ZHANG Xinhou, MAO Rong, SONG Changchun, LIU Yan, REN Zhaojie. Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?[J]. Chinese Geographical Science, 2018, 28(6): 1038-1047. doi: 10.1007/s11769-018-1000-4
Citation: ZHANG Xinhou, MAO Rong, SONG Changchun, LIU Yan, REN Zhaojie. Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?[J]. Chinese Geographical Science, 2018, 28(6): 1038-1047. doi: 10.1007/s11769-018-1000-4

Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?

doi: 10.1007/s11769-018-1000-4
Funds:  Under the auspices of National Natural Science Foundation of China (No. 31570479, 41671091, 41730643, 41471056)
More Information
  • Corresponding author: MAO Rong.E-mail:maorong23@163.com
  • Received Date: 2017-12-19
  • Rev Recd Date: 2018-03-23
  • Publish Date: 2018-12-27
  • To examine the effects of microtopography on the stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) in mosses along the hummock-hollow gradient in boreal peatlands, we investigated species-level C:N, C:P and N:P ratios of five mosses (Sphagnum magellanicum, S. perichaetiale, S. palustre, S. girgensohnii and Aulacomnium palustre) in the hummocks, hollows and their intermediate zones, and then assessed community-level spatial patterns in a boreal ombrotrophic peatland of north of the Great Xing'an Mountain, Northeast China. The results show that at the species level, C:N, C:P and N:P ratios of the selected Sphagnum mosses remained stable in the hummock-hollow complexes due to unchanged C, N and P concentrations, whereas the non-Sphagnum moss (A. palustre) in the hummocks and intermediate zones had lower P concentrations and thus greater C:P ratios than that in the hollows. At the community level, moss N concentration and C:N ratio remained constant along the hummock-hollow gradient, whereas hummocks and intermediate zones had higher community-level moss C:P and N:P ratios than hollows because of greater C and lower P concentrations. These findings imply that the effects of microtopography on moss C:N:P stoichiometry are scale-dependent and reveal spatial heterogeneity in C and nutrient dynamics. These results provide a more comprehensive understanding of biogeochemical cycles in boreal peatlands.
  • [1] Aerts R, Verhoeven J T A, Whigham D F, 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecol-ogy, 80(7):2170-2181. doi: 10.1890/0012-9658(1999)080[2170:PMCONC]2.0.CO;2
    [2] Aldous A R, 2002. Nitrogen translocation in Sphagnum mosses:effects of atmospheric nitrogen deposition. New Phytologist, 156(2):241-253. doi: 10.1046/j.1469-8137.2002.00518.x
    [3] Belyea L R, Baird A J, 2006. Beyond "the limits to peat bog growth":cross-scale feedback in peatland development. Eco-logical Monographs, 76(3):299-322. doi: 10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2
    [4] Bombonato L, Siffi C, Gerdol R, 2010. Variations in the foliar nutrient content of mire plants:effects of growth-form based grouping and habitat. Plant Ecology, 211(2):235-251. doi: 10.1007/s11258-010-9786-x
    [5] Bragazza L, Tahvanainen T, Kutnar L et al., 2004. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytologist, 163(3):609-616. doi: 10.1111/j.1469-8137.2004.01154.x
    [6] Elbert W, Weber B, Burrows S et al., 2012. Contribution of cryp-togamic covers to the global cycles of carbon and nitrogen. Nature Geoscience, 5(7):459-462. doi: 10.1038/ngeo1486
    [7] Elser J J, Bracken M E S, Cleland E E et al., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12):1135-1142. doi: 10.1111/j.1461-0248.2007.01113.x
    [8] Elser J J, Fagan W F, Kerkhoff A J et al., 2010. Biological stoi-chiometry of plant production:metabolism, scaling and eco-logical response to global change. New Phytologist, 186(3):593-608. doi: 10.1111/j.1469-8137.2010.03214.x
    [9] Gorham E, 1991. Northern peatlands:role in the carbon cycle and probable responses to climatic warming. Ecological Applica-tions, 1(2):182-195. doi: 10.2307/1941811
    [10] Gornall J L, Woodin S J, Jónsdóttir I S et al., 2011. Balancing positive and negative plant interactions:how mosses structure vascular plant communities. Oecologia, 166(3):769-782. doi: 10.1007/s00442-011-1911-6
    [11] Graham J A, Vitt D H, 2016. The limiting roles of nitrogen and moisture on Sphagnum angustifolium growth over a depth to water table gradient. Plant and Soil, 404(1-2):427-439. doi: 10.1007/s11104-016-2906-1
    [12] Gunnarson U, 2005. Global patterns of Sphagnum productivity. Journal of Bryology, 27(3):269-279. doi:10.1179/17432 8205X70029
    [13] Güsewell S, Bailey K M, Roem W J et al., 2005. Nutrient limita-tion and botanical diversity in wetlands:can fertilisation raise species richness? Oikos, 109(1):71-80. doi: 10.1111/j.0030-1299.2005.13587.x
    [14] Güsewell S, Koerselman M, 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol..5:37-61. doi: 10.1078/1433-8319-0000022
    [15] Hobbie S E, Nadelhoffer K J, Högberg P, 2002. A synthesis:the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil, 242(1):163-170. doi:10. 1023/A:1019670731128
    [16] Jassey V E J, Chiapusio G, Binet P et al., 2013. Above-and be-lowground linkages in Sphagnum-peatland:climate warming affects plant-microbial interactions. Global Change Biology, 19(3):811-823. doi: 10.1111/gcb.12075
    [17] Jiroušek M, Hájek M, Bragazza L, 2011. Nutrient stoichiometry in Sphagnum along a nitrogen deposition gradient in highly polluted region of Central-East Europe. Environmental Pollu-tion, 159(2):585-590. doi: 10.1016/j.envpol.2010.10.004
    [18] Koerselman W, Meuleman A F M, 1996. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33(6):1441-1450. doi: 10.2307/2404783
    [19] Lamers L P M, Bobbink R, Roelofs J G M, 2000. Natural nitrogen filter fails in polluted raised bogs. Global Change Biology, 6(5):583-586. doi: 10.1046/j.1365-2486.2000.00342.x
    [20] Laine A M, Juurola E, Hájek T et al., 2011. Sphagnum growth and ecophysiology during mire succession. Oecologia, 167(4):1115-1125. doi: 10.1007/s00442-011-2039-4
    [21] Larmola T, Leppänen S M, Tuittila E S et al., 2014. Methanotrophy induces nitrogen fixation during peatland development. Proceedings of the National Academy of Sciences of the United States of America, 111(2):734-739. doi: 10.1073/pnas.1314284111
    [22] Lindo Z, Gonzalez A, 2010. The bryosphere:an integral and in-fluential component of the earth's biosphere. Ecosystems, 13(4):612-627. doi: 10.1007/s10021-010-9336-3
    [23] Macrae M L, Devito K J, Strack M et al., 2013. Effect of water table drawdown on peatland nutrient dynamics:implications for climate change. Biogeochemistry, 112(1-3):661-676. doi: 10.1007/s10533-012-9730-3
    [24] Malmer N, 1988. Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos, 53(1):105-120. doi: 10.2307/3565670
    [25] Manzoni S, Trofymow J A, Jackson R B et al., 2010. Stoichio-metric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80(1):89-106. doi: 10.1890/09-0179.1
    [26] Minden V, Kleyer M, 2014. Internal and external regulation of plant organ stoichiometry. Plant Biology, 16(5):897-907. doi: 10.1111/plb.12155
    [27] Moser K F, Ahn C, Noe G B, 2009. The influence of microtopog-raphy on soil nutrients in created mitigation wetlands. Resto-ration Ecology, 17(5):641-651. doi:10. 1111/j.1526-100X. 2008.00393.x
    [28] Rice S K, 2000. Variation in carbon isotope discrimination within and among Sphagnum species in a temperate wetland. Oeco-logia, 123(1):1-8. doi: 10.1007/s004420050983
    [29] Robroek B J M, Limpens J, Breeuwer A et al., 2007. Effects of water level and temperature on performance of four Sphagnum mosses. Plant Ecology, 190(1):97-107. doi: 10.1007/s11258-006-9193-5
    [30] Rydin H, 1993. Interspecific competition between Sphagnum mosses on a raised bog. Oikos, 66(3):413-423. doi: 10.2307/3544935
    [31] Rydin H, Clymo R S, 1989. Transport of carbon and phosphorus compounds about Sphagnum. Proceedings of the Royal Society B:Biological Sciences, 237(1286):63-84. doi: 10.1098/rspb.1989.0037
    [32] Rydin H, Jeglum J K, 2013. The Biology of Peatlands. 2nd ed.. New York:Oxford University Press.
    [33] Strack M, Waddington J M, Rochefort L, et al., 2006. Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. Journal of Geophysical Research, 111(G2):G02006. doi: 10.1029/2005JG000145
    [34] Turetsky M R, Crow S E, Evans R J et al., 2008. Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. Journal of Ecology, 96(6):1297-1305. doi: 10.1111/j.1365-2745.2008.01438.x
    [35] Waite M, Sack L, 2011. Does global stoichiometric theory apply to bryophytes? Tests across an elevation×soil age ecosystem matrix on Mauna Loa, Hawaii. Journal of Ecology, 99(1):122-134. doi: 10.1111/j.1365-2745.2010.01746.x
    [36] Wang M, Moore T R, 2014. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems, 17(4):673-684. doi: 10.1007/s10021-014-9752-x
    [37] Weltzin J F, Harth C, Bridgham S D et al., 2001. Production and microtopography of bog bryophytes:response to warming and water-table manipulations. Oecologia, 128(4):557-565. doi: 10.1007/s004420100691
    [38] Wiedermann M M, Gunnarson U, Nilsson M B et al., 2009. Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos, 118(3):449-456. doi: 10.1111/j.1600-0706.2008.17129.x
    [39] Yu Q, Chen Q S, Elser J J et al., 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stabil-ity. Ecology Letters, 13(11):1390-1399. doi: 10.1111/j.1461-0248.2010.01532.x
    [40] Zhan Xiaoyun, Yu Guiruie, He Nianpeng et al., 2014. Nitrogen deposition and its spatial pattern in main forest ecosystems along north-south transect of eastern China. Chinese Geo-graphical Science, 24(2):137-146. doi: 10.1007/s11769-013-0650-5
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(278) PDF downloads(352) Cited by()

Proportional views
Related

Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?

doi: 10.1007/s11769-018-1000-4
Funds:  Under the auspices of National Natural Science Foundation of China (No. 31570479, 41671091, 41730643, 41471056)
    Corresponding author: MAO Rong.E-mail:maorong23@163.com

Abstract: To examine the effects of microtopography on the stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) in mosses along the hummock-hollow gradient in boreal peatlands, we investigated species-level C:N, C:P and N:P ratios of five mosses (Sphagnum magellanicum, S. perichaetiale, S. palustre, S. girgensohnii and Aulacomnium palustre) in the hummocks, hollows and their intermediate zones, and then assessed community-level spatial patterns in a boreal ombrotrophic peatland of north of the Great Xing'an Mountain, Northeast China. The results show that at the species level, C:N, C:P and N:P ratios of the selected Sphagnum mosses remained stable in the hummock-hollow complexes due to unchanged C, N and P concentrations, whereas the non-Sphagnum moss (A. palustre) in the hummocks and intermediate zones had lower P concentrations and thus greater C:P ratios than that in the hollows. At the community level, moss N concentration and C:N ratio remained constant along the hummock-hollow gradient, whereas hummocks and intermediate zones had higher community-level moss C:P and N:P ratios than hollows because of greater C and lower P concentrations. These findings imply that the effects of microtopography on moss C:N:P stoichiometry are scale-dependent and reveal spatial heterogeneity in C and nutrient dynamics. These results provide a more comprehensive understanding of biogeochemical cycles in boreal peatlands.

ZHANG Xinhou, MAO Rong, SONG Changchun, LIU Yan, REN Zhaojie. Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?[J]. Chinese Geographical Science, 2018, 28(6): 1038-1047. doi: 10.1007/s11769-018-1000-4
Citation: ZHANG Xinhou, MAO Rong, SONG Changchun, LIU Yan, REN Zhaojie. Is Moss Stoichiometry Influenced by Microtopography in a Boreal Peatland of Northeast China?[J]. Chinese Geographical Science, 2018, 28(6): 1038-1047. doi: 10.1007/s11769-018-1000-4
Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return