JIANG Shanhu, REN Liliang, YONG Bin, HONG Yang, YANG Xiaoli, YUAN Fei. Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China[J]. Chinese Geographical Science, 2016, 26(4): 439-455. doi: 10.1007/s11769-016-0818-x
Citation: JIANG Shanhu, REN Liliang, YONG Bin, HONG Yang, YANG Xiaoli, YUAN Fei. Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China[J]. Chinese Geographical Science, 2016, 26(4): 439-455. doi: 10.1007/s11769-016-0818-x

Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China

doi: 10.1007/s11769-016-0818-x
Funds:  Under the auspices of Programme of Introducing Talents of Discipline to Universities by Ministry of Education and the State Administration of Foreign Experts Affairs, China (the 111 Project, No. B08048), National Natural Science Foundation of China (No. 41501017), Natural Science Foundation of Jiangsu Province (No. BK20150815)
More Information
  • Corresponding author: REN Liliang
  • Received Date: 2015-06-18
  • Rev Recd Date: 2015-09-23
  • Publish Date: 2016-08-27
  • The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) are two important multi-satellite precipitation products in TRMM-era and perform important functions in GPM-era. Both TMPA and CMORPH systems simultaneously upgraded their retrieval algorithms and released their latest version of precipitation data in 2013. In this study, the latest TMPA and CMORPH products (i.e., Version-7 real-time TMPA (T-rt) and gauge-adjusted TMPA (T-adj), and Version-1.0 real-time CMORPH (C-rt) and Version-1.0 gauge-adjusted CMORPH (C-adj)) are evaluated and intercompared by using independent rain gauge observations for a 12-year (2000-2011) period over two typical basins in China with different geographical and climate conditions. Results indicate that all TMPA and CMORPH products tend to overestimate precipitation for the high-latitude semiarid Laoha River Basin and underestimate it for the low-latitude humid Mishui Basin. Overall, the satellite precipitation products exhibit superior performance over Mishui Basin than that over Laoha River Basin. The C-adj presents the best performance over the high-latitude Laoha River Basin, whereas T-adj showed the best performance over the low-latitude Mishui Basin. The two gauge-adjusted products demonstrate potential in water resource management. However, the accuracy of two real-time satellite precipitation products demonstrates large variability in the two validation basins. The C-rt reaches a similar accuracy level with the gauge-adjusted satellite precipitation products in the high-latitude Laoha River Basin, and T-rt performs well in the low-latitude Mishui Basin. The study also reveals that all satellite precipitation products obviously overestimate light rain amounts and events over Laoha River Basin, whereas they underestimate the amount and events over Mishui Basin. The findings of the precision characteristics associated with the latest TMPA and CMORPH precipitation products at different basins will offer satellite precipitation users an enhanced understanding of the applicability of the latest TMPA and CMORPH for water resource management, hydrologic process simulation, and hydrometeorological disaster prediction in other similar regions in China. The findings will also be useful for IMERG algorithm development and update in GPM-era.
  • [1] Adler R F, Huffman G J, Chang G J et al., 2003. The version 2 Global Precipitation Climarology Project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology, 4(6):1147-1167.doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
    [2] Bartier P M, Keller C P, 1996. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting(IDW). Computers & Geosciences, 22(7):795-799.doi: 10.1016/0098-3004(96)00021-0
    [3] Behrangi A, Khakbaz B, Jaw T C et al., 2011. Hydrologic evaluation of satellite precipitation products over a mid-size basin. Journal of Hydrology, 397(3-4):225-237.doi: 10.1016/j.jhydrol.2010.11.043
    [4] Bitew M M, Gebremichael M, 2011. Evaluation of satellite rainfall products through hydrologic simulation in a full distributed hydrologic model. Water Resources Research, 47(6):W06526.doi: 10.1029/2010WR009917
    [5] Chen S, Hong Y, Cao Q et al., 2013. Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. Journal of Geophysical Research, 118(23):13060-13074.doi: 10.1002/2013JD019964
    [6] Ebert E E, Janowiak J E, Kidd C, 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bulletin of the American Meteorological Society, 88(1):47-64.doi: 10.1175/BAMS-88-1-47
    [7] Gebregiorgis A S, Hossain F, 2015. How well can we estimate error variance of satellite precipitation data around the world? Atmospheric Research, 154:39-59.doi: 10.1016/j.atmosres.2014.11.005
    [8] Hong Y, Adler R F, Hossain F et al., 2007. A first approach to global runoff simulation using satellite rainfall estimation. Water Resources Research, 43(8):W08502.doi: 10.1029/2006WR005739
    [9] Hossain F, Huffman G J, 2008. Investigating error metrics for satellite rainfall at hydrologically relevant scales. Journal of Hydrometeorology, 9(3):563-575.doi: 10.1175/2007JHM925.1
    [10] Hou A Y, Kakar R K, Neeck S et al., 2014. The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5):701-722.doi: 10.1175/BAMS-D-13-00164.1
    [11] Hu Q F, Yang D W, Li Z et al., 2014. Multi-scale evaluation of six high-resolution satellite monthly rainfall estimates over a humid region in China with dense rain gauges. International Journal of Remote Sensing, 35(4):1272-1294.doi: 10.1080/01431161.2013.876118
    [12] Huffman G J, Adler R F, Bolvin D T et al., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA):quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1):38-55.doi: 10.1175/JHM560.1
    [13] Huffman G J, Bolvin D T, 2013. Real-Time TRMM Multi-Satellite Precipitation Analysis data set documentation.ftp://mesoa.gsfc.nasa.gov/pub/trmmdocs/rt/3B4XRT_doc_V7.pdf
    [14] Jiang S H, Ren L L, Hong Y et al., 2012. Comprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian Model Averaging Method. Journal of Hydrology, 452-453:213-225.doi: 10.1016/j.jhydrol.2012.05.055
    [15] Jiang S H, Ren L L, Hong Y et al., 2014. Improvement of multi-satellite real-time precipitation products for ensemble streamflow simulation in a middle latitude basin in South China. Water Resources Management, 28(8):2259-2278.doi: 10.1007/s11269-014-0612-4
    [16] Jiang S H, Ren L L, Yong B et al., 2010.Evaluation of highresolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China. Water Science and Engineering, 3(4):405-417.doi: 10.3882/j.issn.1674-2370.2010.04.004
    [17] Joyce R J, Janowiak J E, Arkin P A et al., 2004. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3):487-503.doi: org/10.1175/1525-7541
    [18] Kidd C, Huffman G, 2011. Global precipitation measurement. Meteorological Applications, 18(3):334-353.doi: 10.1002/met.284
    [19] Kucera P A, Ebert E E, Turk F J et al., 2013. Precipitation from space:advancing Earth System Science. Bulletin of the American Meteorological Society, 94(3):365-375.doi: org/10.1175/BAMS-D-11-00171.1
    [20] Li X H, Zhang Q, Xu C Y, 2014. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake Basin. Theoretical and Applied Climatology, 115(3):713-729.doi: 10.1007/s00704-013-0917-x
    [21] Li Z, Yang D W, Hong Y, 2013. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. Journal of Hydrology, 500:157-169.doi: 10.1016/j.jhydrol.2013.07.023
    [22] Liu J Z, Duan Z, Jiang J C et al., 2014. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Advance in Meteorology, 151239.doi: org/10.1155/2015/151239
    [23] Pan M, Li H, Wood E, 2010.Assessing the skill of satellite based precipitation estimates in hydrologic applications. Water Resources Research, 46(9):W09535.doi: 10.1029/2009WR008290
    [24] Qin Y X, Chen Z Q, Shen Y et al., 2014. Evaluation of satellite rainfall estimates over the Chinese Mainland. Remote Sensing, 6(11):11649-11672.doi: 10.3390/rs61111649
    [25] Shen Y, Xiong A Y, Wang Y et al., 2010.Performance of high-resolution satellite precipitation products over China. Journal of Geophysical Research, 115(D2):D02114.doi: 10.1029/2009JD012097
    [26] Shen Y, Zhao P, Pan Y et al., 2014. A high spatiotemporal gaugesatellite merged precipitation analysis over China. Journal of Geophysical Research, 119(6):3063-3075.doi: 10.1002/2013JD020686
    [27] Su F G, Hong Y, Lettenmaier D P et al., 2008. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin. Journal of Hydrometeorology, 9(4):622-640.doi:org/10.1175/2007 JHM944.1
    [28] Tong K, Su F G, Yang D et al., 2014. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519:423-437.doi: 10.1016/j.jhydrol.2014.07.044
    [29] Wu H, Adler R F, Tian Y D et al., 2014. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resources Research, 50(3):2693-2717.doi: 10.1002/2013WR014710.
    [30] Xie P P, 2013. CMORPH_V1.0_README.ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0
    [31] Xue X W, Hong Y, Limaye A S et al, 2013. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipita tion Analysis over the Wangchu Basin of Bhutan:are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499:91-99.doi: 10.1016/j.jhydrol.2013.06.042
    [32] Yong B, Chen B, Gourley J J et al., 2014. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks:is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? Journal of Hydrology, 508:77-87.doi: 10.1016/j.jhydrol.2013.10.050
    [33] Yong B, Hong Y, Ren L L et al., 2012. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. Journal of Geophysical Research, 117(9):D09108.doi: 10.1029/2011JD017069BAMS-D-11-00171.1
    [34] Li X H, Zhang Q, Xu C Y, 2014. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake Basin. Theoretical and Applied Climatology, 115(3): 713-729. doi:  10.1007/s00704-013-0917-x
    [35] Li Z, Yang D W, Hong Y, 2013. Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River. Journal of Hydrology, 500: 157-169. doi:  10.1016/j.jhydrol.2013.07.023
    [36] Liu J Z, Duan Z, Jiang J C et al., 2014. Evaluation of three satellite precipitation products TRMM 3B42, CMORPH, and PERSIANN over a subtropical watershed in China. Advance in Meteorology, 151239. doi:  org/10.1155/2015/151239
    [37] Pan M, Li H, Wood E, 2010. Assessing the skill of satellite based precipitation estimates in hydrologic applications. Water Resources Research, 46(9): W09535. doi: 10.1029/2009WR 008290
    [38] Qin Y X, Chen Z Q, Shen Y et al., 2014. Evaluation of satellite rainfall estimates over the Chinese Mainland. Remote Sensing, 6(11): 11649-11672. doi:  10.3390/rs61111649
    [39] Shen Y, Xiong A Y, Wang Y et al., 2010. Performance of high-resolution satellite precipitation products over China. Journal of Geophysical Research, 115(D2): D02114. doi:  10.1029/2009JD012097
    [40] Shen Y, Zhao P, Pan Y et al., 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China. Journal of Geophysical Research, 119(6): 3063-3075. doi: 10. 1002/ 2013JD020686
    [41] Su F G, Hong Y, Lettenmaier D P et al., 2008. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin. Journal of Hydrometeorology, 9(4): 622-640. doi: org/10.1175/2007 JHM944.1
    [42] Tong K, Su FG, Yang D et al., 2014. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519: 423-437. doi:  10.1016/j.jhydrol.2014.07.044
    [43] Wu H, Adler R F, Tian Y D et al., 2014. Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resources Research, 50(3): 2693-2717. doi:  10.1002/2013WR014710.
    [44] Xie P P, 2013. CMORPH_V1.0_README. ftp://ftp.cpc.ncep. noaa.gov/precip/CMORPH_V1.0
    [45] Xue X W, Hong Y, Limaye A S et al, 2013. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499: 91-99. doi: 10. 1016/j.jhydrol.2013.06.042
    [46] Yong B, Chen B, Gourley J J et al., 2014. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? Journal of Hydrology, 508: 77-87. doi: 10.1016/j. jhydrol.2013.10.050
    [47] Yong B, Hong Y, Ren L L et al., 2012. Assessment of evolving TRMM-based multisatellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. Journal of Geophysical Research, 117(9): D09108. doi:  10.1029/2011JD017069
    [48]  
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(461) PDF downloads(1242) Cited by()

Proportional views
Related

Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China

doi: 10.1007/s11769-016-0818-x
Funds:  Under the auspices of Programme of Introducing Talents of Discipline to Universities by Ministry of Education and the State Administration of Foreign Experts Affairs, China (the 111 Project, No. B08048), National Natural Science Foundation of China (No. 41501017), Natural Science Foundation of Jiangsu Province (No. BK20150815)
    Corresponding author: REN Liliang

Abstract: The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing technique (CMORPH) are two important multi-satellite precipitation products in TRMM-era and perform important functions in GPM-era. Both TMPA and CMORPH systems simultaneously upgraded their retrieval algorithms and released their latest version of precipitation data in 2013. In this study, the latest TMPA and CMORPH products (i.e., Version-7 real-time TMPA (T-rt) and gauge-adjusted TMPA (T-adj), and Version-1.0 real-time CMORPH (C-rt) and Version-1.0 gauge-adjusted CMORPH (C-adj)) are evaluated and intercompared by using independent rain gauge observations for a 12-year (2000-2011) period over two typical basins in China with different geographical and climate conditions. Results indicate that all TMPA and CMORPH products tend to overestimate precipitation for the high-latitude semiarid Laoha River Basin and underestimate it for the low-latitude humid Mishui Basin. Overall, the satellite precipitation products exhibit superior performance over Mishui Basin than that over Laoha River Basin. The C-adj presents the best performance over the high-latitude Laoha River Basin, whereas T-adj showed the best performance over the low-latitude Mishui Basin. The two gauge-adjusted products demonstrate potential in water resource management. However, the accuracy of two real-time satellite precipitation products demonstrates large variability in the two validation basins. The C-rt reaches a similar accuracy level with the gauge-adjusted satellite precipitation products in the high-latitude Laoha River Basin, and T-rt performs well in the low-latitude Mishui Basin. The study also reveals that all satellite precipitation products obviously overestimate light rain amounts and events over Laoha River Basin, whereas they underestimate the amount and events over Mishui Basin. The findings of the precision characteristics associated with the latest TMPA and CMORPH precipitation products at different basins will offer satellite precipitation users an enhanced understanding of the applicability of the latest TMPA and CMORPH for water resource management, hydrologic process simulation, and hydrometeorological disaster prediction in other similar regions in China. The findings will also be useful for IMERG algorithm development and update in GPM-era.

JIANG Shanhu, REN Liliang, YONG Bin, HONG Yang, YANG Xiaoli, YUAN Fei. Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China[J]. Chinese Geographical Science, 2016, 26(4): 439-455. doi: 10.1007/s11769-016-0818-x
Citation: JIANG Shanhu, REN Liliang, YONG Bin, HONG Yang, YANG Xiaoli, YUAN Fei. Evaluation of Latest TMPA and CMORPH Precipitation Products with Independent Rain Gauge Observation Networks over High-latitude and Low-latitude Basins in China[J]. Chinese Geographical Science, 2016, 26(4): 439-455. doi: 10.1007/s11769-016-0818-x
Reference (48)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return