Pompa-García MARÍN, Camarero J. JULIO, Rodríguez-Trejo DANTE ARTURO, Vega-Nieva DANIEL JOSE. Drought and Spatiotemporal Variability of Forest Fires Across Mexico[J]. Chinese Geographical Science, 2018, 28(1): 25-37. doi: 10.1007/s11769-017-0928-0
Citation: Pompa-García MARÍN, Camarero J. JULIO, Rodríguez-Trejo DANTE ARTURO, Vega-Nieva DANIEL JOSE. Drought and Spatiotemporal Variability of Forest Fires Across Mexico[J]. Chinese Geographical Science, 2018, 28(1): 25-37. doi: 10.1007/s11769-017-0928-0

Drought and Spatiotemporal Variability of Forest Fires Across Mexico

doi: 10.1007/s11769-017-0928-0
Funds:  Under the auspices of Universidad Juárez del Estado de Durango, Project PRODEP 2017 (No. 120418)
More Information
  • Corresponding author: Pompa-García MARÍN
  • Received Date: 2017-02-02
  • Rev Recd Date: 2017-05-24
  • Publish Date: 2018-02-27
  • Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005-2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI). A total of 47 975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico (Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.
  • [1] Aguayo Quezada S, 2007. Almanaque Mexicano 2007. México:Aguilar, 271. (in Spanish)
    [2] Aguilar A G, Santos C, 2011. Informal settlements' needs and environmental conservation in Mexico City:an unsolved challenge for land-use policy. Land Use Policy, 28(4):649-662. doi: 10.1016/j.landusepol.2010.11.002
    [3] Ávila-Flores D Y, Pompa-García M, Vargas-Pérez E, 2010a. Spa-tial analysis of forest fire occurrence in the state of Durango. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 16(2):253-260. doi:10.5154/r.rchscfa.2009.08.028 (in Span-ish)
    [4] Ávila-Flores D Y, Pompa-García M, Antonio-Nemiga X et al., 2010b. Driving factors for forest fire occurrence in Durango State of Mexico:a geospatial perspective. Chinese Geograph-ical Science, 20(6):491-497. doi: 10.1007/s11769-010-0437-x
    [5] Balatsos P, Kalabokidis K, Koutsias N, 2007. Fire risk zoning at national level in Greece:methodological approach and outcome. Proceedings of the 4th International Wildland Fire Conference. Seville, Spain.
    [6] Beguería S, Vicente-Serrano S M, Reig F et al., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited:parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10):3001-3023. doi: 10.1002/joc.3887
    [7] Boer M M, Sadler R J, Wittkuhn R S et al., 2009. Long-term im-pacts of prescribed burning on regional extent and incidence of wildfires-evidence from 50 years of active fire management in SW Australian forests. Forest Ecology Management, 259(1):132-142. doi: 10.1016/j.foreco.2009.10.005
    [8] Cardille J A, Ventura S J, Turner M G, 2001. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecological Applications, 11(1):111-127. doi: 10.1890/1051-0761(2001)011[0111:EASFIW]2.0.CO;2
    [9] Carrillo R L, Rodríguez D A, Tchikoué H et al., 2012. Análisis espacial de peligro de incendios forestales en Puebla, México. Interciencia, 37(9):678-683. (in Spanish)
    [10] Castañeda Rojas M F, Endara Agramont A R, Villers Ruiz M D L et al., 2015. Evaluación forestal y de combustibles en bosques de Pinus hartwegii en el Estado de México según densidades de cobertura y vulnerabilidad a incendios. Madera y Bosques, 21(2):45-58. (in Spanish)
    [11] Cerano Paredes J, Villanueva Díaz J, Fulé P Z, 2010. Reconstruc-ción de incendios y su relación con el clima para la reserva Cerro el Mohinora, Chihuahua. Revista Mexicana de Ciencias Forestales, 1(1):63-74. (in Spanish)
    [12] Chang Y, Zhu Z L, Bu B C et al., 2013. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10):1989-2004. doi:10.1007/s 10980-013-9935-4
    [13] Collins B M, Omi P N, Chapman P L, 2006. Regional relation-ships between climate and wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 36(3):699-709. doi: 10.1139/x05-264
    [14] Comisión Nacional Forestal (CONAFOR), 2011. Evaluación preliminar de incendios en La Sabina y El Bonito, municipios de Múzquiz, Ocampo, Zaragoza y Acuña, del estado de Coahuila. Informe ejecutivo. Zapopan, Jalisco:Comisión nacional forestal, Secretaría de medio ambiente y recursos naturales (SEMARNAT). (in Spanish)
    [15] Comisión Nacional Forestal (CONAFOR), 2016. Reporte Sema-nal de Incendios Forestales. Available at http://www.conafor.gob.mx:8080/documentos/docs/10/5855Reporte%20Semanal%202016%20-%20Incendios%20Forestales.pdf. Cited 09 May 2016. (in Spanish)
    [16] Cook B I, Seager R, 2013. The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Ge-ophysical Research:Atmospheres, 118(4):1690-1699. doi: 10.1002/jgrd.50111
    [17] Cumming S G, 2001. Forest type and wildfire in the Alberta Boreal Mixedwood:what do fires burn? Ecological Applications, 11(1):97-110. doi:10.1890/1051-0761(2001)011[0097:FTAWIT] 2.0.CO;2
    [18] Díaz-Avalos C, Peterson D L, Alvarado E et al., 2001. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Canadian Journal of Forest Research, 31(9):1579-1593. doi: 10.1139/x01-089
    [19] Drury S A, Veblen T T, 2008. Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Du-rango, Mexico. Plant Ecology, 197(2):299-316. doi: 10.1007/s11258-007-9379-5
    [20] Duncan B W, Schmalzer P A, 2004. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landscape Ecology, 19(2):153-165. doi: 10.1023/B:LAND.0000021714.97148.ac
    [21] Environmental Systems Research Institute (ESRI), 2016. ArcGis. Available via https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm. Cited 10 May 2016.
    [22] Flannigan M, Stocks B, Turetsky M et al., 2009. Impacts of cli-mate change on fire activity and fire management in the cir-cumboreal forest. Global Change Biology, 15(3):549-60. doi: 10.1111/j.1365-2486.2008.01660.x
    [23] Flannigan M D, Logan K A, Amiro B D et al., 2005. Future area burned in Canada. Climatic Change, 72(1-2):1-16. doi: 10.1007/s10584-005-5935-y
    [24] Flannigan M D, Amiro B D, Logan K A et al., 2006. Forest fires and climate change in the 21st century. Mitigation and Adapta-tion Strategies for Global Change, 11(4):847-859. doi: 10.1007/s11027-005-9020-7
    [25] Fortin M J, Dale M R T, 2005. Spatial Analysis:A Guide for Ecologists. Cambridge, UK:Cambridge University Press.
    [26] Fulé P Z, Villanueva-Díaz J, Ramos-Gómez M, 2005. Fire regime in a conservation reserve in Chihuahua, México. Canadian Journal of Forest Research, 35(2):320-330. doi:10.1139/x 04-173
    [27] Genton M G, Butry D T, Gumpertz M L et al., 2006. Spa-tio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. International Journal of Wildland Fire, 15(1):87-97. doi: 10.1071/WF04034
    [28] Getis A, Ord J K, 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3):189-206. doi: 10.1111/j.1538-4632.1992.tb00261.x
    [29] Gillett N P, Weaver A J, Zwiers F W et al., 2004. Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18):L18211. doi:10.1029/2004GL 020876
    [30] González-Cabán A, Sandberg D V, 1989. Fire management and research needs in México. Journal of Forestry, 87(8):20-26.
    [31] González-Olabarria J R, Brotons L, Gritten D et al., 2012. Identi-fying location and causality of fire ignition hotspots in a Med-iterranean region. International Journal of Wildland Fire, 21(7):905-914. doi: 10.1071/WF11039
    [32] Gralewicz N J, Nelson T A, Wulder M A, 2012. Spatial and tem-poral patterns of wildfire ignitions in Canada from 1980 to 2006. International Journal of Wildland Fire, 21(3):230-242. doi: 10.1071/WF10095
    [33] Grantz K, Rajagopalan B, Clark M et al., 2007. Seasonal shifts in the North American monsoon. Journal of Climate, 20(9):1923-1935. doi: 10.1175/JCLI4091.1
    [34] Harris I, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology, 34(3):623-642. doi: 10.1002/joc.3711
    [35] Heyerdahl E K, Alvarado E, 2003. Influence of climate and land use on historical surface fires in pine-oak forests, Sierra Madre Occidental, Mexico. In:Veblen T T, Baker W L, Montenegro G et al. (eds). Fire and Climatic Change in Temperate Ecosystems of the Western Americas. New York:Springer, 196-217. doi: 10.1007/0-387-21710-X_7
    [36] Higgins R W, Yao Y, Wang X L, 1997. Influence of the North American monsoon system on the U.S. summer precipitation regime. Journal of Climate, 10(10):2600-2622. doi:10. 1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2
    [37] Ibarra-Montoya J L, Huerta-Martínez F M, Francisco M, 2016. Modelado espacial de incendios:una herramienta predictiva para el Bosque La Primavera, Jalisco México. Ambiente & Água, 11(1):35-49. doi:10.4136/ambi-agua.1536 (in Spanish)
    [38] Instituto Nacional de Estadística y Geografía (INEGI), 2015. Información por entidad, Número de habitantes, Chihuahua, 2015. Available via http://www.cuentame.inegi.org.mx/mono-grafias/informacion/chih/poblacion/default.aspx?tema=me&e=08. Cited 09 May 2016. (in Spanish)
    [39] Kaufman L, Rousseeuw P J, 1990. Finding Groups in Data:An Introduction to Cluster Analysis. New York:John Wiley.
    [40] Koutsias N, Xanthopoulos G, Founda D et al., 2013. On the rela-tionships between forest fires and weather conditions in Greece from long-term national observations (1894-2010). In-ternational Journal of Wildland Fire, 22(4):493-507. doi: 10.1071/WF12003
    [41] Littell J S, Peterson D L, Riley K L et al., 2016. A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7):2353-2369. doi: 10.1111/gcb.13275
    [42] Liu Z H, Yang J, Chang Y et al., 2012. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 18(6):2041-2056. doi: 10.1111/j.1365-2486.2012.02649.x
    [43] Manzo-Delgado L, Aguirre-Gómez R, Álvarez R, 2004. Mul-titemporal analysis of land surface temperature using NOAA-AVHRR:preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing, 25(20):4417-4423. doi:10.1080/01431160412331 269643
    [44] Manzo-Delgado L, Sánchez-Colón S, Álvarez R, 2009. Assess-ment of seasonal forest fire risk using NOAA-AVHRR:a case study in central Mexico. International Journal of Remote Sensing, 30(19):4991-5013. doi: 10.1080/01431160902852796
    [45] Méndez González J, Návar Cháidez J J, González Rodríguez H G et al., 2007. Teleconexiones del fenómeno ENSO a la precipi-tación mensual en México. Ciencia UANL, 10(3):290-298.
    [46] Minnich R A, Franco-Vizcaíno E, 1997. La protección de la veg-etación y los regimenes de incendios de la Sierra de San Pedro Mártir en Baja California. Fremontia, 25(3):3-12. (in Spanish)
    [47] Moreira F, Viedma O, Arianoutsou M et al., 2011. Land-scape-wildfire interactions in Southern Europe:implications for landscape management. Journal of Environmental Man-agement, 92(10):2389-2402. doi:10.1016/j.jenvman.2011. 06.028
    [48] Moritz M A, Batllori E, Bradstock R A et al., 2014. Learning to coexist with wildfire. Nature, 515(7525):58-66. doi: 10.1038/nature13946
    [49] Myers R L, 2006. Convivir con el Fuego-Manteniendo los Eco-sistemas y Los Medios de Subsistencia Mediante el Manejo Integral del Fuego. Florida:The Nature Conservancy, 28. (in Spanish)
    [50] Návar J, Lizárraga-Mendiola L, 2013. Hydro-climatic variability and forest fires in Mexico's northern temperate forests. Geof-ísica Internacional, 52(1):5-20. doi: 10.1016/S0016-7169(13)71458-2
    [51] Ord J K, Getis A, 1995. Local spatial autocorrelation statistics:distributional issues and an application. Geographical Analysis, 27(4):286-306. doi: 10.1111/j.1538-4632.1995.tb00912.x
    [52] Parisien M A, Peters V S, Wang Y H et al., 2006. Spatial patterns of forest fires in Canada, 1980-1999. International Journal of Wildland Fire, 15(3):361-374. doi: 10.1071/WF06009
    [53] Podur J, Martell D L, Csillag F, 2003. Spatial patterns of light-ning-caused forest fires in Ontario, 1976-1998. Ecological Modelling, 164:1-20. doi: 10.1016/S0304-3800(02)00386-1
    [54] Preisler H K, Brillinger D R, Burgan R E et al., 2004. Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13:133-142. doi:10.1071/WF 02061
    [55] Preisler H K, Westerling A L, 2007. Statistical model for fore-casting monthly large wildfire events in western United States. Journal of Applied Meteorology and Climatology, 46(7):1020-1030. doi: 10.1175/JAM2513.1
    [56] Prestemon J P, Butry D T, 2005. Time to burn:modeling wildland arson as an autoregressive crime function. American Journal of Agricultural Economics, 87(3):756-770. doi:10.1111/j. 1467-8276.2005.00760.x
    [57] Ray A J, Garfin G M, Wilder M et al., 2007. Applications of monsoon research:opportunities to inform decision making and reduce regional vulnerability. Journal of Climate, 20(9):1608-1627. doi: 10.1175/JCLI4098.1
    [58] Riley K L, Abatzoglou J T, Grenfell I C et al., 2013. The rela-tionship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008:the role of temporal scale. International Journal of Wildland Fire, 22(7):894-909. doi: 10.1071/WF12149
    [59] Rivera-Huerta H, Safford H D, Miller J D, 2016. Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Mártir, Baja California, Mexico. Fire Ecology, 12(1):52-72. doi: 10.4996/fireecology.1201052
    [60] Rocca M E, Brown P M, MacDonald L H et al., 2014. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. Forest Ecology and Management, 327:290-305. doi: 10.1016/j.foreco.2014.04.005
    [61] Rodríguez-Trejo D A, Fulé P Z, 2003. Fire ecology of Mexican pines and fire management proposal. International Journal of Wildland Fire, 12(1):23-37. doi: 10.1071/WF02040
    [62] Rodríguez-Trejo D A, 2008. Fire regimes, fire ecology and fire management in Mexico. Ambio:A Journal of the Human En-vironment, 37(7):548-556. doi: 10.1579/0044-7447-37.7.548
    [63] Rodríguez Trejo D A, 2015. Incendios de Vegetación:Su Ecología, Manejo e Historia. México:Colegio de Post Graduados, 814. (in Spanish)
    [64] Román-Cuesta R M, Gracia M, Retana J, 2003. Environmental and human factors influencing fire trends in ENSO and non-ENSO years in tropical Mexico. Ecological Applications, 13(4):1177-1192. doi: 10.1890/1051-0761(2003)13[1177:EAHFIF]2.0.CO;2
    [65] SAS Institute, 2005. Version 9.1 SAS User's Guide:Statistics. Cary, North Carolina, USA:SAS Institute.
    [66] Seager R, Ting M F, Held I et al., 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828):1181-1184. doi: 10.1126/science.1139601
    [67] Seager R, Ting M, Davis M et al., 2009. Mexican drought:an observational modeling and tree ring study of variability and climate change. Atmósfera, 22(1):1-31.
    [68] Skinner C N, Burk J J, Barbour M G et al., 2008. Influences of climate on fire regimes in montane forests of north-western Mexico. Journal of Biogeography, 35(8):1436-1451. doi: 10.1111/j.1365-2699.2008.01893.x
    [69] Trouet V, Taylor A H, Wahl E R et al., 2010. Fire-climate interac-tions in the American West since 1400 CE. Geophysical Re-search Letters, 37(4):L04702. doi: 10.1029/2009GL041695
    [70] Vadrevu K P, Csiszar I, Ellicott E et al., 2013. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1):224-238. doi:10.1109/JSTARS.2012. 2210699
    [71] Van Wagner C E, 1988. The historical pattern of annual burned area in Canada. The Forestry Chronicle, 64(3):182-185. doi: 10.5558/tfc64182-3
    [72] Vázquez A, Moreno J M, 2001. Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecology and Managemen, 147(1):55-65. doi:10.1016/S0378-1127(00) 00436-9
    [73] Vicente-Serrano S M, Beguería S, López-Moreno J I, 2010. A multiscalar drought index sensitive to global warming:the standardized precipitation evapotranspiration index. Journal of Climate, 23(7):1696-1718. doi: 10.1175/2009JCLI2909.1
    [74] Vicente-Serrano S M, Gouveia C, Camarero J J et al., 2013. Re-sponse of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110(1):52-57. doi: 10.1073/pnas.1207068110
    [75] Wang Y H, Anderson K R, 2010. An evaluation of spatial and temporal patterns of lightning-and human-caused forest fires in Alberta, Canada, 1980-2007. International Journal of Wildland Fire, 19(8):1059-1072. doi: 10.1071/WF09085
    [76] Westerling A L, Swetnam T W, 2003. Interannual to decadal drought and wildfire in the western United States. EOS, 84(49):545-555. doi: 10.1029/2003EO490001
    [77] Westerling A L, 2008. Climatology for wildfire management. In:Holmes T P, Prestemon J P, Abt K L (eds). The Economics of Forest Disturbances:Wildfires, Storms, and Invasive Species. Dordrecht:Springer, 107-122. doi: 10.1007/978-1-4020-4370-3_6
    [78] Williams A A J, Karoly D J, Tapper N, 2001. The sensitivity of Australian fire danger to climate change. Climatic Change, 49(1-2):171-191. doi: 10.1023/A:1010706116176
    [79] Williams A P, Allen C D, Macalady A K et al., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3):292-297. doi:10. 1038/NCLIMATE1693
    [80] Wotton B M, Martell D L, Logan K A, 2003. Climate change and people-caused forest fire occurrence in Ontario. Climatic Change, 60(3):275-295. doi: 10.1023/A:1026075919710
    [81] Wu Z W, He H S, Yang J et al., 2014. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Science of the Total Environment, 493:472-480. doi: 10.1016/j.scitotenv.2014.06.011
    [82] Yang J, He H S, Shifley S R, 2008. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands. Eco-logical Applications, 18(5):1212-1225. doi: 10.1890/07-0825.1
    [83] Yocom L L, Fulé P Z, Brown P M et al., 2010. El Niño-Southern Oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology, 91(6):1660-1671. doi: 10.1890/09-0845.1
    [84] Yocom L L, Fulé P Z, 2012. Human and climate influences on frequent fire in a high-elevation tropical forest. Journal of Ap-plied Ecology, 49(6):1356-1364. doi:10.1111/j.1365-2664. 2012.02216.x
    [85] Zhang Songlin, Zhang Kun, 2007. Comparison between general Moran's Index and Getis-Ord general G of spatial autocorrela-tion. Acta Scientiarum Naturalium Universitatis Sunyatseni, 46(4):93-97. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(420) PDF downloads(607) Cited by()

Proportional views
Related

Drought and Spatiotemporal Variability of Forest Fires Across Mexico

doi: 10.1007/s11769-017-0928-0
Funds:  Under the auspices of Universidad Juárez del Estado de Durango, Project PRODEP 2017 (No. 120418)
    Corresponding author: Pompa-García MARÍN

Abstract: Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005-2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI). A total of 47 975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico (Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.

Pompa-García MARÍN, Camarero J. JULIO, Rodríguez-Trejo DANTE ARTURO, Vega-Nieva DANIEL JOSE. Drought and Spatiotemporal Variability of Forest Fires Across Mexico[J]. Chinese Geographical Science, 2018, 28(1): 25-37. doi: 10.1007/s11769-017-0928-0
Citation: Pompa-García MARÍN, Camarero J. JULIO, Rodríguez-Trejo DANTE ARTURO, Vega-Nieva DANIEL JOSE. Drought and Spatiotemporal Variability of Forest Fires Across Mexico[J]. Chinese Geographical Science, 2018, 28(1): 25-37. doi: 10.1007/s11769-017-0928-0
Reference (85)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return