ZUO Xiuling, SU Fenzhen, WU Wenzhou, CHEN Zhike, SHI Wei. Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea[J]. Chinese Geographical Science, 2015, 25(2): 159-173. doi: 10.1007/s11769-015-0741-6
Citation: ZUO Xiuling, SU Fenzhen, WU Wenzhou, CHEN Zhike, SHI Wei. Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea[J]. Chinese Geographical Science, 2015, 25(2): 159-173. doi: 10.1007/s11769-015-0741-6

Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea

doi: 10.1007/s11769-015-0741-6
Funds:  Under the auspices of National High Technology Research and Development Program of China (No. 2012AA12A406)
More Information
  • Corresponding author: SU Fenzhen
  • Received Date: 2014-05-12
  • Rev Recd Date: 2014-08-26
  • Publish Date: 2015-01-27
  • Coral bleaching, caused by elevated sea surface temperature (SST), is occurring more frequently and seriously worldwide. Due to the lack of field observations, we understand little about the large-scale variability of thermal stress in the South China Sea (SCS) and its effect on China's coral reefs. This paper used 4-km high resolution gap-filled SST (FilledSST) data and thermal stress data related to coral bleaching derived from Coral Reef Temperature Anomaly Database (CoRTAD) to quantify the spatial and temporal characteristics of chronic thermal stress and acute thermal stress to China's coral reefs in SCS from 1982 to 2009. We analyzed the trend of SST in summer and the thermal stress frequency, intensity and duration during this period. The results indicate that, as a chronic thermal stress, summer mean SST in SCS shows an average upward trend of 0.2℃/decade and the spatial pattern is heterogeneous. Waters of Xisha Islands and Dongsha Islands of the northern SCS are warming faster through time compared to Zhongsha Islands and Nansha Islands sea areas of the southern SCS. High frequency bleaching related thermal stress events for these reefs are seen in the area to the northwest of Luzon Island. Severe anomaly thermal stress events are more likely to occur during the subsequent year of the El Niño year for these coral reefs. Besides, the duration of thermal stress varies considerably by anomaly year and by region.
  • [1] Aeby G S, Williams G J, Franklin E C et al., 2011. Patterns of coral disease across the Hawaiian archipelago: relating disease to environment. PLoS ONE, 6(5): e20370. doi:  10.1371/journal.pone.0020370
    [2] Allen G R, Werner T B, 2002. Coral reef fish assessment in the 'coral triangle' of southeastern Asia. Environmental Biology of Fishes, 65: 209-214. doi:  10.1023/A:1020093012502
    [3] Anthony K R N, Kline D I, Diaz-Pulido G et al., 2008. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105(45): 17442-17446. doi:  10.1073/pnas.0804478105
    [4] Arceo H O, Quibilan M C, Aliño P M et al., 2001. Coral bleaching in Philippine reefs: coincident evidences with mesoscale thermal anomalies. Bulletin of Marine Science, 69(2): 579-593.
    [5] Arthur D, Vassilvitskii S, 2007. k-means++: the advantages of careful seeding. Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 2007, 1027-1035.
    [6] Baird A H, Marshall P A, 2002. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Marine Ecology Progress Series, 237: 133-141. doi:  10.3354/meps237133
    [7] Berkelmans R, De’ath G, Kininmonth S et al., 2004. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs, 23: 74-83. doi:  10.1007/s00338-003-0353-y
    [8] Burke L, Selig E, Spalding M, 2006. Reefs at Risk in Southeast Asia. Washington D C: World Resources Institute Press, 48.
    [9] Carilli J E, Norris R D, Black B et al., 2010. Century-scale records of coral growth rates indicate that local stressors reduce coral thermal tolerance threshold. Global Change Biology, 16: 1247-1257. doi:  10.1111/j.1365-2486.2009.02043.x
    [10] Carricart-Ganivet J P, Cabanillas-Terán N, Cruz-Ortega I et al., 2012. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals. PLoS ONE, 7(3): e32859. doi:  10.1371/journal.pone.0032859
    [11] Carrigan A D, Puotinen M L, 2011. Assessing the potential for tropical cyclone induced sea surface cooling to reduce thermal stress on the world's coral reefs. Geophysical Research Letters, 38: L23604. doi:  10.1029/2011GL049722
    [12] Casey K S, Brandon T B, Cornillon P et al., 2010. The past, present and future of the AVHRR Pathfinder SST program. In: Barale V et al. (eds.). Oceanography from Space: Revisited. New York: Springer Press, 273-287.
    [13] Chang Genying, Huang Fupeng, Li Man et al., 2012. Public perception of climate change and their support of climate policy in China: based on global surveys and in comparison with USA. Scientia Geographica Sinica, 32(12): 1481-1487. (in Chinese)
    [14] Chen T, Li S, Yu K et al., 2013. Increasing temperature anomalies reduce coral growth in the Weizhou Island, northern South China Sea. Estuarine, Coastal and Shelf Science, 130: 121-126. doi:  10.1016/j.ecss.2013.05.009
    [15] Dai C F, Fan T Y, Wu C S, 1995. Coral fauna of Tungsha Tao (Pratas Islands). Acta Oceanographica Taiwanica, 34: 1-16.
    [16] Dai Changfeng, 2010. Biotic reefs and reef biotops in Taiwan area. Journal of Palaeogeography, 12(5): 565-576. (in Chinese)
    [17] Fan T Y, Wei C, Fang L S, 2008a. Status of coral reef communities and reef restoration efforts at Dongsha Atoll, South China Sea. Available at: http://www.nova.edu/ncri/11icrs/abstract_ files/icrs2008-000339.pdf
    [18] Fan T Y, Wu B J, Fang L S, 2008b. The heterogeneity of temperature change and coral bleaching during temperature abnormally warm in summer 2007. Available at: http://www. nova.edu/ncri/11icrs/abstract_files/icrs2008-000308.pdf
    [19] Fang G, Chen H, Wei Z et al., 2006. Trends and interannual variability of the South China Sea surface winds, surface height, and surface temperature in the recent decade. Journal of Geophysical Research, 111: C11S16. doi:  10.1029/2005JC003276
    [20] Ferreira B P, Costa M B S F, Coxey M S et al., 2013. The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs, 32: 441-454. doi:  10.1007/s00338-012-0992-y
    [21] Fu Xiumei, Wang Changyun, Shao Changlun et al., 2009. Investigation of the status of coral reef resources and medicinal research in China. I. coral reef resources and ecological functions. Periodical of Ocean University of China, 39(4): 676- 684. (in Chinese)
    [22] Furby K A, Bouwmeester J, Berumen M L, 2013. Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs, 32: 505-513. doi:  10.1007/s00338-012-0998-5
    [23] Glynn P W, 1993. Coral reef bleaching: ecological perspectives. Coral Reefs, 12: 1-17. doi:  10.1007/BF00303779
    [24] Glynn P W, Cortés-Núñez J, Guzmán-Espinal H M et al., 1988. El Niño (1982-83) associated coral mortality and relationship to sea surface temperature deviations in the tropical eastern Pacific. Proceedings of the 6th International Coral Reef Symposium. Townsville, Australia, 3: 231-243.
    [25] Goreau T J, Hayes R L, 1994. Coral bleaching and ocean 'hot spots'. Ambio, 23: 176-180.
    [26] Goreau T, McClanahan T, Hayes R et al., 2000. Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology, 14(1): 5-15. doi:  10.1046/j.1523-1739.2000.00011.x
    [27] Guest J R, Baird A H, Maynard J A et al., 2012. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE, 7(3): e33353. doi:  10.1371/journal.pone.0033353
    [28] Heron S F, Willis B L, Skirving W J et al., 2010. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals. PLoS ONE, 5(8): e12210. doi:  10.1371/journal.pone.0012210
    [29] Hoegh-Guldberg O, 1999. Climate change, coral bleaching and the future of the world's coral reefs. Marine Freshwater Research, 50: 839-866. doi:  10.1071/MF99078
    [30] Hongo C, Yamano H, 2013. Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995-2009). PLoS ONE, 8(4): e60952. doi:  10.1371/journal.pone.0060952
    [31] Huang Zhuo, Xu Haiming, Du Yan et al., 2009. Two sea-surface warming events in the South China Sea during and after El Niño. Journal of Tropical Oceanography, 28(5): 49-55. (in Chinese)
    [32] Hughes T P, Huang H, Young M A L, 2012. The wicked problem of China's disappearing coral reefs. Conservation Biology, 27(2): 261-269. doi:  10.1111/j.1523-1739.2012.01957.x
    [33] IPCC (Intergovernmental Panel on Climate Change), 2013. Climate change 2013: the physical science basis. In: Stocker T F et al. (eds.). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
    [34] Kerr R A, 1999. Big El Niños ride the back of slower climate change. Science, 283(5405): 1108-1109. doi: 10.1126/science. 283.5405.1108
    [35] Klein S A, Brian J S, Ngar-Cheung L, 1999. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. Journal of Climate, 12: 917-932. doi:  10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2
    [36] Kleypas J A, McManus J W, Menez L A B, 1999. Environmental limits to coral reef development: where do we draw the line? American Zoologist, 39(1): 146-159. doi: 10.1093/icb/39.1. 146
    [37] Langdon C, Takahashi T, Sweeney C et al., 2000. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14(2): 639-654. doi:  10.1029/1999GB001195
    [38] Li S, Yu K F, Chen T R et al., 2011. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands, South China Sea. Chinese Science Bulletin, 56(10): 1031-1037. doi: 10.1007/s11434- 011-4390-6
    [39] Li X, Liu S, Huang H et al., 2012. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China. Aquatic Ecosystem Health & Management, 15(2): 227-233. doi:  10.1080/14634988.2012.687651
    [40] Liu G, Strong A E, Skirving W, 2003. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos, Transactions American Geophysical Union, 84(15): 137-144. doi:  10.1029/2003EO150001
    [41] Liu Y, Liu W, Peng Z et al., 2009. Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals. Geochimica et Cosmochimica Acta, 73: 1264-1272. doi: 10.1016/j.gca.2008. 11.034
    [42] Logan C A, Dunne J P, Eakin C M et al., 2014. Incorporating adaptive responses into future projections of coral bleaching. Global Change Biology, 20(1): 125-139. doi: 10.1111/gcb. 12390
    [43] Lough J M, 2000. 1997-98: unprecedented thermal stress to coral reefs? Geophysical Research Letters, 27(23): 3901-3904. doi:  10.1029/2000GL011715
    [44] Lough J M, 2012. Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011. Journal of Geophysical Research, 117: C09018. doi:  10.1029/2012JC008199
    [45] Ma Guangren, 2012. Valuing wetlands as natural infrastructure to safeguard human development. Wetland Science, 10(4): 385-388. (in Chinese)
    [46] McClanahan T R, Baird A H, Marshall P A et al., 2004. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Marine Pollution Bulletin, 48: 327-335. doi: 10.1016/j.marpolbul. 2003.08.024
    [47] McManus J W, 1994. The Sprately Islands: a marine park? AMBIO, 23: 181-186.
    [48] McWilliams J P, Côté I M, Gill J A et al., 2005. Accelerating impacts of temperature-induced coral bleaching in the Caribbean. Ecology, 86(8): 2055-2060. doi:  10.1890/04-1657
    [49] Meissner K J, Lippmann T, Gupta A S, 2012. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs, 31: 309-319. doi: 10.1007/s00338- 011-0866-8
    [50] Moberg F, Folke C, 1999. Ecological goods and services of coral reef ecosystems. Ecological Economics, 29: 215-233. doi:  10.1016/S0921-8009(99)00009-9
    [51] Mora C, Ginsburg R, 2007. A clear human footprint on the Caribbean coral reefs. Proceedings of the Royal Society B, 275: 767-773. doi:  10.1098/rspb.2007.1472
    [52] Morton B, Blackmore G, 2001. South China Sea. Marine Pollution Bulletin, 42(12): 1236-1263. doi: 10.1016/S0025-326X (01)00240-5
    [53] Negri A P, Flores F, Röthig T et al., 2011. Herbicides increase the vulnerability of corals to rising sea surface temperature. Limnology and Oceanography, 56(2): 471-485. doi: 10.4319/lo. 2011.56.2.0471
    [54] Negri A P, Hoogenboom M O, 2011. Water contamination reduces the tolerance of coral larvae to thermal stress. PLoS ONE, 6(5): e19703. doi:  10.1371/journal.pone.0019703
    [55] Obura D, Mangubhai S, 2011. Coral mortality associated with thermal fluctuations in the Phoenix Islands, 2002-2005. Coral Reefs, 30: 607-619. doi:  10.1007/s00338-011-0741-7
    [56] Peñaflor E L, Skirving W J, Strong A E et al., 2009. Sea-surface temperature and thermal stress in the Coral Triangle over the past two decades. Coral Reefs, 28: 841-850. doi: 10.1007/ s00338-009-0522-8
    [57] Podestá G P, Glynn P W, 2001. The 1997-98 El Niño event in Panama and Galápagos: an update of thermal stress indices relative to coral bleaching. Bulletin of Marine Science, 69(1): 43-59.
    [58] Prada C, Weil E, Yoshioka P M, 2010. Octocoral bleaching during unusual thermal stress. Coral Reefs, 29: 41-45. doi: 10.1007/ s00338-009-0547-z
    [59] Randall C J, Szmant A M, 2009. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). The Biological Bulletin, 217(3): 269-282. doi:  10.1143/JJAP.43.5922
    [60] Selig E R, Casey K S, Bruno J F, 2010. New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Global Ecology and Biogeography, 19: 397-411. doi: 10.1111/j.1466-8238.2009. 00522.x
    [61] Shang Erping, Bai Wanqi, 2012. A review on the studies of wetland vulnerability assessment. Wetland Science, 10(3): 378- 384. (in Chinese)
    [62] Soong K, Dai C F, Lee C P, 2002. Status of Pratas Atoll in South China Sea. Proceedings of the 4th Conference on the Protected Areas of East Asia. Taipei, 739-742.
    [63] Toscano M A, Liu G, Guch I C et al., 2000. Improved prediction of coral bleaching using high-resolution HotSpot anomaly mapping. 9th International Coral Reef Symposium. Bali, Indonesia, 2: 1143-1147.
    [64] Wang C, Wang W, Wang D et al., 2006. Interannual variability of the South China Sea associated with El Niño. Journal of Geophysical Research, 111: C03023. doi:  10.1029/2005JC003333
    [65] Weeks S J, Anthony K R N, Bakun A et al., 2008. Improved predictions of coral bleaching using seasonal baselines and higher spatial resolution. Limnology and Oceanography, 53(4): 1369-1375. doi:  10.4319/lo.2008.53.4.1369
    [66] Wilkinson C, 1998. The 1997-1998 mass bleaching event around the world. In: Wilkinson C et al. (eds.). Status of Coral Reefs of the World: 1998. Townsville: Australian Institute of Marine Science Press, 12.
    [67] Worum F P, Carricart-Ganivet J P, Benson L et al., 2007. Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming. Limnology and Oceanography, 52(5): 2317-2323. doi:  10.4319/lo.2007.52.5.2317
    [68] Yu K F, 2012. Coral reefs in the South China Sea: their response to and records on past environmental changes. Science China Earth Sciences, 55(8): 1217-1229. doi: 10.1007/s11430-012- 4449-5
    [69] Yu K F, Zhao J X, Liu T S et al., 2004. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum. Earth and Planetary Science Letters, 224: 143-155. doi:  10.1016/j.epsl.2004.04.036
    [70] Yu K, Zhao J, Shi Q et al., 2012. Recent massive coral mortality events in the South China Sea: was global warming and ENSO variability responsible? Chemical Geology, 320-321: 54-65. doi:  10.1016/j.chemgeo.2012.05.028
    [71] Zhang Yaoguang, Liu Kai, Liu Guichun, 2012. The evolvement of the state maritime boundary in South China Sea by maps: China's nine-dotted maritime boundary line in South China Sea. Scientia Geographica Sinica, 32(9): 1033-1040. (in Chinese)
    [72] Zhao M X, Yu K F, Zhang Q M et al., 2014. Age structure of massive Porites lutea corals at Luhuitou fringing reef (northern South China Sea) indicates recovery following severe anthropogenic disturbance. Coral Reefs, 33: 39-44. doi: 10.1007/ s00338-013-1109-y
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(517) PDF downloads(1635) Cited by()

Proportional views
Related

Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea

doi: 10.1007/s11769-015-0741-6
Funds:  Under the auspices of National High Technology Research and Development Program of China (No. 2012AA12A406)
    Corresponding author: SU Fenzhen

Abstract: Coral bleaching, caused by elevated sea surface temperature (SST), is occurring more frequently and seriously worldwide. Due to the lack of field observations, we understand little about the large-scale variability of thermal stress in the South China Sea (SCS) and its effect on China's coral reefs. This paper used 4-km high resolution gap-filled SST (FilledSST) data and thermal stress data related to coral bleaching derived from Coral Reef Temperature Anomaly Database (CoRTAD) to quantify the spatial and temporal characteristics of chronic thermal stress and acute thermal stress to China's coral reefs in SCS from 1982 to 2009. We analyzed the trend of SST in summer and the thermal stress frequency, intensity and duration during this period. The results indicate that, as a chronic thermal stress, summer mean SST in SCS shows an average upward trend of 0.2℃/decade and the spatial pattern is heterogeneous. Waters of Xisha Islands and Dongsha Islands of the northern SCS are warming faster through time compared to Zhongsha Islands and Nansha Islands sea areas of the southern SCS. High frequency bleaching related thermal stress events for these reefs are seen in the area to the northwest of Luzon Island. Severe anomaly thermal stress events are more likely to occur during the subsequent year of the El Niño year for these coral reefs. Besides, the duration of thermal stress varies considerably by anomaly year and by region.

ZUO Xiuling, SU Fenzhen, WU Wenzhou, CHEN Zhike, SHI Wei. Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea[J]. Chinese Geographical Science, 2015, 25(2): 159-173. doi: 10.1007/s11769-015-0741-6
Citation: ZUO Xiuling, SU Fenzhen, WU Wenzhou, CHEN Zhike, SHI Wei. Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea[J]. Chinese Geographical Science, 2015, 25(2): 159-173. doi: 10.1007/s11769-015-0741-6
Reference (72)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return