留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China

JIA Jia BAI Junhong WANG Wei ZHANG Guangliang WANG Xin ZHAO Qingqing ZHANG Shuai

JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. 中国地理科学, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
引用本文: JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. 中国地理科学, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
Citation: JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1

Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China

doi: 10.1007/s11769-018-0959-1
基金项目: Under the auspices of National Key R & D Program of China (No. 2017YFC0505906), National Natural Science Foundation of China (No. 51639001, 51379012), Interdiscipline Research Funds of Beijing Normal University
详细信息
    通讯作者:

    BAI Junhong.E-mail:junhongbai@163.com

Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China

Funds: Under the auspices of National Key R & D Program of China (No. 2017YFC0505906), National Natural Science Foundation of China (No. 51639001, 51379012), Interdiscipline Research Funds of Beijing Normal University
More Information
    Corresponding author: BAI Junhong.E-mail:junhongbai@163.com
  • 摘要: Little information is available on biogenic elements (carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow (Huanghe) River Delta, plant samples were collected from two typical salt marshes (Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis (P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences (P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Phragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.
  • [1] Aerts R, Chapin Ⅲ F S, 1999. The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns. Advances in Ecological Research, 30:1-67. doi: 10.1016/s0065-2504(08)60016-1
    [2] Amezaga J M, Santamaría L, Green A, 2002. Biotic wetland connectivity-supporting a new approach for wetland policy.
    [3] Acta Oecologica, 23(3):213-222. doi: 10.1016/s1146-609x(02)01152-9
    [4] Bai Junhong, Cui Baoshan, Li Xiaowen et al., 2006. Ammonium nitrogen concentration seasonal dynamics in soils from reed wetlands in Xianghai. Acta Prataculturae Sinica, 15(1):117-119. (in Chinese)
    [5] Benitez-Nelson C R, 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Science Reviews, 51(1-4):109-135. doi: 10.1016/s0012-8252(00)00018-0
    [6] Chadwick W W Jr, Embley R W, Milburn H B et al., 1999. Evidence for deformation associated with the 1998 eruption of Axial Volcano, Juan de Fuca Ridge, from acoustic extensometer measurements. Geophysical Research Letters, 26(23):3441-3444. doi: 10.1029/1999GL900498
    [7] Chapin Ⅲ F S, 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11:233-260.
    [8] Cui B S, Zhang Z M, Lei X X, 2012. Implementation of diversified ecological networks to strengthen wetland conservation. Clean-Soil, Air, Water, 40(10):1015-1026. doi:10.1002/clen. 201200026
    [9] Donohue S J, Brann D E, 1984. Optimum N concentration in winter wheat grown in the coastal plain region of Virginia. Communications in Soil Science and Plant Analysis, 15(6):651-661. doi: 10.1080/00103628409367505
    [10] Duan Di, Yang Qing, Li Tao et al., 2008. Analysis of nutritional compotents of red-violet phenotype Suaeda salsa leaves. Journal of Shandong Normal University (Natural Science), 23(3):118-120. (in Chinese)
    [11] Elser J J, Hassett R P, 1994. A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature, 370(6486):211-213. doi:10.1038/3702 11a0
    [12] Elser J J, Dobberfuhl D R, MacKay N A et al., 1996. Organism size, life history, and N:P stoichiometry:toward a unified view of cellular and ecosystem processes. BioScience, 46(9):674-684. doi: 10.2307/1312897
    [13] Elser J J, Fagan W F, Denno R F et al., 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature, 408(6812):578-580. doi: 10.1038/35046058
    [14] Elser J J, Fagan W F, Kerkhoff A J et al., 2010. Biological stoichiometry of plant production:metabolism, scaling and ecological response to global change. New Phytologist, 186(3):593-608. doi: 10.1111/j.1469-8137.2010.03214.x
    [15] Flynn A M, 2008. Organic matter and nutrient cycling in a coastal plain estuary:carbon, nitrogen, and phosphorus distributions, budgets, and fluxes. Journal of Coastal Research, (55):76-94. doi: 10.2112/si55-010.1
    [16] Frigstad H, Andersen T, Hessen D O et al., 2011. Seasonal variation in marine C:N:P stoichiometry:can the composition of seston explain stable Redfield ratios? Biogeosciences, 8(10):2917-2933. doi: 10.5194/bgd-8-6227-2011
    [17] Gu Zhiqin, Zhang Liquan, Yuan Lin, 2009. Responses of photosynthetic pigments of Spartina alterniflora and Phragmites australis to durative waterlogging. Chinese Journal of Applied Ecology, 20(10):2365-2369. (in Chinese)
    [18] Güsewell S, 2004. N:P ratios in terrestrial plants:variation and functional significance. New Phytologist, 164(2):243-266. doi: 10.1111/j.1469-8137.2004.01192.x
    [19] Hall E K, Maixner F, Franklin O et al., 2011. Linking microbial and ecosystem ecology using ecological stoichiometry:a synthesis of conceptual and empirical approaches. Ecosystems, 14(2):261-273. doi: 10.1007/s10021-010-9408-4
    [20] Hansson L A, Brönmark C, Nilsson P A et al., 2005. Conflicting demands on wetland ecosystem services:nutrient retention, biodiversity or both? Freshwater Biology, 50(4):705-714. doi: 10.1111/j.1365-2427.2005.01352.x
    [21] He J S, Fang J Y, Wang Z H et al., 2006. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149(1):115-122. doi:10.1007/s 00442-006-0425-0
    [22] He J S, Wang L, Flynn D F B et al., 2008. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155(2):301-310. doi: 10.1007/s00442-007-0912-y
    [23] Hu Weifang, Zhang Wenlong, Zhang Linhai et al., 2014. Stoichiometric characteristics of nitrogen and phosphorus in major wetland vegetation of China. Chinese Journal of Plant Ecology, 38(10):1041-1052. (in Chinese)
    [24] Kerkhoff A J, Enquist B J, Elser J J et al., 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14(6):585-598. doi: 10.1111/j.1466-822x.2005.00187.x
    [25] Koerselman W, Meuleman A F M, 1996. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33(6):1441-1450. doi: 10.2307/2404783
    [26] Li Zheng, Han Lin, Liu Yuhong et al., 2012. C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology, 36(10):1054-1061. (in Chinese)
    [27] Li Chengcheng, 2015. Study on Ecological Stoichiometry Characteristics and Correlation of Plants and Soil in the Wetland of Shuangtaizi Estuary. Dalian:Dalian Maritime University, 2015. (in Chinese)
    [28] Liu Xinghua, 2013. C, N, P stoichiometry of plants and soil in the wetland of Yellow River Delta. Taian:Shandong Agricultural University. (in Chinese)
    [29] Liu Wenlong, Xie Wenxia, Zhao Quansheng et al., 2014. Spatial distribution and ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in soil in Phragmites australis tidal flat of Jiaozhou Bay. Wetland Science, 12(3):362-368.(in Chinese)
    [30] McGroddy M E, Daufresne T, Hedin L O, 2004. Scaling of C:N:P stoichiometry in forests worldwide:implications of terrestrial Redfield-type ratios. Ecology, 85(9):2390-2401. doi: 10.1890/03-0351
    [31] Michaels A F, Karl D M, Capone D G, 2001. Element stoichiometry, new production and nitrogen fixation. Oceanography, 14(4):68-77. doi: 10.5670/oceanog.2001.08
    [32] Mitsch W J, Gosselink J G, 2015. Wetlands. 5th ed. New York:John Wiley & Sons, Inc.
    [33] Miu Xiongyi, 2014. The Geochemical and Mineral Research of Surface Soil of Coastal Wetland in Yellow River Delta. Qingdao:Ocean University of China. (in Chinese)
    [34] Nielsen S L, Enríquez S, Duarte C M et al., 1996. Scaling maximum growth rates across photosynthetic organisms. Functional Ecology, 10(2):167-175. doi: 10.2307/2389840
    [35] Reddy K R, DeLaune R D, 2008. Biogeochemistry of Wetlands:Science and Applications. Boca Raton:CRC Press. doi:10. 1201/9780203491454.
    [36] Redfield A C. 1958. The biological control of chemical factors in the environment. American Scientist. 46 (3):205-221.
    [37] Reich P B, Oleksyn J, 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101(30):11001-11006. doi: 10.1073/pnas.0403588101
    [38] Tessier J T, Raynal D J, 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40(3):523-534. doi: 10.1046/j.1365-2664.2003.00820.x
    [39] Vitousek P M, 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology, 65(1):285-298. doi: 10.2307/1939481
    [40] Waisel Y, 1972. Biology of Halophytes. London:Academic Press, 302-303.
    [41] Wang B S, Lüttge U, Ratajczak R, 2004. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. Journal of Plant Physiology, 161(3):285-293. doi: 10.1078/0176-1617-01123
    [42] Wang Dongmei, Yang Huimin, 2011. Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses. Pratacultural Science, 28(6):921-925. (in Chinese)
    [43] Wang J J, Bai J H, Zhao Q Q et al., 2016. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta. Scientific Reports, 6:21137. doi: 10.1038/srep21137
    [44] Woods H A, Makino W, Cotner J B et al., 2003. Temperature and the chemical composition of poikilothermic organisms. Functional Ecology, 17(2):237-245. doi:10.1046/j.1365-2435. 2003.00724.x Wright I J, Reich P B, Westoby M et al., 2004. The worldwide leaf economics spectrum. Nature, 428(6985):821-827. doi:10.1038/nature02403
    [45] Yong Yanhua, Zhang Xia, Wang Shaoming et al., 2016. Salt accumulation in vegetative organs and ecological stoichiometry characteristics in typical halophytes in Xinjiang, China. Chinese Journal of Plant Ecology, 40(12):1267-1275. (in Chinese)
    [46] Yu Junbao, Chen Xiaobing, Sun Zhigao et al., 2010. The spatial distribution characteristics of soil nutrients in new-born coastal wetland in the Yellow River delta. Acta Scientiae Circumstantiae, 30(4):855-861. (in Chinese)
    [47] Yue Xiaoxiang, Chen Min, Duan Di et al., 2008. Comparative study on antioxidant system of green and red-violet phenotype Suaeda salsa leaves. Journal of Shandong Normal University(Natural Science), 23(1):121-124. (in Chinese)
    [48] Zedler J B, 2000. Progress in wetland restoration ecology. Trends in Ecology & Evolution, 15(10):402-407. doi: 10.1016/s0169-5347(00)01959-5
    [49] Zedler J B, Kercher S, 2005. Wetland resources:status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources, 30:39-74. doi: 10.1146/annurev.
    [50] energy.30.050504.144248
    [51] Zhang Junmiao, Wu Anguo, Fu Yongshan, 2015. Research on the fiber morphology and characteristics of reed. Paper and Paper Making, 34(6):55-58. (in Chinese)
    [52] Zhang Sen, 2016. Coastal Wetland Plant Functional Traits and Its Ecological Environment Adaptation Strategy Research. Tianjin:Tianjin University of Technology. (in Chinese)
  • [1] Jiuge FENG, Jinfeng LIANG, Qianwei LI, Xiaoya ZHANG, Yi YUE, Junqin GAO.  Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China . Chinese Geographical Science, 2021, 31(2): 197-208. doi: 10.1007/s11769-021-1185-9
    [2] YU Xiaojuan, ZHANG Zhongsheng, XUE Zhenshan, WU Haitao, ZHANG Hongri.  Effects of Tidal Channels and Roads on Landscape Dynamic Distribution in the Yellow River Delta, China . Chinese Geographical Science, 2020, 30(1): 170-179. doi: 10.1007/s11769-020-1103-6
    [3] YANG Yanli, MOU Xiaojie, WEN Bolong, LIU Xingtu.  Soil Carbon, Nitrogen and Phosphorus Concentrations and Stoichi-ometries Across a Chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China . Chinese Geographical Science, 2020, 30(5): 934-946. doi: 10.1007/s11769-020-1155-7
    [4] CHEN Bingbing, SUN Zhigao.  Potential Effects of Episodic Deposition on Nutrients and Heavy Metals in Decomposing Litters of Suaeda glauca in Salt Marsh of the Yellow River Estuary, China . Chinese Geographical Science, 2020, 30(3): 466-482. doi: 10.1007/s11769-019-1088-1
    [5] SUN Jingkuan, CHI Yuan, FU Zhanyong, LI Tian, DONG Kaikai.  Spatiotemporal Variation of Plant Diversity Under a Unique Estuarine Wetland Gradient System in the Yellow River Delta, China . Chinese Geographical Science, 2020, 30(2): 217-232. doi: 10.1007/s11769-020-1109-0
    [6] WANG Kuifeng.  Evolution of Yellow River Delta Coastline Based on Remote Sensing from 1976 to 2014, China . Chinese Geographical Science, 2019, 20(2): 181-191. doi: 10.1007/s11769-019-1023-5
    [7] CONG Pifu, CHEN Kexin, QU Limei, HAN Jianbo.  Dynamic Changes in the Wetland Landscape Pattern of the Yellow River Delta from 1976 to 2016 Based on Satellite Data . Chinese Geographical Science, 2019, 20(3): 372-381. doi: 10.1007/s11769-019-1039-x
    [8] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [9] REN Chunying, WANG Zongming, ZHANG Bai, LI Lin, CHEN Lin, SONG Kaishan, JIA Mingming.  Remote Monitoring of Expansion of Aquaculture Ponds Along Coastal Region of the Yellow River Delta from 1983 to 2015 . Chinese Geographical Science, 2018, 28(3): 430-442. doi: 10.1007/s11769-017-0926-2
    [10] LI Lei, SU Jinbao, RAO Wenbo, WANG Yigang.  Using Geochemistry of Rare Earth Elements to Indicate Sediment Provenance of Sand Ridges in Southwestern Yellow Sea . Chinese Geographical Science, 2017, 27(1): 63-77. doi: 10.1007/s11769-017-0847-0
    [11] GAO Manyu, KONG Fanlong, XI Min, LI Yue, LI Jihua.  Effects of Environmental Conditions and Aboveground Biomass on CO2 Budget in Phragmites australis Wetland of Jiaozhou Bay, China . Chinese Geographical Science, 2017, 27(4): 539-551. doi: 10.1007/s11769-017-0886-6
    [12] LI Xinhua, ZHU Zhenlin, YANG Liping, SUN Zhigao.  Emissions of Biogenic Sulfur Gases (H2S, COS) from Phragmites australis Coastal Marsh in the Yellow River Estuary of China . Chinese Geographical Science, 2016, 26(6): 770-778. doi: 10.1007/s11769-016-0836-8
    [13] SUN Zhigao MOU Xiaojie SUN Jingkuan et al..  Nitrogen Biological Cycle Characteristics of Seepweed (Suaeda salsa) Wetland in Intertidal Zone of Huanghe (Yellow) River Estuary . Chinese Geographical Science, 2012, 22(1): 15-28.
    [14] HAN Mei CUI Jinlong HAO Zhen et al..  Eco-compensation of Wetlands in Yellow River Delta of Shandong Province, China . Chinese Geographical Science, 2012, 22(1): 119-126.
    [15] JIANG Xueding, XIA Beicheng, LIN Guangfa, LIN Wenshi.  Daily Changes of Spatial Patterns of Meteorological Elements over Pearl River Delta Based on GIS and MM5 . Chinese Geographical Science, 2009, 19(1): 69-76. doi: 10.1007/s11769-009-0069-1
    [16] ZHANG Yun, LU Xian-guo.  THE EFFECT OF DRAINAGE ON CHEMICAL ELEMENTS CONTENT OF MARSH . Chinese Geographical Science, 2001, 11(1): 76-79.
    [17] 邵庆春, 邓伟, 孙广友.  CONTENT AND DISTRIBUTION OF TRACE ELEMENTS IN SOILS OF THE DAM RIVER AND TUOTUO RIVER BASINS . Chinese Geographical Science, 1995, 5(2): 157-169.
    [18] 陈宝冲.  THE CHANGE OF THE GENERAL FORM AND THE TRANSPORT OF THE WATER, LOAD AND SALT ABOUT THE NORTH-BRANCH OF THE CHANGJIANG RIVER MOUTH . Chinese Geographical Science, 1994, 4(3): 242-251.
    [19] 杨桂山.  IMPACTS OF FUTURE SEA LEVEL RISE ON SALT WATER INTRUSION IN THE CHANGJIANG RIVER ESTUARY . Chinese Geographical Science, 1992, 2(1): 30-41.
    [20] 杨远东.  AN ANALYSIS OF THREE ELEMENTS OF WATER BALANCE IN THE CHANGJIANG RIVER BASIN . Chinese Geographical Science, 1991, 1(3): 197-211.
  • 加载中
计量
  • 文章访问数:  376
  • HTML全文浏览量:  14
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 修回日期:  2017-08-04
  • 刊出日期:  2018-06-27

Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China

doi: 10.1007/s11769-018-0959-1
    基金项目:  Under the auspices of National Key R & D Program of China (No. 2017YFC0505906), National Natural Science Foundation of China (No. 51639001, 51379012), Interdiscipline Research Funds of Beijing Normal University
    通讯作者: BAI Junhong.E-mail:junhongbai@163.com

摘要: Little information is available on biogenic elements (carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow (Huanghe) River Delta, plant samples were collected from two typical salt marshes (Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis (P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences (P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Phragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.

English Abstract

JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. 中国地理科学, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
引用本文: JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. 中国地理科学, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
Citation: JIA Jia, BAI Junhong, WANG Wei, ZHANG Guangliang, WANG Xin, ZHAO Qingqing, ZHANG Shuai. Changes of Biogenic Elements in Phragmites australis and Suaeda salsa from Salt Marshes in Yellow River Delta, China[J]. Chinese Geographical Science, 2018, 28(3): 411-419. doi: 10.1007/s11769-018-0959-1
参考文献 (52)

目录

    /

    返回文章
    返回