留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary

ZHAN Chao YU Junbao WANG Qing LI Yunzhao ZHOU Di XING Qinghui CHU Xiaojing

ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. 中国地理科学, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
引用本文: ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. 中国地理科学, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. Chinese Geographical Science, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
Citation: ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. Chinese Geographical Science, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7

Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary

doi: 10.1007/s11769-017-0921-7
基金项目: Under the auspices of National Key R&D Program of China (No. 2017YFC0505902), Project of the Cultivation Plan of Superior Discipline Talent Teams of Universities in Shandong Province, National Natural Science Foundation of China (No. 41471005, 41271016)
详细信息
    通讯作者:

    YU Junbao.E-mail:junbao.yu@gmail.com

Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary

Funds: Under the auspices of National Key R&D Program of China (No. 2017YFC0505902), Project of the Cultivation Plan of Superior Discipline Talent Teams of Universities in Shandong Province, National Natural Science Foundation of China (No. 41471005, 41271016)
More Information
    Corresponding author: YU Junbao.E-mail:junbao.yu@gmail.com
  • 摘要: Accurate assessment of surface suspended sediment concentration (SSSC) in estuary is essential to address several important issues:erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continuous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/l were carried out using an AvaField-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance (Rrs) was obtained in the spectral range of 726-900 nm. At SSSC greater than 2700 mg/L, the 740-900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed (R2=0.992). The novel cubic model, which used the ratio of a near-infrared (NIR) band (740-900 nm) to a visible band (400-600 nm) as factors, provided robust quantification of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/l, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sediment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.
  • [1] Aranuvachapun S, Walling D E, 1988. Landsat-MSS radiance as a measure of suspended sediment in the Lower Yellow River(Hwang Ho). Remote Sensing of Environment, 25(2):145-165.doi: 10.1016/0034-4257(88)90098-3
    [2] Bi N S, Yang Z S, Wang H J et al., 2010. Sediment dispersion pattern off the present Huanghe (Yellow River) subdelta and its dynamic mechanism during normal river discharge period.Estuarine, Coastal and Shelf Science, 86(3):352-362. doi: 10.1016/j.ecss.2009.06.005
    [3] Chen J, Cui T W, Qiu Z F et al., 2014. A three-band semi-analytical model for deriving total suspended sediment concentration from HJ-1A/CCD data in turbid coastal waters. ISPRS Journal of Photogrammetry and Remote Sensing, 93:1-13.doi: 10.1016/j.isprsjprs.2014.02.011
    [4] Doxaran D, Froidefond J M, Castaing P, 2002. A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters. International Journal of Remote Sensing, 23(23):5079-5085. doi:10.1080/014311602 1000009912
    [5] Doxaran D, Froidefond J M, Castaing P, 2003. Remote-sensing reflectance of turbid sediment-dominated waters. Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Applied Optics, 42(15):2623-2634. doi: 10.1364/AO.42.002623
    [6] Doxaran D, Froidefond J M, Castaing P et al., 2009. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France):observations from field and MODIS satellite data. Estuarine, Coastal and Shelf Science, 81(3):321-332.doi: 10.1016/j.ecss.2008.11.013
    [7] Doxaran D, Lamquin N, Park Y J et al., 2014. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sensing of Environment, 146:36-48. doi:10. 1016/j.rse.2013.06.020
    [8] Espinoza Villar R, Martinez J M, Le Texier M et al., 2013. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. Journal of South American Earth Sciences, 44:45-54. doi: 10.1016/j.jsames.2012.11.006
    [9] Gao X L, Zhou F X, Chen C T A et al., 2015. Trace metals in the suspended particulate matter of the Yellow River (Huanghe)Estuary:concentrations, potential mobility, contamination assessment and the fluxes into the Bohai Sea. Continental Shelf Research, 104:25-36. doi: 10.1016/j.csr.2015.05.005
    [10] Han Z, Jin Y Q, Yun C X, 2006. Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data. International Journal of Remote Sensing, 27(19):4329-4336. doi: 10.1080/01431160600658164
    [11] Hu B Q, Li J, Bi N S et al., 2015. Seasonal variability and flux of particulate trace elements from the Yellow River:impacts of the anthropogenic flood event. Marine Pollution Bulletin, 91(1):35-44. doi: 10.1016/j.marpolbul.2014.12.030
    [12] Liu Yanxia, Huang Haijun, Yang Xiaoyang, 2013. The transportation and deposition of suspended sediment and its dynamic mechanism analysis based on Landsat images in the Laizhou Bay. Acta Oceanologica Sinica, 35(6):43-53. (in Chinese)
    [13] Long C M, Pavelsky T M, 2013. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sensing of Environment, 129:197-209. doi: 10.1016/j.rse.2012.10.019
    [14] Lu J, Qiao F L, Wang X H et al., 2011. A numerical study of transport dynamics and seasonal variability of the Yellow River sediment in the Bohai and Yellow seas. Estuarine, Coastal and Shelf Science, 95(1):39-51. doi:10.1016/j.ecss. 2011.08.001
    [15] Martinez J M, Guyot J L, Filizola N et al., 2009. Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena, 79(3):257-264. doi: 10.1016/j.catena.2009.05.011
    [16] Min J E, Ryu J H, Lee S et al., 2012. Monitoring of suspended sediment variation using Landsat and MODIS in the Saemangeum coastal area of Korea. Marine Pollution Bulletin, 64(2):382-390. doi: 10.1016/j.marpolbul.2011.10.025
    [17] Qiao S Q, Shi X F, Zhu A M et al., 2010. Distribution and transport of suspended sediments off the Yellow River (Huanghe)mouth and the nearby Bohai Sea. Estuarine, Coastal and Shelf Science, 86(3):337-344. doi: 10.1016/j.ecss.2009.07.019
    [18] Ramakrishnan D, Bharti R, Das M, 2013. A technique for estimation of suspended sediment concentration in very high turbid coastal waters:an investigation from Gulf of Cambay, India.Marine Geology, 346:256-261. doi:10.1016/j.margeo.2013. 10.001
    [19] Ritchie J C, Zimba P V, Everitt J H, 2003. Remote sensing techniques to assess water quality. Photogrammetric Engineering & Remote Sensing, 69(6):695-704. doi:10.14358/PERS. 69.6.695.
    [20] Robert E, Grippa M, Kergoat L et al., 2016. Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. International Journal of Applied Earth Observation and Geoinformation, 52:243-251. doi:10.1016/j.jag. 2016.06.016
    [21] Shen F, Zhou Y X, Li J F et al., 2013. Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast. Continental Shelf Research, 69:52-61. doi: 10.1016/j.csr.2013.09.002
    [22] Shi K, Zhang Y L, Zhu G W et al., 2015. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data. Remote Sensing of Environment, 164:43-56. doi: 10.1016/j.rse.2015.02.029
    [23] Topliss B J, Almos C L, Hill P R, 1990. Algorithms for remote sensing of high concentration, inorganic suspended sediment.International Journal of Remote Sensing, 11(6):947-966. doi: 10.1080/01431169008955069
    [24] Toublanc F, Brenon I, Coulombier T, 2016. Formation and structure of the turbidity maximum in the macrotidal Charente estuary (France):influence of fluvial and tidal forcing. Estuarine, Coastal and Shelf Science, 169:1-14. doi: 10.1016/j.ecss.2015.11.019
    [25] Wang F, Zhou B, Xu J M et al., 2009. Application of neural network and MODIS 250m imagery for estimating suspended sediments concentration in Hangzhou Bay, China. Environmental Geology, 56(6):1093-1101. doi: 10.1007/s00254-008-1209-0
    [26] Wang H J, Yang Z S, Saito Y et al., 2007. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):impacts of climate change and human activities. Global and Planetary Change, 57(3-4):331-354. doi:10.1016/j.gloplacha. 2007.01.003.
    [27] Wang J J, Lu X X, 2010. Estimation of suspended sediment concentrations using Terra MODIS:an example from the Lower Yangtze River, China. Science of the Total Environment, 408(5):1131-1138. doi: 10.1016/j.scitotenv.2009.11.057
    [28] Wang S, Fu B J, Liang W et al., 2017. Driving forces of changes in the water and sediment relationship in the Yellow River.Science of the Total Environment, 576:453-461. doi:10. 1016/j.scitotenv.2016.10.124
    [29] Wass P D, Marks S D, Finch J W et al., 1997. Monitoring and preliminary interpretation of in-river turbidity and remote sensed imagery for suspended sediment transport studies in the Humber catchment. Science of the Total Environment, 194-195:263-283. doi: 10.1016/S0048-9697(96)05370-3
    [30] Wiseman W J, Fan Y B, Bornhold B D et al., 1986. Suspended sediment advection by tidal currents off the Huanghe (Yellow River) delta. Geo-Marine Letters, 6(2):107-113. doi: 10.1007/BF02281646.
    [31] Xu B C, Yang D S, Burnett W C et al., 2016. Artificial water sediment regulation scheme influences morphology, hydrodynamics and nutrient behavior in the Yellow River estuary.Journal of Hydrology, 539:102-112. doi:10.1016/j.jhydrol. 2016.05.024
    [32] Yang Z S, Ji Y J, Bi N S et al., 2011. Sediment transport off the Huanghe (Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison. Estuarine, Coastal and Shelf Science, 93(3):173-181. doi: 10.1016/j.ecss.2010.06.005
    [33] Zhang M W, Tang J W, Dong Q et al., 2010. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sensing of Environment, 114(2):392-403. doi: 10.1016/j.rse.2009.09.016
    [34] Zhang M W, Dong Q, Cui T W et al., 2014. Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM + imagery. Remote Sensing of Environment, 146:136-147. doi: 10.1016/j.rse.2013.09.033
    [35] Zheng Z B, Ren J L, Li Y M et al., 2016. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters:a case study of Dongting Lake.Science of the Total Environment, 573:39-54. doi: 10.1016/j.scitotenv.2016.08.019
  • [1] Song SONG, Zheng CAO, Zhifeng WU, Xiaowei CHUAI.  Spatial and Temporal Dynamics of Surface Water in China from the 1980s to 2015 Based on Remote Sensing Monitoring . Chinese Geographical Science, 2022, 32(1): 174-188. doi: 10.1007/s11769-021-1252-2
    [2] Zhigao SUN, Jing LI, Liping TIAN, Bingbing CEHN, Xingyun HU.  Spatial Variation and Risk Assessment of Arsenic and Heavy Metals in Surface Water and Suspended Particulate Matter in Tail Reaches of the Yellow River, China . Chinese Geographical Science, 2021, 31(1): 181-196. doi: 10.1007/s11769-021-1182-z
    [3] CHEN Bingbing, SUN Zhigao.  Potential Effects of Episodic Deposition on Nutrients and Heavy Metals in Decomposing Litters of Suaeda glauca in Salt Marsh of the Yellow River Estuary, China . Chinese Geographical Science, 2020, 30(3): 466-482. doi: 10.1007/s11769-019-1088-1
    [4] LU Tianqi, CHEN Shengbo, TU Yuan, YU Yan, CAO Yijing, JIANG Deyang.  Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data . Chinese Geographical Science, 2019, 20(2): 192-201. doi: 10.1007/s11769-018-1013-z
    [5] WANG Kuifeng.  Evolution of Yellow River Delta Coastline Based on Remote Sensing from 1976 to 2014, China . Chinese Geographical Science, 2019, 20(2): 181-191. doi: 10.1007/s11769-019-1023-5
    [6] MOU Xiaojie, LIU Xingtu, SUN Zhigao, TONG Chuan, HUANG Jiafang, WAN Siang, WANG Chun, WEN Bolong.  Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary . Chinese Geographical Science, 2018, 28(3): 400-410. doi: 10.1007/s11769-018-0956-4
    [7] CHEN Si, ZHAO Kai, JIANG Tao, LI Xiaofeng, ZHENG Xingming, WAN Xiangkun, ZHAO Xiaowei.  Predicting Surface Roughness and Moisture of Bare Soils Using Multiband Spectral Reflectance Under Field Conditions . Chinese Geographical Science, 2018, 28(6): 986-997. doi: 10.1007/s11769-018-1007-x
    [8] WANG Jinhua, LI Zhanbin, YAO Wenyi, DONG Guotao.  Influence of Vegetation on Runoff and Sediment in Wind-water Erosion Crisscross Region in the Upper Yellow River of China . Chinese Geographical Science, 2017, 27(4): 569-576. doi: 10.1007/s11769-016-0829-7
    [9] YE Hanfeng, GUO Shuhai, LI Fengmei, LI Gang.  Water Quality Evaluation in Tidal River Reaches of Liaohe River Estuary, China Using a Revised QUAL2K Model . Chinese Geographical Science, 2013, 23(3): 301-311. doi: 10.1007/s11769-013-0586-9
    [10] SUN Zhigao MOU Xiaojie SUN Jingkuan et al..  Nitrogen Biological Cycle Characteristics of Seepweed (Suaeda salsa) Wetland in Intertidal Zone of Huanghe (Yellow) River Estuary . Chinese Geographical Science, 2012, 22(1): 15-28.
    [11] WANG Xili, FU Li, MA Lei.  Semi-supervised support vector regression model for remote sensing water quality retrieving . Chinese Geographical Science, 2011, 21(1): 57-64.
    [12] WANG Yanjiao, YAN Feng, ZHANG Peiqun, DONG Wenjie.  Experimental Research on Quantitative Inversion Models of Suspended Sediment Concentration Using Remote Sensing Technology . Chinese Geographical Science, 2007, 17(3): 243-249. doi: 10.1007/s11769-007-0243-2
    [13] LIU Can-de, HE Bao-yin, LI Mao-tian, REN Xian-you.  QUANTITATIVE MODELING OF SUSPENDED SEDIMENT IN MIDDLE CHANGJIANG RIVER FROM MODIS . Chinese Geographical Science, 2006, 16(1): 79-82.
    [14] Forood AZARI DEHKORDI, Majid F MAKHDOUM, Nobukazu NAKAGOSHI.  SEFIDROOD RIVER SUB-WATERSHED-DAM-ESTUARY AND DEGRADATION MODEL:A HOLISTIC APPROACH IN IRAN . Chinese Geographical Science, 2003, 13(4): 328-333.
    [15] GAO Jian-hua, GAO Shu, CHENG Yan, DONG Li-xian, ZHANG Jing.  SEDIMENT TRANSPORT IN YALU RIVER ESTUARY . Chinese Geographical Science, 2003, 13(2): 157-163.
    [16] ZHANG Shu-qing, ZHANG Shi-kui, ZHANG Jun-yan.  A STUDY ON WETLAND CLASSIFICATION MODEL OF REMOTE SENSING IN THE SANGJIANG PLAIN . Chinese Geographical Science, 2000, 10(1): 68-73.
    [17] HUANG Fang, LIU Xiang-nan, YUAN Jin-guo.  STUDY ON FOREST FIRE DANGER MODEL WITH REMOTE SENSING BASED ON GIS . Chinese Geographical Science, 2000, 10(1): 61-67.
    [18] 刘兆礼, 黄铁青, 万恩璞, 张养贞.  STUDY ON MODEL FOR REMOTE SENSING ESTIMATION OF MAIZE YIELD . Chinese Geographical Science, 1998, 8(2): 161-167.
    [19] 杨桂山.  IMPACTS OF FUTURE SEA LEVEL RISE ON SALT WATER INTRUSION IN THE CHANGJIANG RIVER ESTUARY . Chinese Geographical Science, 1992, 2(1): 30-41.
    [20] 沈焕庭, 张重乐.  MIXING OF SALT WATER AND FRESH WATER IN THE CHANGJIANG RIVER ESTUARY AND ITS EFFECTS ON SUSPENDED SEDIMENT . Chinese Geographical Science, 1992, 2(4): 373-381.
  • 加载中
计量
  • 文章访问数:  117
  • HTML全文浏览量:  1
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-08
  • 修回日期:  2017-08-01
  • 刊出日期:  2017-12-27

Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary

doi: 10.1007/s11769-017-0921-7
    基金项目:  Under the auspices of National Key R&D Program of China (No. 2017YFC0505902), Project of the Cultivation Plan of Superior Discipline Talent Teams of Universities in Shandong Province, National Natural Science Foundation of China (No. 41471005, 41271016)
    通讯作者: YU Junbao.E-mail:junbao.yu@gmail.com

摘要: Accurate assessment of surface suspended sediment concentration (SSSC) in estuary is essential to address several important issues:erosion, water pollution, human health risks, etc. In this study, an empirical cubic retrieval model was developed for the retrieval of SSSC from Yellow River Estuary. Based on sediments and seawater collected from the Yellow River and southeastern Laizhou Bay, SSSC conditions were reproduced in the laboratory at increasing concentrations within a range common to field observations. Continuous spectrum measurements of the various SSSCs ranging from 1 to 5700 mg/l were carried out using an AvaField-3 spectrometer. The results indicated the good correlation between water SSSC and spectral reflectance (Rrs) was obtained in the spectral range of 726-900 nm. At SSSC greater than 2700 mg/L, the 740-900 nm spectral range was less susceptible to the effects of spectral reflectance saturation and more suitable for retrieval of high sediment concentrations. The best correlations were obtained for the reflectance ratio of 820 nm to 490 nm. Informed by the correlation between Rrs and SSSC, a retrieval model was developed (R2=0.992). The novel cubic model, which used the ratio of a near-infrared (NIR) band (740-900 nm) to a visible band (400-600 nm) as factors, provided robust quantification of high SSSC water samples. Two high SSSC centers, with an order of 103 mg/l, were found in the inversion results around the abandoned Diaokou River mouth, the present Yellow River mouth to the abandoned Qingshuigou River mouth. There was little sediment exchange between the two high SSSC centers due to the directions of the residual currents and vertical mixing.

English Abstract

ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. 中国地理科学, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
引用本文: ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. 中国地理科学, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. Chinese Geographical Science, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
Citation: ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing. Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary[J]. Chinese Geographical Science, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
参考文献 (35)

目录

    /

    返回文章
    返回