ZENG Xinhua, SONG Yigang, ZHANG Wanjun, HE Shengbing. Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China[J]. Chinese Geographical Science, 2018, 28(1): 12-24. doi: 10.1007/s11769-017-0899-1
Citation: ZENG Xinhua, SONG Yigang, ZHANG Wanjun, HE Shengbing. Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China[J]. Chinese Geographical Science, 2018, 28(1): 12-24. doi: 10.1007/s11769-017-0899-1

Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China

doi: 10.1007/s11769-017-0899-1
Funds:  Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), National Natural Science Foundation of China (No. 51378306)
More Information
  • Corresponding author: HE Shengbing, ZHANG Wanjun
  • Received Date: 2016-03-10
  • Rev Recd Date: 2016-07-08
  • Publish Date: 2018-02-27
  • Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accurate estimation of CO2 emissions via SR. However, studies on spatio-temporal variation of SR are still scarce for semi-arid regions of North China. In this study, we conducted 12-month SR measurements in six land-use types, including two secondary forests (Populus tomentosa (PT) and Robinia pseudoacacia (RP)), three artificial plantations (Armeniaca sibirica (AS), Punica granatum (PG) and Ziziphus jujuba (ZJ)) and one natural grassland (GR), to quantify spatio-temporal variation of SR and distinguish its controlling factors. Results indicated that SR exhibited distinct seasonal patterns for the six sites. Soil respiration peaked in August 2012 and bottomed in April 2013. The temporal coefficient of variation (CV) of SR for the six sites ranged from 76.98% to 94.08%, while the spatial CV of SR ranged from 20.28% to 72.97% across the 12-month measurement. Soil temperature and soil moisture were the major controlling factors of temporal variation of SR in the six sites, while spatial variation in SR was mainly caused by the differences in soil total nitrogen (STN), soil organic carbon (SOC), net photosynthesis rate, and fine root biomass. Our results show that the annual average SR and Q10 (temperature sensitivity of soil respiration) values tended to decrease from secondary forests and grassland to plantations, indicating that the conversion of natural ecosystems to man-made ecosystems may reduce CO2 emissions and SR temperature sensitivity. Due to the high spatio-temporal variation of SR in our study area, care should be taken when converting secondary forests and grassland to plantations from the point view of accurately quantifying CO2 emissions via SR at regional scales.
  • [1] Bahn M, Rodeghiero M, Anderson-Dunn M et al., 2008. Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11(8):1352-1367. doi:10. 1007/s10021-008-9198-0
    [2] Bahn M, Schmitt M, Siegwolf R et al., 2009. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope com-position on a diurnal timescale? New Phytologist, 182(2):451-460. doi: 10.1111/j.1469-8137.2008.02755.x
    [3] Batjes N H, 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2):151-163. doi: 10.1111/j.1365-2389.1996.tb01386.x
    [4] Bellamy P H, Loveland P J, Bradley R I et al., 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature, 437(7056):245-248. doi: 10.1038/nature04038
    [5] Bremner J M, Mulvaney C S, 1982. Nitrogen-total. In:Page A L et al. (eds.). Methods of Soil Analysis, part 2, Chemical and Microbial Properties. Agronomy Society of America, Agron-omy Monograph 9, Wisconsin, pp. 595-624.
    [6] Chen Q S, Wang Q B, Han X G et al., 2010. Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles, 24(2):GB2010. doi: 10.1029/2009GB003538
    [7] Davidson E A, Belk E, Boone R D, 1998. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4(2):217-227. doi:10.1046/j.1365-2486. 1998.00128.x
    [8] Davidson E A, Janssens I A, Luo Y Q, 2006. On the variability of respiration in terrestrial ecosystems:moving beyond Q10. Global Change Biology, 12(2):154-164. doi: 10.1111/j.1365-2486.2005.01065.x
    [9] Don A, Schumacher J, Freibauer A, 2011. Impact of tropical land-use change on soil organic carbon stocks:a meta-analysis. Global Change Biology, 17(4):1658-1670. doi:10.1111/j. 1365-2486.2010.02336.x
    [10] Drake J E, Oishi A C, Giasson M A et al., 2012. Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric[CO2] and N fertilization. Agricultural and Forest Meteorology, 165(11):43-52. doi: 10.1016/j.agrformet.2012.05.017
    [11] Fang C M, Smith P, Moncrieff J B et al., 2005. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433(7021):57-59. doi:10.1038/nature 03138
    [12] Han S M, Yang Y H, Fan T et al., 2012. Precipitation-runoff pro-cesses in Shimen hillslope micro-catchment of Taihang Moun-tain, north China. Hydrological Processes, 26(9):1332-1341. doi: 10.1002/hyp.8233
    [13] Hogberg P, Nordgren A, Buchmann N et al., 2001. Large-scale forest girdling shows that current photosynthesis drives soil res-piration. Nature, 411(6839):789-792. doi: 10.1038/35081058
    [14] Janssens I A, Pilegaard K, 2003. Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9(6):911-918. doi: 10.1046/j.1365-2486.2003.00636.x
    [15] Lai L M, Zhao X C, Jiang L H et al., 2012. Soil respiration in different agricultural and natural ecosystems in an arid region. PLoS ONE, 7(10):e48011. doi: 10.1371/journal.pone.0048011
    [16] Lavigne M B, Boutin R, Foster R J et al., 2003. Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33(9):1744-1753. doi: 10.1139/x03-090
    [17] Li J Y, Xu Q H, Gaillard-Lemdahl M J et al., 2013. Modern pollen and land-use relationships in the Taihang mountains, Hebei province, northern China:a first step towards quantitative re-construction of human-induced land cover changes. Vegetation History and Archaeobotany, 22(6):463-477. doi:10.1007/s 00334-013-0391-5
    [18] Liu J, Jiang P K, Wang H L et al., 2011. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. Forest Ecology and Management, 262(6):1131-1137. doi:10.1016/j.foreco.2011. 06.015
    [19] Lu Rukun, 1999. Analytical Methods for Soil Agrochemistry. Chinese Agricultural Science and Technology Publishing House, Beijing. (in Chinese)
    [20] Luan J W, Liu S R, Wang J X et al., 2011. Rhizospheric and het-erotrophic respiration of a warm-temperate oak chronosequence in China. Soil Biology and Biochemistry, 43(3):503-512. doi: 10.1016/j.soilbio.2010.11.010
    [21] Luo J, Chen Y C, Wu Y H et al., 2012. Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga Mountain, China. PLoS ONE, 7(8):e42354. doi: 10.1371/journal.pone.0042354
    [22] Luo Y Q, Zhou X H, 2006. Soil Respiration and the Environment. Academic/Elsevier, San Diego, USA.
    [23] Mahecha M D, Reichstein M, Carvalhais N et al., 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329(5993):838-840. doi: 10.1126/science.1189587
    [24] Maier M, Schack-Kirchner H, Hildebrand E E et al., 2011. Soil CO2 efflux vs. soil respiration:implications for flux models. Agricultural and Forest Meteorology, 151(12):1723-1730. doi: 10.1016/j.agrformet.2011.07.006
    [25] Martin J G, Bolstad P V, 2009. Variation of soil respiration at three spatial scales:components within measurements, intra-site variation and patterns on the landscape. Soil Biology and Biochemistry, 41(3):530-543. doi:10.1016/j.soilbio. 2008.12.012
    [26] Monson R K, Lipson D L, Burns S P et al., 2006. Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439(7077):711-714. doi:10.1038/nature 04555
    [27] Oishi A C, Palmroth S, Butnor J R et al., 2013. Spatial and tem-poral variability of soil CO2 efflux in three proximate temperate forest ecosystems. Agricultural and Forest Meteorology, 171-172(4):256-269. doi: 10.1016/j.agrformet.2012.12.007
    [28] Peng S S, Piao S L, Wang T et al., 2009. Temperature sensitivity of soil respiration in different ecosystems in China. Soil Biology and Biochemistry, 41(5):1008-1014. doi:10.1016/j. soil-bio.2008.10.023
    [29] Peng Y Y, Thomas S C, Tian D L, 2008. Forest management and soil respiration:implications for carbon sequestration. Envi-ronmental Reviews, 16(NA):93-111. doi: 10.1139/A08-003
    [30] Piao S L, Fang J Y, Ciais P et al., 2009a. The carbon balance of terrestrial ecosystems in China. Nature, 458(7241):1009-1013. doi: 10.1038/nature07944
    [31] Piao S L, Ciais P, Friedlingstein P et al., 2009b. Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 23(4):GB4026. doi: 10.1029/2008GB003339
    [32] Pregitzer K S, Laskowski M J, Burton A J et al., 1998. Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18(10):665-670. doi: 10.1093/treephys/18.10.665
    [33] Reichstein M, Falge E, Baldocchi D et al., 2005a. On the separa-tion of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm. Global Change Biology, 11(9):1424-1439. doi:10.1111/j.1365-2486. 2005.001002.x
    [34] Reichstein M, Subke J A, Angeli A C et al., 2005b. Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Global Change Biology, 11(10):1754-1767. doi:10.1111/j. 1365-2486.2005.001010.x
    [35] Ryan M G, Law B E, 2005. Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73(1):3-27. doi:10.1007/s 10533-004-5167-7
    [36] Saiz G, Green C, Butterbach-Bahl K et al., 2006. Seasonal and spatial variability of soil respiration in four Sitka spruce stands. Plant and Soil, 287(1):161-176. doi: 10.1007/s11104-006-9052-0
    [37] Sayer E J, Powers J S, Tanner E V J, 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE, 2(12):e1299. doi:10.1371/journal.pone. 0001299
    [38] Schindlbacher A, Zechmeister-Boltenstern S, Jandl R, 2009. Carbon losses due to soil warming:do autotrophic and hetero-trophic soil respiration respond equally? Global Change Biol-ogy, 15(4):901-913. doi: 10.1111/j.1365-2486.2008.01757.x
    [39] Shen H T, Cao J S, Zhang W J et al., 2014. Winter soil CO2 flux from different mid-latitude sites from middle Taihang Mountain in north China. PLoS ONE, 9(3):e91589. doi: 10.1371/journal.pone.0091589
    [40] Sheng H, Yang Y S, Yang Z J et al., 2010. The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biology, 16(3):1107-1121. doi:10.1111/j. 1365-2486.2009.01988.x
    [41] Shi Z, Li Y Q, Wang S J et al., 2009. Accelerated soil CO2 efflux after conversion from secondary oak forest to pine plantation in southeastern China. Ecological Research, 24(6):1257-1265. doi: 10.1007/s11284-009-0609-2
    [42] Smith D L, Johnson L, 2004. Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology, 85(12):3348-3361. doi: 10.1890/03-0576
    [43] Soil Survey Staff, 1999. Soil taxonomy:a basic system of soil classification for making and interpreting soil surveys. Agri-culture Handbook No. 436. United States Department of Agri-culture (USDA), Natural Resources Conservation Service, Washington, USA.
    [44] Song X Z, Yuan H Y, Kimberley M O et al., 2013. Soil CO2 flux dynamics in the two main plantation forest types in subtropical China. Science and Total Environment, 444(3):363-368. doi: 10.1016/j.scitotenv.2012.12.006
    [45] State Soil Survey Service of China, 1998. China Soil. Beijing:China Agricultural Press. (in Chinese).
    [46] Tang J W, Baldocchi D D, Xu L K, 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology, 11(8):1298-1304. doi:10.1111/j.1365-2486. 2005.00978.x
    [47] Tang X L, Liu S G, Zhou G Y et al., 2006. Soil-atmospheric ex-change of CO2, CH4, and N2O in three subtropical forest eco-systems in southern China. Global Change Biology, 12(3):546-560. doi: 10.1111/j.1365-2486.2006.01109.x
    [48] Tong X J, Meng P, Zhang J S et al., 2012. Ecosystem carbon ex-change over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmospheric Environment, 49(3):257-267. doi: 10.1016/j.atmosenv.2011.11.049
    [49] Walkley A, Black I A, 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1):29-38. doi: 10.1097/00010694-193401000-00003
    [50] Wan S Q, Luo Y Q, 2003. Substrate regulation of soil respiration in a tallgrass prairie:results of a clipping and shading experi-ment. Global Biogeochemical Cycles, 17(2):1054. doi:10. 1029/2002GB001971
    [51] Wan S Q, Norby R J, Ledford J et al., 2007. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Global Change Biology, 13(11):2411-2424. doi:10.1111/j.1365-2486. 2007.01433.x
    [52] Wang C K, Yang J Y, Zhang Q Z, 2006. Soil respiration in six temperate forests in China. Global Change Biology, 12(11):2103-2114. doi: 10.1111/j.1365-2486.2006.01234.x
    [53] Wang H, Liu S R, Wang J X et al., 2013. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300(4):4-13. doi: 10.1016/j.foreco.2012.04.005
    [54] Yang Tao, Wang Dexiang, Zhou Jinxing et al., 2009. Vegetation succession and species diversity dynamics of the plant com-munities in the loess hilly and gully region. Journal of North-west Forestry University, 24(5):10-15. (in Chinese)
    [55] Yang Y S, Chen G S, Lin P et al., 2004. Fine root distribution, seasonal pattern and production in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61(7):617-627. doi: 10.1051/forest:2004062
    [56] Zeng X H, Zhang W J, Shen H T et al., 2014. Soil respiration response in different vegetation types at Mount Taihang, China. Catena, 116(5):78-85. doi: 10.1016/j.catena.2013.12.018
    [57] Zhang L H, Chen Y N, Zhao R F et al., 2012. Soil carbon dioxide flux from shelterbelts in farmland in temperate arid region, northwest China. European Journal of Soil Biology, 48(1):24-31. doi: 10.1016/j.ejsobi.2011.10.001
    [58] Zhang T, Li Y F, Chang S X et al., 2013. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands. Atmos-pheric Environment, 77(7):856-864. doi:10.1016/j.atmosenv. 2013.06.011
    [59] Zheng Z M, Yu G R, Fu Y L et al., 2009. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content:a trans-China based case study. Soil Biology and Biochemistry, 41(7):1531-1540. doi: 10.1016/j.soilbio.2009.04.013
    [60] Zhou Guilian, Zhang Wanjun, 2012. Artificial biological soil crust property and potential for rainwater harvest. Chinese Journal of Eco-Agriculture, 20(10):1329-1333. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(223) PDF downloads(535) Cited by()

Proportional views
Related

Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China

doi: 10.1007/s11769-017-0899-1
Funds:  Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), National Natural Science Foundation of China (No. 51378306)
    Corresponding author: HE Shengbing, ZHANG Wanjun

Abstract: Soil respiration (SR) is the second-largest flux in ecosystem carbon cycling. Due to the large spatio-temporal variability of environmental factors, SR varied among different vegetation types, thereby impeding accurate estimation of CO2 emissions via SR. However, studies on spatio-temporal variation of SR are still scarce for semi-arid regions of North China. In this study, we conducted 12-month SR measurements in six land-use types, including two secondary forests (Populus tomentosa (PT) and Robinia pseudoacacia (RP)), three artificial plantations (Armeniaca sibirica (AS), Punica granatum (PG) and Ziziphus jujuba (ZJ)) and one natural grassland (GR), to quantify spatio-temporal variation of SR and distinguish its controlling factors. Results indicated that SR exhibited distinct seasonal patterns for the six sites. Soil respiration peaked in August 2012 and bottomed in April 2013. The temporal coefficient of variation (CV) of SR for the six sites ranged from 76.98% to 94.08%, while the spatial CV of SR ranged from 20.28% to 72.97% across the 12-month measurement. Soil temperature and soil moisture were the major controlling factors of temporal variation of SR in the six sites, while spatial variation in SR was mainly caused by the differences in soil total nitrogen (STN), soil organic carbon (SOC), net photosynthesis rate, and fine root biomass. Our results show that the annual average SR and Q10 (temperature sensitivity of soil respiration) values tended to decrease from secondary forests and grassland to plantations, indicating that the conversion of natural ecosystems to man-made ecosystems may reduce CO2 emissions and SR temperature sensitivity. Due to the high spatio-temporal variation of SR in our study area, care should be taken when converting secondary forests and grassland to plantations from the point view of accurately quantifying CO2 emissions via SR at regional scales.

ZENG Xinhua, SONG Yigang, ZHANG Wanjun, HE Shengbing. Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China[J]. Chinese Geographical Science, 2018, 28(1): 12-24. doi: 10.1007/s11769-017-0899-1
Citation: ZENG Xinhua, SONG Yigang, ZHANG Wanjun, HE Shengbing. Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China[J]. Chinese Geographical Science, 2018, 28(1): 12-24. doi: 10.1007/s11769-017-0899-1
Reference (60)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return