica are urgently needed. 
This is a focus of traverses to be conducted as part of the 
2007–2009 International Polar Year. 
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