Volume 29 Issue 1
Feb.  2019
Turn off MathJax
Article Contents

TANG Xiongpeng, ZHANG Jianyun, WANG Guoqing, YANG Qinli, YANG Yanqing, GUAN Tiesheng, LIU Cuishan, JIN Junliang, LIU Yanli, BAO Zhenxin. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin[J]. Chinese Geographical Science, 2019, 20(1): 37-57. doi: 10.1007/s11769-019-1015-5
Citation: TANG Xiongpeng, ZHANG Jianyun, WANG Guoqing, YANG Qinli, YANG Yanqing, GUAN Tiesheng, LIU Cuishan, JIN Junliang, LIU Yanli, BAO Zhenxin. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin[J]. Chinese Geographical Science, 2019, 20(1): 37-57. doi: 10.1007/s11769-019-1015-5

Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin

doi: 10.1007/s11769-019-1015-5
Funds:  Under the auspices of National Key Research and Development Programs of China (No. 2016YFA0601601, 2016YFA0601501), National Natural Science Foundation of China (No. 41330854, 51779144, 51779146)
More Information
  • Corresponding author: WANG Guoqing.E-mail:gqwang@nhri.cn
  • Received Date: 2018-01-29
  • Rev Recd Date: 2018-05-29
  • Publish Date: 2019-02-01
  • Global reanalysis precipitation products could provide valuable meteorological information for flow forecasting in poorly gauged areas, helping to overcome a long-standing challenge in the field. But not all data sources are suitable for all regions or perform the same way in hydrological modeling, so it is essential to test the suitability of precipitation products before applying them. In this study, five widely used global high-resolution precipitation products-Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS), China Gauge-based Daily Precipitation Analysis developed by China Meteorological Administration (CMA) and Agricultural Model Intercomparison and Improvement Project based on the NASA Modern-Era Retrospective Analysis for Research and Applications (AgMERRA)-were evaluated using statistical methods and a hydrological approach for their suitability for the Lancang River Basin. The results indicated that APHRODITE, CMA, AgMERRA and CHIRPS were more accurate precipitation indicators than NCEP-CFSR in terms of the multiyear average and seasonal spatial distribution pattern, all of the CHIRPS, AgMERRA and APHRODITE perform better than CMA and NCEP-CFSR at the small, medium and high precipitation intensities ranges in subbasin11 and sunbabsin46. All five products performed better in subbasin46 (a low-altitude region) than in subbasin11 (a high-altitude region) on the daily and monthly scales. In addition to NCEP-CFSR, the other four products all presented encouraging potential for streamflow simulation at daily (Yunjinghong) and monthly (Yunjinghong, Jiuzhou and Gajiu) scale. Hydrological simulations forced with APHRODITE were the best of the five for the Yunjinghong station in capturing daily and monthly measured streamflow. Except for NCEP-CFSR, all products were very good for hydrological simulations for the Gajiu and Jiuzhou stations.
  • [1] Abbaspour K C, Vejdani M, Haghighat S, 2007. SWAT-CUP cali-bration and uncertainty programs for SWAT. In:MODSIM 2007 International Congress on Modelling and Simulation:Land, Water and Environmental Management:Integrated Sys-tems for Sustainability. Christchurch, New Zealand:Modelling and Simulation Society of Australia and New Zealand, 1603-1609.
    [2] Alazzy A A, Lü H S, Chen R S et al., 2017. Evaluation of satellite precipitation products and their potential influence on hydro-logical modeling over the Ganzi river basin of the Tibetan plateau. Advances in Meteorology, 2017:3695285. doi: 10.1155/2017/3695285
    [3] Arnold J G, Srinivasan R, Muttiah R S et al., 1998. Large area hydrologic modeling and assessment part I:model development. Journal of the American Water Resources Association, 34(1):73-89. doi: 10.1111/j.1752-1688.1998.tb05961.x
    [4] Arnold J G, Moriasi D N, Gassman P W et al., 2012. SWAT:Model use, calibration, and validation. Transactions of the ASABE, 55(4):1491-1508.
    [5] Bao X H, Zhang F Q, 2013. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan plateau. Journal of Climate, 26(1):206-214. doi: 10.1175/JCLI-D-1200056.1
    [6] Bitew M M, Gebremichael M, 2011. Assessment of satellite rain-fall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sci-ences, 15(4):1147-1155. doi: 10.5194/hess-151147-2011
    [7] Chen C J, Jayasekera D L, Senarath S U S, 2015. Assessing un-certainty in precipitation and hydrological modeling in the mekong. World Environmental and Water Resources Congress, pulish online.
    [8] Chen C J, Senarath S U S, Dima-West I M et al., 2016. Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. International Journal of Climatology, 37(1):180-196. doi: 10.1002/joc.4696
    [9] Chen M Y, Shi W, Xie P P et al., 2008. Assessing objective tech-niques for gauge-based analyses of global daily precipitation. Journal of Geophysical Research:Atmospheres, 113(D4):D04110. doi: 10.1029/2007JD009132
    [10] de Condappa D, Chaponnière A, Lemoalle J, 2009. A decision-support tool for water allocation in the Volta Basin. Water In-ternational, 34(1):71-87. doi: 10.1080/02508060802677861
    [11] Dyson M, Bergkamp G, Scanlon J, 2003. Flow:The Essentials of Environmental Flows. Gland:IUCN.
    [12] Funk C C, Peterson P J, Landsfeld M F et al., 2014. A Qua-si-Global Precipitation Time Series for Drought Monitoring. Reston, VA:US Geological Survey. doi: 10.3133/ds832
    [13] Gao C, He Z G, Pan S L et al., 2018. Effects of climate change on peak runoff and flood levels in Qu River Basin, East China. Journal of Hydro-environment Research, online. doi: 10.1016/j.jher.2018.02.005.
    [14] Gebremichael M, Bitew M M, Hirpa F A et al., 2015. Accuracy of satellite rainfall estimates in the Blue Nile Basin:lowland plain versus highland mountain. Water Resources Research, 50(11):8775-8790. doi: 10.1002/2013WR014500
    [15] Hu B, Cui B S, Dong S K et al., 2009. Ecological water require-ment (EWR) analysis of high mountain and steep gorge (HMSG) river-application to upper lancang-mekong river. Water Resources Management, 23(2):341-366. doi: 10.1007/s11269-008-9278-0
    [16] Huang C, Li Y F, Liu G H et al., 2014. Recent climate variability and its impact on precipitation, temperature, and vegetation dynamics in the Lancang River headwater area of China. In-ternational Journal of Remote Sensing, 35(8):2822-2834. doi: 10.1080/01431161.2014.890303
    [17] Jacobs J W, 2002. The mekong river commission:transboundary water resources planning and regional security. The Geo-graphical Journal, 168(4):354-364. doi: 10.1111/j.0016-7398.2002.00061.x
    [18] Jayakrishnan R, Srinivasan R, Santhi C et al., 2005. Advances in the application of the SWAT model for water resources man-agement. Hydrological Processes, 19(3):749-762. doi: 10.1002/hyp.5624
    [19] Jiang S H, Ren L L, Hong Y et al., 2012. Comprehensive evalua-tion of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydro-logical flows using the Bayesian model averaging method. Journal of Hydrology, 452-453:213-225. doi: 10.1016/j.jhydrol.2012.05.055
    [20] Katsanos D, Retalis A, Michaelides S, 2015. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmospheric Research, 169:459-464. doi: 10.1016/j.atmosres.2015.05.015
    [21] Koutsouris A J, Chen D L, Lyon S W, 2016. Comparing global precipitation data sets in eastern Africa:a case study of Kil-ombero Valley, Tanzania. International Journal of Climatology, 36(4):2000-2014. doi: 10.1002/joc.4476
    [22] Lauri H, Räsänen T A, Kummu M, 2014. Using reanalysis and remotely sensed temperature and precipitation data for hydro-logical modeling in monsoon climate:mekong river case study. Journal of Hydrometeorology, 15(4):1532-1545. doi: 10.1175/JHM-D-13-084.1
    [23] Li F P, Zhang YQ, Xu Z X et al., 2013. The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505:188-201. doi:10.1016/j.jhydrol.2013. 09.052
    [24] Li L, Hong Y, Wang J H et al., 2009. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an op-erational flood prediction system in Nzoia Basin, Lake Victoria, Africa. Natural Hazards, 50(1):109-123. doi: 10.1007/s11069-008-9324-5
    [25] Liu S L, Cui B S, Dong S K et al., 2008. Evaluating the influence of road networks on landscape and regional ecological risk-A case study in Lancang River Valley of Southwest China. Eco-logical Engineering, 34(2):91-99. doi:10.1016/j.ecoleng. 2008.07.006
    [26] Liu S L, Wang C, Liu Q et al., 2013. Streamflow and soil erosion simulation using SWAT model in Lower-Middle Reaches of Lancang River. In:Proceedings of 2013 the International Conference on Remote Sensing, Environment and Transporta-tion Engineering. Atlantis Press, doi: 10.2991/rsete.2013.37
    [27] Nachtergaele F O, van Velthuizen H, Verelst L et al., 2012. Har-monized World Soil Database (Version 1.2). Food and Agri-culture Organization of the UN, International Institute for Ap-plied Systems Analysis, ISRIC-World Soil Information, In-stitute of Soil Science-Chinese Academy of Sciences, Joint Research Centre of the EC.
    [28] Nash J E, Sutcliffe J V, 1970. River flow forecasting through con-ceptual models part I:A discussion of principles. Journal of Hy-drology, 10(3):282-290. doi:10.1016/0022-1694(70) 90255-6
    [29] Ouyang F, Zhu Y H, Fu G B et al., 2015. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Envirosnmental Re-search and Risk Assessment, 29(7):1781-1795. doi: 10.1007/s00477-014-1018-9
    [30] Poméon T, Jackisch D, Diekkrüger B, 2017. Evaluating the per-formance of remotely sensed and reanalysed precipitation data over west africa using hbv light. Journal of Hydrology, 547:222-235. doi: 10.1016/j.jhydrol.2017.01.055
    [31] Reichle R H, Koster R D, de Lannoy G J M, et al., 2011. Assess-ment and enhancement of MERRA land surface hydrology es-timates. Journal of Climate, 24(24):6322-6338. doi: 10.1175/JCLI-D-10-05033.1
    [32] Retalis A, Tymvios F, Katsanos D et al., 2017. Downscaling CHIRPS precipitation data:an artificial neural network mod-elling approach. International Journal of Remote Sensing, 38(13):3943-3959. doi: 10.1080/01431161.2017.1312031
    [33] Rienecker M M, Suarez M J, Todling R et al., 2008. The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. Greenbelt, MD, United States:NASA God-dard Space Flight Center.
    [34] Rienecker M M, Suarez M J, Gelaro R, et al., 2011. MERRA:NASA's modern-era retrospective analysis for research and applications. Journal of Climate, 24(14):3624-3648. doi: 10.1175/JCLI-D-11-00015.1
    [35] Saha S, Moorthi S, Pan H L et al., 2010. The NCEP climate fore-cast system reanalysis. Bulletin of the American Meteorological Society, 91(8):1015-1057. doi: 10.1175/2010BAMS3001.1
    [36] Seyyedi H, Anagnostou E N, Beighley E et al., 2015. Hydrologic evaluation of satellite and reanalysis precipitation datasets over a mid-latitude basin. Atmospheric Research, 164-165:37-48. doi: 10.1016/j.atmosres.2015.03.019
    [37] Shrestha B, Cochrane T A, Caruso B S et al., 2016. Uncertainty in flow and sediment projections due to future climate scenarios for the 3S Rivers in the Mekong Basin. Journal of Hydrology, 540:1088-1104. doi: 10.1016/j.jhydrol.2016.07.019
    [38] Thiemig V, Rojas R, Zambrano-Bigiarini M et al., 2013. Hydro-logical evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. Journal of Hydrology, 499:324-338. doi: 10.1016/j.jhydrol.2013.07.012
    [39] Thompson J R, Green A J, Kingston D G et al., 2013. Assessment of uncertainty in river flow projections for the Mekong River using multiple GCMs and hydrological models. Journal of Hydrology, 486:1-30. doi: 10.1016/j.jhydrol.2013.01.029
    [40] Tong K, Su F G, Yang D Q et al., 2014. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau. Journal of Hydrology, 519:423-437. doi: 10.1016/j.jhydrol.2014.07.044
    [41] Ushio T, Kachi M, 2010. Kalman filtering applications for global satellite mapping of precipitation (GSMaP). In:Gebremichael M, Hossain F (eds). Satellite Rainfall Applications for Surface Hydrology. Dordrecht:Springer.
    [42] Wang G Q, Zhang J Y, Jin J L et al., 2012. Assessing water re-sources in China using PRECIS projections and a VIC model. Hydrology and Earth System Sciences, 16(1):231-240. doi: 10.5194/hess-16-231-2012
    [43] Wang W, Lu H, 2015. Evaluation and hydrological applications of TRMM rainfall products over the Mekong River basin with a distributied model. In:Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy:IEEE. doi: 10.1109/IGARSS.2015.7326321
    [44] Worqlul A W, Maathuis B, Adem A A, et al., 2014. Comparison of rainfall estimations by TRMM 3B42, MPEG and CFSR with ground-observed data for the Lake Tana basin in Ethiopia. Hydrology and Earth System Sciences, 18(18):4871-4881. doi: 10.5194/hess-18-4871-2014
    [45] Xie P P, Chen M Y, Yang S et al., 2007. A gauge-based analysis of daily precipitation over East Asia. Journal of Hydrometeorol-ogy, 8(3):607-626. doi: 10.1175/JHM583.1
    [46] Xue X W, Hong Y, Limaye A S et al., 2013. Statistical and hydro-logical evaluation of TRMM-based multi-satellite precipitation analysis over the wangchu basin of bhutan:are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology, 499:91-99. doi:10.1016/j. jhydrol.2013.06.042
    [47] Yatagai A, Arakawa O, Kamiguchi K et al., 2009. A 44-year daily gridded precipitation dataset for asia based on a dense network of rain gauges. SOLA, 5(2009):137-140. doi:10.2151/sola. 2009-035
    [48] Yatagai A, Krishnamurti T N, Kumar V et al., 2014. Use of APHRODITE rain gauge-based precipitation and TRMM 3B43 products for improving asian monsoon seasonal precipi-tation forecasts by the superensemble method. Journal of Cli-mate, 27(3):1062-1069. doi: 10.1175/JCLI-D-13-00332.1
    [49] Yatagai A, Kamiguchi K, Arakawa O et al., 2012. APHRODITE:constructing a long-term daily gridded precipitation dataset for asia based on a dense network of rain gauges. Bulletin of the American Meteorological Society, 93(9):1401-1415. doi:10. 1175/BAMS-D-11-00122.1
    [50] Yong B, Ren L L, Hong Y et al., 2010. Hydrologic evaluation of multisatellite precipitation analysis standard precipitation products in basins beyond its inclined latitude band:a case study in Laohahe basin, China. Water Resources Research, 46(7):759-768. doi: 10.1029/2009WR008965
    [51] Yong B, Chen B, Gourley J J et al., 2014. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks:Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? Journal of Hydrology, 508:77-87. doi:10.1016/j. jhydrol.2013.10.050
    [52] Zhao Q H, Liu S L, Deng L et al., 2012. The effects of dam con-struction and precipitation variability on hydrologic alteration in the Lancang River Basin of southwest China. Stochastic Environmental Research and Risk Assessment, 26(7):993-1011. doi: 10.1007/s00477-012-0583-z
    [53] Zhu Q, Xuan W D, Liu L et al., 2016. Evaluation and hydrological application of precipitation estimates derived from PERSIANNCDR, TRMM 3B42V7, and NCEPCFSR over humid regions in China. Hydrological Processes, 30(17):3061-3083. doi: 10.1002/hyp.10846
    [54] Zhu X F, Zhang M J, Wang S J et al., 2015. Comparison of monthly precipitation derived from high-resolution gridded datasets in arid Xinjiang, central Asia. Quaternary Interna-tional, 358:160-170. doi: 10.1016/j.quaint.2014.12.027
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(354) PDF downloads(339) Cited by()

Proportional views
Related

Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin

doi: 10.1007/s11769-019-1015-5
Funds:  Under the auspices of National Key Research and Development Programs of China (No. 2016YFA0601601, 2016YFA0601501), National Natural Science Foundation of China (No. 41330854, 51779144, 51779146)
    Corresponding author: WANG Guoqing.E-mail:gqwang@nhri.cn

Abstract: Global reanalysis precipitation products could provide valuable meteorological information for flow forecasting in poorly gauged areas, helping to overcome a long-standing challenge in the field. But not all data sources are suitable for all regions or perform the same way in hydrological modeling, so it is essential to test the suitability of precipitation products before applying them. In this study, five widely used global high-resolution precipitation products-Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS), China Gauge-based Daily Precipitation Analysis developed by China Meteorological Administration (CMA) and Agricultural Model Intercomparison and Improvement Project based on the NASA Modern-Era Retrospective Analysis for Research and Applications (AgMERRA)-were evaluated using statistical methods and a hydrological approach for their suitability for the Lancang River Basin. The results indicated that APHRODITE, CMA, AgMERRA and CHIRPS were more accurate precipitation indicators than NCEP-CFSR in terms of the multiyear average and seasonal spatial distribution pattern, all of the CHIRPS, AgMERRA and APHRODITE perform better than CMA and NCEP-CFSR at the small, medium and high precipitation intensities ranges in subbasin11 and sunbabsin46. All five products performed better in subbasin46 (a low-altitude region) than in subbasin11 (a high-altitude region) on the daily and monthly scales. In addition to NCEP-CFSR, the other four products all presented encouraging potential for streamflow simulation at daily (Yunjinghong) and monthly (Yunjinghong, Jiuzhou and Gajiu) scale. Hydrological simulations forced with APHRODITE were the best of the five for the Yunjinghong station in capturing daily and monthly measured streamflow. Except for NCEP-CFSR, all products were very good for hydrological simulations for the Gajiu and Jiuzhou stations.

TANG Xiongpeng, ZHANG Jianyun, WANG Guoqing, YANG Qinli, YANG Yanqing, GUAN Tiesheng, LIU Cuishan, JIN Junliang, LIU Yanli, BAO Zhenxin. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin[J]. Chinese Geographical Science, 2019, 20(1): 37-57. doi: 10.1007/s11769-019-1015-5
Citation: TANG Xiongpeng, ZHANG Jianyun, WANG Guoqing, YANG Qinli, YANG Yanqing, GUAN Tiesheng, LIU Cuishan, JIN Junliang, LIU Yanli, BAO Zhenxin. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin[J]. Chinese Geographical Science, 2019, 20(1): 37-57. doi: 10.1007/s11769-019-1015-5
Reference (54)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return