Volume 29 Issue 2
Apr.  2019
Turn off MathJax
Article Contents

JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
Citation: JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0

Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval

doi: 10.1007/s11769-019-1028-0
Funds:  Under the auspices of the Outstanding Young Talent Foundation Project of the Jilin Science and Technology Devel-opment Plan (No. 20170520078JH), the Science and Technology Basic Work of Science and Technology (No. 2014FY210800-4)
More Information
  • Corresponding author: ZHAO Kai
  • Received Date: 2018-06-18
  • Publish Date: 2019-04-01
  • The parameter bp in the tuo-omega (τ-ω) model is important for retrieving soil moisture data from passive microwave brightness temperatures. Theoretically, bp depends on the observation mode (polarization, frequency, and incidence angle) and vegetation properties and varies with vegetation growth. For simplicity, previous studies have taken bp to be a constant. However, to reduce the uncertainty of soil moisture retrieval further, the present study is of the dynamics of bp based on the SMAPVEX12 experimental dataset by combining a genetic algorithm and the L-MEB microwave radiative transfer model of vegetated soil. The results show the following. First, bp decreases nonlinearly with vegetation water content (VWC), decreasing critically when VWC becomes less than 2 kg/m2. Second, there is a power law between bp and VWC for both horizontal and vertical polarizations (R2=0.919 and 0.872, respectively). Third, the effectiveness of this relationship is verified by comparing its soil-moisture inversion accuracy with the previous constant-bp method based on the HiWATER dataset. Doing so reveals that the dynamic bp method reduces the root-mean-square error of the retrieved soil moisture by approximately 0.06 cm3/cm3, and similar improvement is obtained for the calibrated SMAPVEX12 dataset. Our results indicate that the dynamic bp method is reasonable for different vegetation growth stages and could improve the accuracy of soil moisture retrieval.
  • [1] Burke E J, Wigneron J P, Gurney R J, 1999. Research Note:the comparison of two models that determine the effects of a veg-etation canopy on passive microwave emission. Hydrology and Earth System Sciences, 3(3):439-444. doi: 10.5194/hess-3-439-1999
    [2] Choudhury B J, Schmugge T J, Mo T, 1982. A parameterization of effective soil temperature for microwave emission. Journal of Geophysical Research:Oceans, 87(C2):1301-1304. doi: 10.1029/JC087iC02p01301
    [3] Entekhabi D, Yueh S, O'Neill P E et al., 2014. SMAP Handbook:Soil Moisture Active Passive, Mapping Soil Moisture and Freeze/Thaw from Space. Pasadena, CA:JPL Publication.
    [4] Escorihuela M J, Kerr Y H, de Rosnay P et al., 2007. A simple model of the bare soil microwave emission at L-band. IEEE Transactions on Geoscience and Remote Sensing, 45(7):1978-1987. doi: 10.1109/TGRS.2007.894935
    [5] Fan L, Xiao Q, Wen J G et al., 2015. Mapping high-resolution soil moisture over heterogeneous cropland using multi-resource remote sensing and ground observations. Remote Sensing, 7(10):13273-13297. doi: 10.3390/rs71013273
    [6] Goldberg D E, 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Mass.:Addison-Wesley Pro-fessional.
    [7] Holmes T R H, De Rosnay P, De Jeu R et al., 2006. A new pa-rameterization of the effective temperature for L band radiom-etry. Geophysical Research Letters, 33(7):L07405. doi: 10.1029/2006GL025724
    [8] Jackson T J, Schmugge T J, Wang J R, 1982. Passive microwave sensing of soil moisture under vegetation canopies. Water Re-sources Research, 18(4):1137-1142. doi: 10.1029/WR018i004p01137
    [9] Jackson T J, Schmugge T J, 1991. Vegetation effects on the mi-crowave emission of soils. Remote Sensing of Environment, 36(3):203-212. doi: 10.1016/0034-4257(91)90057-D
    [10] Jackson T J, O'Neill P E, 1990. Attenuation of soil microwave emission by corn and soybeans at 1.4 and 5 GHz. IEEE Transactions on Geoscience and Remote Sensing, 28(5):978-980. doi: 10.1109/36.58989
    [11] Kerr Y H, Waldteufel P, Richaume P et al., 2012. The SMOS soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing, 50(5):1384-1403. doi: 10.1109/TGRS.2012.2184548
    [12] Kurum M, 2013. Quantifying scattering albedo in microwave emission of vegetated terrain. Remote Sensing of Environment, 129:66-74. doi: 10.1016/j.rse.2012.10.021
    [13] Le Vine D M, Karam M A, 1996. Dependence of attenuation in a vegetation canopy on frequency and plant water content. IEEE Transactions on Geoscience and Remote Sensing, 34(5):1090-1096. doi: 10.1109/36.536525.
    [14] Li Dazhi, Jin Rui, Che Tao et al., 2014. Soil moisture retrieval from airborne PLMR and MODIS products in the Zhangye oasis of middle stream of the Heihe River Basin, China. Advances in Earth Science, 29(2):295-305. (in Chinese)
    [15] Li X, Cheng G D, Liu S M et al., 2013. Heihe watershed allied telemetry experimental research (HiWATER):scientific objec-tives and experimental design. Bulletin of the American Mete-orological Society, 94(8):1145-1160. doi: 10.1175/BAMS-D-12-00154.1
    [16] Loew A, 2008. Impact of surface heterogeneity on surface soil moisture retrievals from passive microwave data at the regional scale:the Upper Danube case. Remote Sensing of Environment, 112(1):231-248. doi: 10.1016/j.rse.2007.04.009
    [17] Ma M G, Chen Y Y, Wang X F et al., 2013. HiWATER:Dataset of Soil Parameters in the Middle Reaches of the Heihe River Ba-sin. Lanzhou, China:Heihe Plan Science Data Center. doi: 10.3972/hiwater.147.2013.db
    [18] Mironov V L, Kosolapova L G, Fomin S V, 2009. Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing, 47(7):2059-2070. doi: 10.1109/TGRS.2008.2011631
    [19] Njoku E G, Jackson T J, Lakshmi V et al., 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41(2):215-229. doi:10.1109/TGRS. 2002.808243
    [20] Pampaloni P, Paloscia S, 1986. Microwave emission and plant water content:a comparison between field measurements and theory. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6):900-905. doi: 10.1109/TGRS.1986.289705
    [21] Panciera R, Walker J P, Kalma J D et al., 2009. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval al-gorithm. Remote Sensing of Environment, 113(2):435-444. doi: 10.1016/j.rse.2008.10.010
    [22] Pardé M, Wigneron J P, Chanzy A et al., 2003. Retrieving surface soil moisture over a wheat field:comparison of different methods. Remote Sensing of Environment, 87(2-3):334-344. doi: 10.1016/j.rse.2003.08.002
    [23] Pellarin T, Wigneron J P, Calvet J C et al., 2003. Two-year global simulation of l-band brightness temperatures over land. IEEE Transactions on Geoscience and Remote Sensing, 41(9):2135-2139. doi: 10.1109/TGRS.2003.815417
    [24] Saleh K, Wigneron J P, Waldteufel P et al., 2007. Estimates of surface soil moisture under grass covers using L-band radiom-etry. Remote Sensing of Environment, 109(1):42-53. doi: 10.1016/j.rse.2006.12.002
    [25] SMAP, 2012a. SMAP Validation Experiment 2012 (SMAPVEX12) Experimental Plan. https://smapvex12.espace-web.usherbrooke.ca/SMAPVEX12_Experiment_Plan.pdf. Updated 22 May 2012.
    [26] SMAP, 2012b. SMAP Validation Experiment 2012 (SMAPVEX12) Database Report. https://smapvex12.espaceweb.usherbrooke.ca/SMAPVEX12_Database_Report_final.pdf. Updated 18 De-cember 2012.
    [27] Ulaby F T, Moore R K, Fung A K, 1986. Microwave Remote Sensing vol. Ⅲ, From Theory to Applications. London, UK:Artech House.
    [28] Ulaby F T, Tavakoli A, Thomas B A, 1987. Microwave propaga-tion constant for a vegetation canopy with vertical stalks. IEEE Transactions on Geoscience and Remote Sensing, GE-25(6):714-725. doi: 10.1109/TGRS.1987.289741
    [29] Van De Griend A A, Owe M, De Ruiter J et al., 1996. Measure-ment and behavior of dual-polarization vegetation optical depth and single scattering albedo at 1.4-and 5-GHz microwave frequencies. IEEE Transactions on Geoscience and Remote Sensing, 34(4):957-965. doi: 10.1109/36.508412
    [30] Van de Griend A A, Wigneron J P, Waldteufel P, 2003. Conse-quences of surface heterogeneity for parameter retrieval from 1.4-GHz multiangle SMOS observations. IEEE Transactions on Geoscience and Remote Sensing, 41(4):803-811. doi: 10.1109/TGRS.2003.811083
    [31] Van De Griend A A, Wigneron J P, 2004. The b-factor as a func-tion of frequency and canopy type at H-polarization. IEEE Transactions on Geoscience and Remote Sensing, 42(4):786-794. doi: 10.1109/TGRS.2003.821889
    [32] Wang J R, Choudhury B J, 1981. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency. Journal of Ge-ophysical Research, 86(C6):5277-5282. doi: 10.1029/JC086iC06p05277
    [33] Wigneron J P, Chanzy A, Calvet J C et al., 1995a. A simple algo-rithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields. Remote Sensing of Environment, 51(3):331-341. doi: 10.1016/0034-4257(94)00081-W
    [34] Wigneron J P, Calvet J C, Chanzy A et al., 1995b. A composite discrete-continuous approach to model the microwave emission of vegetation. IEEE Transactions on Geoscience and Remote Sensing, 33(1):201-210. doi: 10.1109/36.368208
    [35] Wigneron J P, Calvet J C, Kerr Y, 1996. Monitoring water inter-ception by crop fields from passive microwave observations. Agricultural and Forest Meteorology, 80(2-4):122-194. doi: 10.1016/0168-1923(95)02296-1
    [36] Wigneron J P, Laguerre L, Kerr Y H, 2001. A simple parameteri-zation of the L-band microwave emission from rough agricul-tural soils. IEEE Transactions on Geoscience and Remote Sensing, 39(8):1697-1707. doi: 10.1109/36.942548
    [37] Wigneron J P, Calvet J C, De Rosnay P et al., 2004a. Soil moisture retrievals from biangular L-band passive microwave ob-servations. IEEE Geoscience and Remote Sensing Letters, 1(4):277-281. doi: 10.1109/LGRS.2004.834594
    [38] Wigneron J P, Pardé M, Waldteufel P et al., 2004b. Characterizing the dependence of vegetation model parameters on crop struc-ture, incidence angle, and polarization at L-band. IEEE Trans-actions on Geoscience and Remote Sensing, 42(2):416-425. doi: 10.1109/TGRS.2003.817976
    [39] Wigneron J P, Andersen S, Boutin J et al., 2006. Surface emission. In:Mätzler C (ed). Thermal Microwave Radiation:Applications for Remote Sensing. London, UK:The Institution of Engineering and Technology.
    [40] Wigneron J P, Kerr Y, Waldteufel P et al., 2007. L-band microwave emission of the biosphere (L-MEB) model:description and calibration against experimental data sets over crop fields. Remote Sensing of Environment, 107(4):639-655. doi:10. 1016/j.rse.2006.10.014
    [41] Yan S, Jiang L M, Chai L N et al., 2015. Calibration of the L-MEB model for croplands in HiWATER using PLMR observation. Remote Sensing, 7(8):10878-10897. doi: 10.3390/rs70810878
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(317) PDF downloads(191) Cited by()

Proportional views
Related

Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval

doi: 10.1007/s11769-019-1028-0
Funds:  Under the auspices of the Outstanding Young Talent Foundation Project of the Jilin Science and Technology Devel-opment Plan (No. 20170520078JH), the Science and Technology Basic Work of Science and Technology (No. 2014FY210800-4)
    Corresponding author: ZHAO Kai

Abstract: The parameter bp in the tuo-omega (τ-ω) model is important for retrieving soil moisture data from passive microwave brightness temperatures. Theoretically, bp depends on the observation mode (polarization, frequency, and incidence angle) and vegetation properties and varies with vegetation growth. For simplicity, previous studies have taken bp to be a constant. However, to reduce the uncertainty of soil moisture retrieval further, the present study is of the dynamics of bp based on the SMAPVEX12 experimental dataset by combining a genetic algorithm and the L-MEB microwave radiative transfer model of vegetated soil. The results show the following. First, bp decreases nonlinearly with vegetation water content (VWC), decreasing critically when VWC becomes less than 2 kg/m2. Second, there is a power law between bp and VWC for both horizontal and vertical polarizations (R2=0.919 and 0.872, respectively). Third, the effectiveness of this relationship is verified by comparing its soil-moisture inversion accuracy with the previous constant-bp method based on the HiWATER dataset. Doing so reveals that the dynamic bp method reduces the root-mean-square error of the retrieved soil moisture by approximately 0.06 cm3/cm3, and similar improvement is obtained for the calibrated SMAPVEX12 dataset. Our results indicate that the dynamic bp method is reasonable for different vegetation growth stages and could improve the accuracy of soil moisture retrieval.

JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
Citation: JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return