留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data

ZHU Shanyou LIU Yi HUA Junwei ZHANG Guixin ZHOU Yang XIANG Jiamin

ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. 中国地理科学, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
引用本文: ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. 中国地理科学, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
Citation: ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8

Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data

doi: 10.1007/s11769-018-0989-8
基金项目: Under the auspices of the Natural Science Foundation of China (No. 41571418, 41401471), Qing Lan Project, the Priority Academic Program Development of Jiangsu Higher Education Institutions
详细信息
    通讯作者:

    ZHU Shanyou. E-mail:zsyzgx@163.com

Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data

Funds: Under the auspices of the Natural Science Foundation of China (No. 41571418, 41401471), Qing Lan Project, the Priority Academic Program Development of Jiangsu Higher Education Institutions
More Information
    Corresponding author: ZHU Shanyou. E-mail:zsyzgx@163.com
  • 摘要: Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening (TsHARP) method and a binary linear model are compared to downscale the original daytime FengYun 2F (FY-2F) land surface temperature (LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land (SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error (RMSE) of the LST downscaled from the binary linear model is 1.30℃ compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78℃. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37℃ in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37℃ and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data.
  • [1] Agam N, Kustas W P, Anderson M C et al., 2007. A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107(4):545-558. doi: 10.1016/j.rse.2006.10.006
    [2] Anderson M C, Allen R G, Morse A et al., 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122:50-65. doi: 10.1016/j.rse.2011.08.025
    [3] Dousset B, Gourmelon F, 2003. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS Journal of Photogrammetry and Remote Sensing, 58(1-2):43-54. doi: 10.1016/S0924-2716(03)00016-9
    [4] Dousset B, Gourmelon F, Mauri E, 2007. Application of satellite remote sensing for urban risk analysis:a case study of the 2003 extreme heat wave in Paris. Proceedings of 2007 Urban Remote Sensing Joint Event. Paris, France:IEEE. doi: 10.1109/URS.2007.371849
    [5] Gong P, Liang S, Carlton E J et al., 2012. Urbanisation and health in China. Lancet, 379(9818):843-852. doi: 10.1016/S0140-6736(11)61878-3
    [6] Grimm N B, Faeth S H, Golubiewski N E et al., 2008. Global change and the ecology of cities. Science, 319(5864):756-760. doi: 10.1126/science.1150195
    [7] Jiang Y T, Fu P, Weng Q H, 2015. Downscaling GOES land surface temperature for assessing heat wave health risks. IEEE Geoscience and Remote Sensing Letters, 12(8):1605-1609. doi: 10.1109/LGRS.2015.2414897
    [8] Jiangsu Meteorological Bureau, 2013. Climate impact assessment of Jiangsu province in August 2013. Available at:http://www.jsmb.gov.cn/art/2013/9/4/art_69_12323.html. 2013-09-04. Cited 4 Sep 2013. (in Chinese)
    [9] Kim D W, Deo R C, Lee J S et al., 2017. Mapping heatwave vulnerability in Korea. Natural Hazards, 89(1):35-55. doi: 10.1007/s11069-017-2951-y
    [10] Kovats R S, Hajat S, 2008. Heat stress and public health:a critical review. Annual Review of Public Health, 29:41-55. doi: 10.1146/annurev.publhealth.29.020907.090843
    [11] Kustas W P, Norman J M, Anderson M C et al., 2003. Estimating sub-pixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sensing of Environment, 85(4):429-440. doi: 10.1016/S0034-4257(03)00036-1
    [12] Liang S L, 2001. Narrowband to broadband conversions of land surface albedo I:algorithms. Remote Sensing of Environment, 76(2):213-238. doi:10.1016/S0034-4257(00)00205-4
    [13] Liu G L, Zhang L C, He B et al., 2015. Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China. Natural Hazards, 76(2):1415-1430. doi: 10.1007/s11069-014-1556-y
    [14] Liu Yonghong, Quan Wenjun, 2014. Research on high temperature indices of Beijing city and its spatiotemporal pattern based on satellite data. Climatic and Environmental Research, 19(3):332-342. (in Chinese)
    [15] Meehl G A, Tebaldi C, 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305 (5686):994-997. doi: 10.1126/science.1098704
    [16] Ngie A, Abutaleb K, Ahmed F et al., 2014. Assessment of urban heat island using satellite remotely sensed imagery:a review. South African Geographical Journal, 96(2):198-214. doi: 10.1080/03736245.2014.924864
    [17] Sandholt I, Rasmussen K, Andersen J, 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79(2-3):213-224. doi:10.1016/S 0034-4257(01)00274-7
    [18] Sobrino J A, Oltra-Carrió R, Sòria G et al., 2012. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sensing of Environment, 117:50-56. doi: 10.1016/j.rse.2011.04.042
    [19] Stathopoulou M, Cartalis C, 2009. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sensing of Environment, 113(12):2592-2605. doi: 10.1016/j.rse.2009.07.017
    [20] Stisen S, Sandholt I, Nørgaard A et al., 2007. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sensing of Environment, 110(2):262-274. doi: 10.1016/j.rse.2007.02.025
    [21] Sun Y J, Wang J F, Zhang R H et al., 2005. Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology, 80(1):37-48. doi:10. 1007/s00704-004-0079-y
    [22] Tomlinson C J, Chapman L, Thornes J E et al., 2012. Derivation of Birmingham's summer surface urban heat island from MODIS satellite images. International Journal of Climatology, 32(2):214-224. doi: 10.1002/joc.2261
    [23] Wan Z M, Dozier J, 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4):892-905. doi: 10.1109/36.508406
    [24] Wan Z M, Zhang Y L, Zhang Q C et al., 2002. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment, 83(1-2):163-180. doi:10.1016/S 0034-4257(02) 00093-7
    [25] Weng Q H, Fu P, 2014. Modeling diurnal land temperature cycles over Los Angeles using downscaled GOES imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 97:78-88. doi: 10.1016/j.isprsjprs.2014.08.009
    [26] Weng Q H, Larson R C, 2005. Satellite remote sensing of urban heat islands:current practice and prospects. In:Jensen R R (eds). Geo-Spatial Technologies in Urban Environments. Berlin Heidelberg:Springer, 91-111. doi: 10.1007/3-540-26676-3_10
    [27] Wilson E H, Sader S A, 2002. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3):385-396. doi: 10.1016/S0034-4257(01)00318-2
    [28] Xu X L, Cai H Y, Qiao Z et al., 2017. Impacts of park landscape structure on thermal environment using QuickBird and Landsat images. Chinese Geographical Science, 27(5):818-826. doi: 10.1007/s11769-017-0910-x
    [29] Zha Y, Gao J, Ni S, 2003. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3):583-594. doi: 10.1080/01431160304987
    [30] Zhang K X, Wang R, Shen C C et al., 2010. Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environmental Monitoring and Assessment, 169(1-4):101-112. doi: 10.1007/s10661-009-1154-8
    [31] Zhang W, Jiang J G, Zhu Y B, 2015. Change in urban wetlands and their cold island effects in response to rapid urbanization. Chinese Geographical Science, 25(4):462-471. doi:10.1007/s 11769-015-0764-z
    [32] Zhou W, Peng B, Shi J C et al., 2017. Estimating high resolution daily air temperature based on remote sensing products and climate reanalysis datasets over Glacierized Basins:a case study in the Langtang Valley, Nepal. Remote Sensing, 9(9):959. doi: 10.3390/rs9090959
    [33] Zhu S Y, Guan H D, Millington A C et al., 2013. Disaggregation of land surface temperature over a heterogeneous urban and surrounding suburban area:a case study in Shanghai, China. International Journal of Remote Sensing, 34(5):1707-1723. doi: 10.1080/01431161.2012.725957
    [34] Zhu S Y, Zhou C X, Zhang G X et al., 2017. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL. Meteorology and Atmospheric Physics, 129(1):71-81. doi: 10.1007/s00703-016-0451-3
    [35] Zoran M, Savastru D, Miclos S et al., 2011. Multisensor satellite remote sensing data for heat waves assessment in metropolitan region. Journal of Optoelectronics and Advanced Materials, 13(9):1159-1166.
  • [1] Tian HE, Fuyuan LIU, Ao WANG, Zhanbo FEI.  Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China . Chinese Geographical Science, 2023, 33(4): 751-763. doi: 10.1007/s11769-023-1370-0
    [2] Xinshuang WANG, Jiancheng CAO, Jiange LIU, Xiangwu LI, Lu WANG, Feihang ZUO, Mu BAI.  Improving the Interpretability and Reliability of Regional Land Cover Classification by U-Net Using Remote Sensing Data . Chinese Geographical Science, 2022, 32(6): 979-994. doi: 10.1007/s11769-022-1315-z
    [3] GAO Wenwen, ZENG Yuan, ZHAO Dan, WU Bingfang, REN Zhiyuan.  Land Cover Changes and Drivers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China from 2000 to 2015 . Chinese Geographical Science, 2020, 30(1): 115-126. doi: 10.1007/s11769-020-1099-y
    [4] ZHANG Yuan, LIU Shaomin, HU Xiao, WANG Jianghao, LI Xiang, XU Ziwei, MA Yanfei, LIU Rui, XU Tongren, YANG Xiaofan.  Evaluating Spatial Heterogeneity of Land Surface Hydrothermal Con-ditions in the Heihe River Basin . Chinese Geographical Science, 2020, 30(5): 855-875. doi: 10.1007/s11769-020-1151-y
    [5] ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping.  Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018 . Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
    [6] KUANG Wenhui.  Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China . Chinese Geographical Science, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
    [7] DU Jia, SONG Kaishan, YAN Baohua.  Impact of the Zhalong Wetland on Neighboring Land Surface Temper-ature Based on Remote Sensing and GIS . Chinese Geographical Science, 2019, 20(5): 798-808. doi: 10.1007/s11769-019-1050-2
    [8] SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah.  Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning . Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
    [9] ZHOU Ji, ZHAN Wenfeng, HU Deyong, ZHAO Xiang.  Improvement of Mono-window Algorithm for Retrieving Land Surface Temperature from HJ-1B Satellite Data . Chinese Geographical Science, 2010, 20(2): 123-131. doi: 10.1007/s11769-010-0123-z
    [10] WANG Zongming, LIU Zhiming, SONG Kaishan, ZHANG Bai, ZHANG Sumei, LIU Dianwei, REN Chunying, YANG Fei.  Land Use Changes in Northeast China Driven by Human Activities and Climatic Variation . Chinese Geographical Science, 2009, 19(3): 225-230. doi: 10.1007/s11769-009-0225-7
    [11] LIU Dianwei, WANG Zongming, SONG Kaishan, ZHANG Bai, HU Liangjun, HUANG Ni, ZHANG Sumei, LUO Ling, ZHANG Chunhua, JIANG Guangjia.  Land Use/Cover Changes and Environmental Consequences in Songnen Plain, Northeast China . Chinese Geographical Science, 2009, 19(4): 299-305. doi: 10.1007/s11769-009-0299-2
    [12] QUAN Bin, M J M RÖMKENS, TAO Jianjun, LI Bichen, LI Chaokui, YU Guanghui, CHEN Qichun.  Spatial-temporal Pattern and Population Driving Force of Land Use Change in Liupan Mountains Region, Southern Ningxia, China . Chinese Geographical Science, 2008, 18(4): 323-330. doi: 10.1007/s11769-008-0323-y
    [13] ZHOU Xing-dong, DU Pei-jun, GUO Da-zhi.  STUDY ON THE SUBSIDING LAND EXTRACTION FROM LANDSAT TM IMAGE SUPPORTED BY GIS AND DOMAIN KNOWLEDGE . Chinese Geographical Science, 2003, 13(1): 30-33.
    [14] WANG Wei-wu, ZHU Li-zhong, WANG Ren-chao, SHI Yong-jun.  ANALYSIS ON THE SPATIAL DISTRIBUTION VARIATION CHARACTERISTIC OF URBAN HEAT ENVIRONMENTAL QUALITY AND ITS MECHANISM—A Case Study of Hangzhou City . Chinese Geographical Science, 2003, 13(1): 39-47.
    [15] XU Han-qiu.  AN ASSESSMENT OF LAND USE CHANGES IN FUQING COUNTY OF CHINA USING REMOTE SENSING TECHNOLOGY . Chinese Geographical Science, 2002, 12(2): 126-135.
    [16] HU Yuan-man, JIANG Yan, CHANG Yu, BU Ren-cang, LI Yue-hui, XU Chong-gang.  THE DYNAMIC MONITORING OF HORQIN SAND LAND USING REMOTE SENSING . Chinese Geographical Science, 2002, 12(3): 238-243.
    [17] 庄大方, 凌扬荣, Yoshio Awaya.  INTEGRATED VEGETATION CLASSIFICATION AND MAPPING USING REMOTE SENSING AND GIS TECHNIQUES . Chinese Geographical Science, 1999, 9(1): 49-56.
    [18] 黄铁青, 刘兆礼, 潘瑜春, 张养贞.  LAND COVER SURVEY IN NORTHEAST CHINA USING REMOTE SENSING AND GIS . Chinese Geographical Science, 1998, 8(3): 264-270.
    [19] 赵文经, 赵焕宸.  ESTIMATION OF VEGETATIVE SURFACE ALBEDO IN THE KUSHIRO MIRE WITH LANDSAT TM DATA ──A New Approach to Atmospheric and Spectral Corrections . Chinese Geographical Science, 1997, 7(3): 278-288.
    [20] 张养贞, 常丽萍, 张柏, 张树文, 黄铁青, 刘雅琴.  LAND RESOURCES SURVEY BY REMOTE SENSING AND ANALYSIS OF LAND CARRYING CAPACITY FOR POPULATION IN TUMEN RIVER REGION . Chinese Geographical Science, 1996, 6(4): 342-350.
  • 加载中
计量
  • 文章访问数:  263
  • HTML全文浏览量:  13
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-22
  • 修回日期:  2018-04-03
  • 刊出日期:  2018-10-27

Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data

doi: 10.1007/s11769-018-0989-8
    基金项目:  Under the auspices of the Natural Science Foundation of China (No. 41571418, 41401471), Qing Lan Project, the Priority Academic Program Development of Jiangsu Higher Education Institutions
    通讯作者: ZHU Shanyou. E-mail:zsyzgx@163.com

摘要: Extreme heat events have serious effects on human daily life. Accurately capturing the dynamic variance of extreme high-temperature distributions in a timely manner is the basis for analyzing the potential impacts of extreme heat, thereby informing risk prevention strategies. This paper demonstrates the potential application of multiple source remote sensing data in mapping and monitoring the extreme heat events that occurred on Aug. 8, 2013 in Jiangsu Province, China. In combination with MODIS products, the thermal sharpening (TsHARP) method and a binary linear model are compared to downscale the original daytime FengYun 2F (FY-2F) land surface temperature (LST) imagery, with a temporal resolution of 60 min, from 5 km to 1 km. Using the meteorological measurement data from Nanjing station as the reference, the research then estimates the instantaneous air temperature by using an iterative computation based on the Surface Energy Balance Algorithm for Land (SEBAL), which is used to analyze the spatio-temporal air temperature variance. The results show that the root mean square error (RMSE) of the LST downscaled from the binary linear model is 1.30℃ compared to the synchronous MODIS LST, and on this basis the estimated air temperature has the RMSE of 1.78℃. The spatial and temporal distribution of air temperature variance at each geographical location from 06:30 to 18:30 can be accurately determined, and indicates that the high temperature gradually increases and expands from the city center. For the spatial distribution, the air temperature and the defined scorching temperature proportion index increase from northern to middle, to southern part of Jiangsu, and are slightly lower in the eastern area near the Yellow Sea. In terms of temporal characteristics, the percentage of area with air temperature above 37℃ in each city increase with time after 10:30 and reach the peak value at 14:30 or 15:30. Then, they decrease gradually, and the rising and falling trends become smaller from the southern cities to the northern regions. Moreover, there is a distinct positive relationship between the percentage of area above 37℃ and the population density. The above results show that the spatio-temporal distributions of heat waves and their influencing factors can be determined by combining multiple sources of remotely sensed image data.

English Abstract

ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. 中国地理科学, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
引用本文: ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. 中国地理科学, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
Citation: ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin. Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data[J]. Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
参考文献 (35)

目录

    /

    返回文章
    返回