XIAO He, LIU Yunhui, YU Zhenrong, ZHANG Qian, ZHANG Xin. Combination of Ecoprofile and Least-cost Model for Eco-network Planning[J]. Chinese Geographical Science, 2014, (1): 113-125. doi: 10.1007/s11769-014-0660-y
Citation: XIAO He, LIU Yunhui, YU Zhenrong, ZHANG Qian, ZHANG Xin. Combination of Ecoprofile and Least-cost Model for Eco-network Planning[J]. Chinese Geographical Science, 2014, (1): 113-125. doi: 10.1007/s11769-014-0660-y

Combination of Ecoprofile and Least-cost Model for Eco-network Planning

doi: 10.1007/s11769-014-0660-y
More Information
  • Corresponding author: YU Zhenrong,yuzhr@cau.edu.cn
  • Received Date: 2013-04-18
  • Rev Recd Date: 2013-08-16
  • Publish Date: 2014-01-06
  • The protecting requirements and functional connectivity of species in isolated habitat patches are crucial factors of eco-network planning. This study aimed to improve the method of eco-network planning for species conservation. Ecoprofiling was used to group the species by similar behavior types, namely, choice of ecosystem, area requirement, and short distance dispersal abilities. A least-cost model was used to simulate the optimal corridor location to maintain functional connectivity. A combination of ecoprofile and least-cost model was hired to develop an eco-network that promoted species conservation. A case study was also conducted in Beijing, China. In addition to the required ecosystem, habitat area is an important parameter for habitat extraction. Habitat area can remove noise habitat patches because of lacking area. Short-distance dispersal can be used to identify corridor requirements and avoid unnecessary building requirements. Species with various dispersal abilities exhibit significant differences in terms of corridor length and location requirement. Habitat isolation is the main threat for weakly mobile species, and habitat loss is the major risk of mobile species protection. Different species groups also exhibit distinct landscape pattern demands for an eco-network, and the eco-network planning based on specific species can not protect other species. We proposed that a combination of ecoprofile and least-cost model improved the efficiency of species conservation by eco-network planning.
  • [1] Adriaensen F, Chardon J P, De Blust G et al., 2003. The application of ‘least-cost’modelling as a functional landscape model. Landscape and Urban Planning, 64(4): 233-247. doi:  10.1016/S0169-2046(02)00242-6
    [2] Avril A, Léonard Y, Letty J et al., 2011. Natal dispersal of European hare in a high-density population. Mammalian Biology, 76(2): 148-156. doi:  10.1016/j.mambio.2010.07.001
    [3] Baker A. M, Mather P B, Hughes J M, 2001. Evidence for long-distance dispersal in a sedentary passerine, Gymnothina Tibicen (Artamidae). Biological Journal of the Linnean Society, 72(2): 333-343. doi:  10.1006/bij1.2000.0483
    [4] Beijing Municipal Bureau of Statistics, 2011. Beijing Statistic Book 2011. Beijing: China Statistics Press.
    [5] Barreto L, Ribeiro M C, Veldkamp A et al., 2010. Exploring effective conservation networks based on multi-scale planning unit analysis. A case study of the Balsas sub-basin, Maranhão State, Brazil. Ecological Indicators, 10(5): 1055-1063. doi:  10.1016/j.ecolind.2010.03.001
    [6] Battisti C, Luiselli L, 2011. Selecting focal species in ecological network planning following an expert-based approach, Italian reptiles as a case study. Journal for Nature Conservation, 19(2): 126-130. doi:  10.1016/j.jnc.2010.10.001
    [7] Belisle M, 2005. Measuring landscape connectivity, the challenge of behavioral landscape ecology. Ecology, 86(6): 1988-1995. doi:  10.1890/04-0923
    [8] Bernstein L, Bosch P, Canziani O et al., 2007. Climate Change 2007, Synthesis Report. Valencia: IPCC.
    [9] Bifolchi A, Lode T, 2005. Efficiency of conservation shortcuts, an investigation with otters as umbrella species. Biological Conservation, 126(4): 523-527. doi: 10.1016/j.biocon.2005. 07.002
    [10] Brooker L, 2002. The application of focal species knowledge to landscape design in agricultural lands using the ecological neighborhood as a template. Landscape and Urban Planning, 60(4): 185-210. doi:  10.1016/S0169-2046(02)00055-5
    [11] Brown J L, Morales V, Summers K, 2009. Home range size and location in relation to reproductive resources in poison frogs (Dendrobatidae): A Monte Carlo approach using GIS data. Animal Behaviour, 77(2): 547-554. doi: 10.1016/j.anbehav. 2008.10.002
    [12] Cale P G, 2003. The influence of social behaviour, dispersal and landscape fragmentation on population structure in a sedentary bird. Biological Conservation, 109(2): 237-248. doi:  10.1016/S0006-3207(02)00152-0
    [13] Calvete C, Estrada R, 2004. Short-term survival and dispersal of translocated European wild rabbits. Improving the release protocol. Biological Conservation, 120(4): 507-516. doi:  10.1016/j.biocon.2004.03.023
    [14] Charles T, Garten J, 1995. Dispersal of radioactivity by wildlife from contaminated sites in a forested landscape. Journal of Environmental Radioactivity, 29(2): 137-156. doi:  10.1016/0265-931X(94)00068-8
    [15] Chase M K, Kristan W B, Lynam A J et al., 2000. Single species as indicators of species richness and composition in California coastal sage scrub birds and small mammals. Conservation Biology, 14(2): 474-487. doi: 10.1046/j.1523-1739.2000. 98312.x
    [16] Conceição K S, de Oliveira V M, 2010. Habitat fragmentation effects on biodiversity patterns. Physica A, 389(17): 3496-3502. doi:  10.1016/j.physa.2010.04.036
    [17] Devillard S, Aubineau J, Berger F et al., 2008. Home range of the European rabbit (Oryctolagus cuniculus) in three contrasting French populations. Mammalian Biology, 73(2): 128-137. doi:  10.1016/j.mambio.2007.01.003
    [18] Driezena K, Adriaensen F, Rondinini C et al., 2007. Evaluating least-cost model predictions with empirical dispersal data: A case study using radiotracking data of hedgehogs (Erinaceus europaeus). Ecological Modelling, 209(2-4): 314-322. doi:  10.1016/j.ecolmodel.2007.07.002
    [19] Fasola M, Hafner H, Kayser Y et al., 2002. Individual dispersal among colonies of Little Egrets Egretta garzetta. Ibis, 144(2): 192-199. doi:  10.1046/j.1474-919X.2002.00060.x
    [20] Fischer J, Lindenmayer D B, 2002. Small patches can be valuable for biodiversity conservation: two case studies on birds in southeastern Australia. Biological Conservation, 106(1): 129-136. doi:  10.1016/S0006-3207(01)00241-5
    [21] Gardner J L, Magrath R D, Kokko H, 2003. Stepping stones of life, natal dispersal in the group-living but noncooperative speckled warbler. Animal Behaviour, 66: 521-530. doi:  10.1006/anbe.2003.2206
    [22] Griffin S C, Taper M L, Hoffman R et al., 2008. The case of the missing marmots: Are metapopulation dynamics or range-wide declines responsible? Biological Conservation, 141(5): 1293-1309. doi:  10.1016/j.biocon.2008.03.001
    [23] Gurrutxaga M, Lozano P, Barrio G, 2010. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. Journal for Nature Conservation, 18(4): 318-326. doi:  10.1016/j.jnc.2010.01.005
    [24] Hepcan ?, Hepcan Ç C, Bouwma I M et al., 2009. Ecological networks as a new approach for nature conservation in Turkey: A case study of Izmir Province. Landscape and Urban Planning, 90(3): 143-154. doi: 10.1016/j.landurbplan.2008.10. 023
    [25] Hong S K, Nakagoshi N, Fu B J et al., 2007. Landscape Ecological Applications in Man-Influenced Areas-Linking Man and Nature Systems. The Netherlands: Springer, 57-69.
    [26] Jokimäki J, Kaisanlahti-Jokimäki M, Suhonen J et al., 2011. Merging wildlife community ecology with animal behavioral ecology for a better urban landscape planning. Landscape and Urban Planning, 100(4): 383-385. doi: 10.1016/j.landurbplan. 2011.02.001
    [27] Jongman R H G, Külvik M, Kristiansen I, 2004. European ecological networks and greenways. Landscape and Urban Planning, 68(2-3): 305-319. doi:  10.1016/S0169-2046(03)00163-4
    [28] Knaapen J P, Scheffer M, Harms B, 1992. Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 23(1): 1-16. doi:  10.1016/0169-2046(92)90060-D
    [29] Li Feng, Wang Rusong, Paulussen J et al., 2005. Comprehensive concept planning of urban greening based on ecological principles, a case study in Beijing, China. Landscape and Urban Planning, 72(4): 325-336. doi: 10.1016/j.landurbplan.2004.04. 002
    [30] Liu Yi, 2010. Study on Distribution Influncing Factors of Plant Diversity and Management in Beijing. Beijing: Beijing Forestry University. (in Chinese)
    [31] Lookingbill T R, Elmore A J, Engelhardt K A M et al., 2010. Influence of wetland networks on bat activity in mixed-use landscapes. Biological Conservation, 143(4): 974-983. doi:  10.1016/j.biocon.2010.01.011
    [32] McHugh N, Thompson S, 2011. A rapid ecological network assessment tool and its use in locating habitat extension areas in a changing landscape. Journal for Nature Conservation, 19(4): 236-244. doi:  10.1016/j.jnc.2011.02.002
    [33] Merckx T, Feber R E, Dulieu R L et al., 2009. Effect of field margins on moths depends on species mobility: Field-based evidence for landscape-scale conservation. Agriculture, Ecosystems and Environment, 129(1-3): 302-309. doi:  10.1016/j.agee.2008.10.004
    [34] Nathan R, 2005. Long-distance dispersal research: Building a network of yellow brick roads. Diversity and Distributions, 11(2): 125-130. doi:  10.1111/j.1366-9516.2005.00159.x
    [35] Opdam P, Pouwels R, van Rooij S et al., 2008. Setting biodiversity targets in participatory regional planning: Introducing ecoprofiles. Ecology and Society, 13(1): 20-35.
    [36] Opdam P, Steingrover E, van Rooij S, 2006. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landscape and Urban Planning, 75(3-4): 322-332. doi:  10.1016/j.landurbplan.2005.02.015
    [37] Petit J N, Hoddle M S, Grandgirard J et al., 2008. Short-distance dispersal behavior and establishment of the parasitoid Gonatocerus ashmeadi (Hymenoptera: Mymaridae) in Tahiti: Implications for its use as a biological control agent against Homalodisca vitripennis (Hemiptera: Cicadellidae). Biological Control, 45(3): 344-352. doi: 10.1016/j.biocontrol.2008.01. 020
    [38] Pino J, Marull J, 2012. Ecological networks: Are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy, 29(3): 684-690. doi:  10.1016/j.landusepol.2011.11.004
    [39] Rabinowitz A, Zeller K A, 2010. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biological Conservation, 143(4): 939-945. doi:  10.1016/j.biocon.2010.01.002
    [40] Roedenbeck I A, Voser P, 2008. Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. European Journal of Wildlife Research, 54(3): 425-437. doi:  10.1007/s10344-007-0166-3
    [41] Sanderson E W, Redford K H, Vedder A et al., 2002. A conceptual model for conservation planning based on landscape species requirements. Landscape and Urban Planning, 58(1): 41-56. doi:  10.1016/S0169-2046(01)00231-6
    [42] Shrestha M K, York A M, Boone C G et al., 2012. Land fragmentation due to rapid urbanization in the Phoenix Metropolitan Area: Analyzing the spatiotemporal patterns and drivers. Applied Geography, 32(2): 522-531. doi: 10.1016/j.apgeog. 2011.04.004
    [43] Silva M, Hartling L, Opps S B, 2005. Small mammals in agricultural landscapes of Prince Edward Island (Canada): Effects of habitat characteristics at three different spatial scales. Biological Conservation, 126(4): 556-568. doi: 10.1016/j.biocon. 2005.07.007
    [44] Solé R V, Alonso D, Saldaña J, 2004. Habitat fragmentation and biodiversity collapse in neutral communities. Ecological Complexity, 1(1): 65-75. doi:  10.1016/j.ecocom.2003.12.003
    [45] Tweed E J, Foster J T, Woodworth B L et al., 2003. Survival, dispersal, and home-range establishment of reintroduced captive-bred puaiohi, Myadestes palmeri. Biological Conservation, 111(1): 1-9. doi:  10.1016/S0006-3207(02)00175-1
    [46] Uezu A, Metzger J P, Vielliard J M E, 2005. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biological Conservation, 123(4): 507-519. doi:  10.1016/j.biocon.2005.01.001
    [47] van Langevelde F, 2000. Scale of habitat connectivity and colonization in fragmented nuthatch populations. Ecography, 23(5): 614-622. doi:  10.1034/j.1600-0587.2000.230512.x
    [48] Vogt P, Ferrari J R, Lookingbill T R et al., 2009. Mapping functional connectivity. Ecological Indicator, 9(1): 64-71. doi:  10.1016/j.ecolind.2008.01.011
    [49] Vos C C, Verboom J, Opdam P F M et al., 2001. Toward ecologically scaled landscape indices. The American Naturalist, 183(1): 24-41. doi:  10.1086/317004
    [50] Vuilleumier S, Prelaz-Droux R, 2002. Map of ecological networks for landscape planning. Landscape and Urban Planning, 58(2-4): 157-170. doi:  10.1016/S0169-2046(01)00218-3
    [51] Wiktander U, Olsson O, Nilsson S G, 2001. Seasonal variation in home-range size, and habitat area requirement of the lesser spotted woodpecker (Dendrocopos minor) in southern Sweden. Biological Conservation, 100(3): 387-395. doi:  10.1016/S0006-3207(01)00045-3
    [52] Yamaura Y, Ikeno S, Sano M et al., 2009. Bird responses to broad-leaved forest patch area in a plantation landscape across seasons. Biological Conservation, 142(10): 2155-2165. doi:  10.1016/j.biocon.2009.04.015
    [53] Young A J, Oosthuizen M K, Lutermann H et al., 2010. Physiological suppression eases in Damaraland mole-rat societies when ecological constraints on dispersal are relaxed. Hormones and Behavior, 57(2): 177-183. doi: 10.1016/j.yhbeh. 2009.10.011
    [54] Yu Kongjian., Wang Sisi, Li Dihua et al., 2009. The function of ecological security patterns as an urban growth framework in Beijing. Acta Ecological Sinica, 29(3): 1189-1204. (in Chinese)
    [55] Zetterberg A, Mörtberg U M, Balfors B, 2010. Making graph theory operational for landscape ecological assessments, planning, and design. Landscape and Urban Planning, 95(4): 181-191. doi:  10.1016/j.landurbplan.2010.01.002
    [56] Zhang Liquan, Wang Haizhen, 2006. Planning an ecological network of Xiamen Island (China) using landscape metrics and network analysis. Landscape and Urban Planning, 78(4): 449-456. doi:  10.1016/j.landurbplan.2005.12.004
    [57] Zhang Tielou, Tian Hengjiu, Shi Yang et al., 2009. Studies on migration patterns and monitoring method of the water birds in Beijing. Sichuan Journal of Zoology, 28(6): 889-892. (in Chinese)
    [58] Zhang Zhiming, Zhang Linyuan, Hu Yuan et al., 2003. Urban ecology and wildlife conservation and management in Beijing. Journal of Beijing Forestry University (Social Science), 2(1): 40-44. (in Chinese)
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(418) PDF downloads(810) Cited by()

Proportional views
Related

Combination of Ecoprofile and Least-cost Model for Eco-network Planning

doi: 10.1007/s11769-014-0660-y
    Corresponding author: YU Zhenrong,yuzhr@cau.edu.cn

Abstract: The protecting requirements and functional connectivity of species in isolated habitat patches are crucial factors of eco-network planning. This study aimed to improve the method of eco-network planning for species conservation. Ecoprofiling was used to group the species by similar behavior types, namely, choice of ecosystem, area requirement, and short distance dispersal abilities. A least-cost model was used to simulate the optimal corridor location to maintain functional connectivity. A combination of ecoprofile and least-cost model was hired to develop an eco-network that promoted species conservation. A case study was also conducted in Beijing, China. In addition to the required ecosystem, habitat area is an important parameter for habitat extraction. Habitat area can remove noise habitat patches because of lacking area. Short-distance dispersal can be used to identify corridor requirements and avoid unnecessary building requirements. Species with various dispersal abilities exhibit significant differences in terms of corridor length and location requirement. Habitat isolation is the main threat for weakly mobile species, and habitat loss is the major risk of mobile species protection. Different species groups also exhibit distinct landscape pattern demands for an eco-network, and the eco-network planning based on specific species can not protect other species. We proposed that a combination of ecoprofile and least-cost model improved the efficiency of species conservation by eco-network planning.

XIAO He, LIU Yunhui, YU Zhenrong, ZHANG Qian, ZHANG Xin. Combination of Ecoprofile and Least-cost Model for Eco-network Planning[J]. Chinese Geographical Science, 2014, (1): 113-125. doi: 10.1007/s11769-014-0660-y
Citation: XIAO He, LIU Yunhui, YU Zhenrong, ZHANG Qian, ZHANG Xin. Combination of Ecoprofile and Least-cost Model for Eco-network Planning[J]. Chinese Geographical Science, 2014, (1): 113-125. doi: 10.1007/s11769-014-0660-y
Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return