留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China

ZHOU Jianchao WU Jinglu ZENG Haiao

ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. 中国地理科学, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
引用本文: ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. 中国地理科学, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. Chinese Geographical Science, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
Citation: ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. Chinese Geographical Science, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0

Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China

doi: 10.1007/s11769-018-0968-0
基金项目: Under the auspices of National Key Research and Development Program of China (No. 2017YFA0603400), National Science Foundation of China (No. 41671200, U1603242)
详细信息
    通讯作者:

    WU Jinglu. E-mail:w.jinglu@niglas.ac.cn

Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China

Funds: Under the auspices of National Key Research and Development Program of China (No. 2017YFA0603400), National Science Foundation of China (No. 41671200, U1603242)
More Information
    Corresponding author: WU Jinglu. E-mail:w.jinglu@niglas.ac.cn
  • 摘要: Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, long-term records of paleofloods in arid regions are scarce, thus preventing a thorough understanding of such events. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Results showed that grain parameters and frequency distributions can be used to infer possible abrupt environmental events within the lake sedimentary sequence, and two extreme flood events corresponding to ca. 1736-1765 AD and ca. 1890 AD were further identified based on canonical discriminant analysis (CDA) and coarse percentile versus median grain size (C-M) pattern analysis, both of which occurred during warmer and wetter climate conditions by referring to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan mountains. Furthermore, through a comparison with other records, the flood event from ca. 1736-1765 AD in the study region seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation (NAO) index.
  • [1] Aizen V B, Aizen E M, Melack J M et al., 1997. Climate and hydrologic change in the Tien Shan, Central Asia. Journal of Climate, 10(6):1393-140. doi:10.1175/1520-0442(1997)010< 1393:CAHCIT>2.0.CO;2
    [2] Amann B, Szidat S, Grosjean M, 2015. A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments:im-plications for the future. Quaternary Science Reviews, 115:89-100. doi:  10.1016/j.quascirev.2015.03.002
    [3] Appleby P G, Oldfield F, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1):1-8. doi:10.1016/S0341-8162(78) 80002-2
    [4] Appleby P G, 2008. Three decades of dating recent sediments by fallout radionuclides:a review. The Holocene, 18(1):83-93. doi: 10.1177/0959683607085598
    [5] Arnaud F, Poulenard J, Giguet-Covex C et al., 2016. Erosion under climate and human pressures:an alpine lake sediment perspective. Quaternary Science Reviews, 152:1-18. doi: 10.1016/j.quascirev.2016.09.018
    [6] Boomer I, Wünnemann B, Mackay A W et al., 2009. Advances in understanding the late Holocene history of the Aral Sea region. Quaternary International, 194(1):79-90. doi:10.1016/j. quaint.2008.03.007
    [7] Chen F H, Chen J H, Holmes J et al., 2010. Moisture changes over the last millennium in arid central Asia:a review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7-8):1055-1068. doi:10.1016/j.quascirev.2010. 01.005
    [8] Chen Jingan, Wan Guoqiang, Zhang D D et al., 2004. Environ-mental records of lacustrine sediments in different time scales:Sediment grain size as an example. Science in China:Series D:Earth Sciences, 47(10):954-960. doi: 10.1360/03yd0160
    [9] Chen J H, Chen F H, Feng S et al., 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age:spatial patterns and possible mechanisms. Quaternary Science Reviews, 107:98-111. doi: 10.1016/j.quascirev.2014.10.012
    [10] Chiba T, Endo K, Sugai T et al., 2016. Reconstruction of Lake Balkhash levels and precipitation/evaporation changes during the last 2000 years from fossil diatom assemblages. Quaternary International, 397:330-341. doi:10.1016/j.quaint.2015. 08.009
    [11] Christiansen B, Ljungqvist F C, 2012. The extra-tropical Northern Hemisphere temperature in the last two millennia:reconstruc-tions of low-frequency variability. Climate of the Past, 8(2):765-786. doi: 10.5194/cp-8-765-2012
    [12] Corella J P, Benito G, Rodriguez-Lloveras X et al., 2014. Annual-ly-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quaternary Science Reviews, 93:77-90. doi:10.1016/j.quascirev.2014. 03.020
    [13] Davi N K, Jacoby G C, Curtis A E et al., 2006. Extension of Drought Records for Central Asia Using Tree Rings:west-central Mongolia. Journal of Climate, 19(2):288-299. doi: 10.1175/JCLI3621.1
    [14] Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes:observations, modeling, and impacts. Science, 289(5487): 2068-2074. doi: 10.1126/science.29.5487.2068
    [15] Feng Min, 1993. Landform and origin of Hanas Lake, Altay Mountains. Journal of Glaciology and Geocryology, 15(4):559-565. (in Chinese)
    [16] Garcia-Orellana J, Sanchez-Cabeza JA, Masqué P et al., 2006. Atmospheric fluxes of 210Pb to the western Mediterranean Sea and the Saharan dust influence. Journal of Geophysical Re-search:Atmospheres, 111(D15):D15305. doi:10.1029/2005 JD006660
    [17] Glur L, Wirth S B, Büntgen U et al., 2013. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Scientific Reports, 3:2770. doi: 10.1038/srep02770
    [18] Hu Yicheng, Yuan Yujiang, Wei Weishou et al., 2012. Tree-ring reconstruction of mean June-July temperature during 1613-2006 in east Altay, Xinjiang of China. Journal of Desert Re-search, 32(4):1003-1009. (in Chinese)
    [19] Huang Xiaozhong, Chen Fahu, Xiao Sun et al., 2008. Primary study on the environmental significances of grain-size changes of the Lake Bosten sediments. Journal of Lake Sciences, 20(3):291-297. doi:10.18307/2008.0305. (in Chinese)
    [20] IPCC, 2013. Climate change 2013:the physical science basis. In:Stocker T F et al. (eds). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press.
    [21] Li J B, Gou X H, Cook E R et al., 2006. Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophysical Research Letters, 33(7):L07715. doi:10. 1029/2006GL025803
    [22] Li Y F, Guo Y, Yu G. 2013. An analysis of extreme flood events during the past 400 years at Taihu lake, China. Journal of Hy-drology, 500:217-225. doi: 10.1016/j.jhydrol.2013.02.028
    [23] Li Y, Qiang M R, Zhang J W et al., 2016. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, northwestern China. Qua-ternary International, 452:91-101. doi:10.1016/j.quaint. 2016.07.053
    [24] Liu C T, Zipser E J, 2015. The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9):3591-3595. doi:10.1002/2015GL 063776
    [25] López-Merino L, Leroy S A G, Eshel A et al., 2016. Using paly-nology to re-assess the Dead Sea laminated sediments:indeed varves? Quaternary Science Reviews, 140:49-66. doi:10. 1016/j.quascirev.2016.03.024
    [26] Ma L, Wu J L, Abuduwaili J et al., 2015. Aeolian particle transport inferred using a~150-year sediment record from Sayram Lake, arid northwest China. Journal of Limnology, 74(3):584-593. doi: 10.4081/jlimnol.2015.1208
    [27] Min S K, Zhang X B, Zwiers F W et al., 2011. Human contribu-tion to more-intense precipitation extremes. Nature, 470(7334):378-381. doi: 10.1038/nature09763
    [28] Nuerlan Hazaizi, Shen Yongping, 2014. Flood characteristics of Altay area, Xinjiang. Journal of China Hydrology, 34(4):74-81. (in Chinese)
    [29] Oldfield F, 2005. Environmental Change:Key Issues and Alter-native Approaches. Cambridge, UK:Cambridge University Press.
    [30] Pall P, Aina T, Stone D A et al., 2011. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470(7334):382-385. doi: 10.1038/nature09762
    [31] Purkait B, Majumdar D D, 2014. Distinguishing different sedi-mentary facies in a deltaic system. Sedimentary Geology, 308(7):53-62. doi: 10.1016/j.sedgeo.2014.05.001
    [32] Schillereff D N, Chiverrell R C, Macdonald N et al., 2014. Flood stratigraphies in lake sediments:a review. Earth-Science Re-views, 135:17-37. doi: 10.1016/j.earscirev.2014.03.011
    [33] Shi Yafeng, Shen Yongping, Li Dongliang et al., 2003. Discussion on the present climate change from warm-dry to warm-wet in northwest china. Quaternary Sciences, 23(2):152-164. (in Chinese)
    [34] Shi Y F, Shen Y K, Kang E S et al., 2007. Recent and Future Cli-mate Change in Northwest China. Climatic Change, 80(3-4):379-393. doi: 10.1007/s10584-006-9121-7
    [35] Trouet V, Esper J, Graham N E et al., 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324(5923):78-80. doi:10.1126/science. 1166349
    [36] Wang Hao, Liu Guohua, Li Zongshan et al., 2016. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China. Chinese Geographical Science, 26(1):35-47. doi: 10.1007/s11769-015-0762-1
    [37] Wen Kegang, Shi Yuguang, 2006. China Meteorological Disasters Books:Xinjiang Volume. Beijing:China Meteorological Press, 75-146. (in Chinese)
    [38] Wilhelm B, Arnaud F, Enters D et al., 2012. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Climatic Change, 113(3-4):563-581. doi:10.1007/s 10584-011-0376-2
    [39] Wilhelm B, Arnaud F, Sabatier P et al., 2013. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps. Journal of Qua-ternary Science, 28(2):189-199. doi: 10.1002/jqs.2609
    [40] Wu J L, Liu W, Zeng H A et al., 2014. Water Quantity and Quality of Six Lakes in the Arid Xinjiang Region, NW China. Envi-ronmental Processes, 1(2):115-125. doi: 10.1007/s40710-014-0007-9
    [41] Xiao J L, Chang Z G, Wen R L et al., 2009. Holocene weak mon-soon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene, 19(6):899-908. doi:10.1177/09596836 09336574
    [42] Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui et al., 2008. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments. Quaternary Sciences, 28(2):345-353. (in Chinese)
    [43] Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipita-tion extremes in arid Central Asia. Quaternary International, 436:16-27. doi: 10.1016/j.quaint.2016.12.024
    [44] Zhang Tongwen, Yuan Yujiang, Yu Shulong et al., 2008a. Recon-structed mean temperature series from May to September with tree-ring in the western region of Altay near the recent 365 a. Arid Zone Research, 25(2):288-294. (in Chinese)
    [45] Zhang Tongwen, Yuan Yujiang, Yu Shulong et al., 2008b. June to September precipitation series of 1481-2004 reconstructed from tree-ring in the western region of Altay Prefecture, Xinjiang. Journal of Glaciology and Geocryology, 30(4):659-657. (in Chinese)
    [46] Zhang Tongwen, Yuan Yujiang, Wei Wenshou et al., 2010. Re-constructed number of snow cover depth ≥ 0 cm days changes in the western Altai Prefecture, using tree-ring width chronol-ogies. Desert and Oasis Meteorology, 4(3):6-11. (in Chinese)
    [47] Zhang Wei, Fu Yanjing, Liu Beibei et al., 2015. Geomorphological process of late Quaternary glaciers in Kanas river valley of the Altay Mountains. Acta Geographic Sinica, 70(5):739-750. (in Chinese)
  • [1] Tao WANG, Daojing ZHOU, Li WANG, Jianxiong WU.  Urban Spatial Carrying Capacity and Sustainable Urbanization in the Middle-east Section of North Slope of Kunlun Mountains in Xinjiang, China . Chinese Geographical Science, 2023, 33(3): 426-440. doi: 10.1007/s11769-023-1348-y
    [2] Bingxiang WANG, Wei ZHONG, Chan ZHU, Jun OUYANG, Zhiqiang WEI, Shengtan SHANG.  Geochemistry of Sediments from a Subalpine Lake Sedimentary Succession in the Western Nanling Mountains, Southern China: Implications for Catchment Weathering During the Last 15 400 Years . Chinese Geographical Science, 2022, 32(3): 537-548. doi: 10.1007/s11769-022-1282-4
    [3] Xuelian GUO, Lusheng HE, Guoyong ZHAO, Weibin WANG, Huairen CAO, Hao WU.  Spatial-temporal Characteristics of Holocene Paleosols in the Chinese Loess Plateau and Paleoclimatic Significance . Chinese Geographical Science, 2022, 32(6): 1110-1118. doi: 10.1007/s11769-022-1285-1
    [4] CHEN Weiwei, ZHANG Shichun, TONG Quansong, ZHANG Xuelei, ZHAO Hongmei, MA Siqi, XIU Aijun, HE Yuexin.  Regional Characteristics and Causes of Haze Events in Northeast China . Chinese Geographical Science, 2018, 28(5): 836-850. doi: 10.1007/s11769-018-0965-3
    [5] JIN Yinghua, ZHANG Yingjie, XU Jiawei, TAO Yan, HE Hongshi, GUO Meng, WANG Ailin, LIU Yuxia, NIU Liping.  Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming . Chinese Geographical Science, 2018, 28(4): 665-679. doi: 10.1007/s11769-018-0978-y
    [6] SHI Lifeng, ZHANG Zengxiang, LIU Fang, ZHAO Xiaoli, WANG Xiao, LIU Bin, HU Shunguang, WEN Qingke, ZUO Lijun, YI Ling, XU Jinyong.  City Size Distribution and Its Spatiotemporal Evolution in China . Chinese Geographical Science, 2016, 26(6): 703-714. doi: 10.1007/s11769-016-0832-z
    [7] Harry Fung LEE, ZHANG David Dian, PEI Qing, FEI Jie.  Downscaling and Disaggregating NAO-conflict Nexus in Pre-industrial Europe . Chinese Geographical Science, 2016, 26(5): 609-622. doi: 10.1007/s11769-016-0817-y
    [8] WEN Xiaohao LI Baosheng WANG Fengnian et al..  Grain-size Characteristics and Climate Variability in TMS5e Sequence of Tumen Section in Southern Tengger Desert, Northwestern China . Chinese Geographical Science, 2012, 22(1): 48-62.
    [9] BAO Kunshan, JIA Lin, LU Xianguo, WANG Guoping.  Grain-size Characteristics of Sediment in Daniugou Peatland in Changbai Mountains,Northeast China:Implications for Atmospheric Dust Deposition . Chinese Geographical Science, 2010, 20(6): 498-505. doi: 10.1007/s11769-010-0427-z
    [10] ZHENG Yinghua, WU Yongqiu, LI Sen, TAN Lihua, GOU Shiwei, ZHANG Hongyan.  Grain-size Characteristics of Sediments Formed Since 8600 yr B.P. in Middle Reaches of Yarlung Zangbo River in Tibet and Their Paleoenvironmental Significance . Chinese Geographical Science, 2009, 19(2): 113-119. doi: 10.1007/s11769-009-0113-1
    [11] WANG Aijun, CHEN Jian.  Spatial Variations in Depth-distribution of Trace Metals in Coastal Wetland Sediments from Quanzhou Bay, Fujian Province, China . Chinese Geographical Science, 2009, 19(1): 62-68. doi: 10.1007/s11769-009-0062-8
    [12] XUE Jibin, ZHONG Wei, ZHAO Yinjuan, PENG Xiaoying.  Holocene Abrupt Climate Shifts and Mid-Holocene Drought Intervals Recorded in Barkol Lake of Northern Xinjiang of China . Chinese Geographical Science, 2008, 18(1): 54-61. doi: 10.1007/s11769-008-0054-0
    [13] LI Xiang, WANG Xinyuan, SHAO Wei, XIA Linyi, ZHANG Guangsheng, TIAN Bing, LI Wenda, PENG Peng.  Forecast of Flood in Chaohu Lake Basin of China Based on Grey-Markov Theory . Chinese Geographical Science, 2007, 17(1): 64-68. doi: 10.1007/s11769-007-0064-3
    [14] LEI Jun, LUO Geping, ZHANG Xiaolei, LU Qi.  Oasis System and Its Reasonable Development in Sangong River Watershed in North of the Tianshan Mountains, Xinjiang, China . Chinese Geographical Science, 2006, 16(3): 236-242.
    [15] LI Bao-sheng, GAO Shang-yu, DONG Guang-rong, JIN He-ling.  ENVIRONMENTAL EVOLUTION OF ORDOS DESERT IN CHINA SINCE 1.1 MA B. P. AS INDICATED BY YULIN STRATIGRAPHICAL SECTION AND ITS GRAIN-SIZE ANALYSIS RESULTS . Chinese Geographical Science, 2005, 15(1): 34-41.
    [16] GAO Jian-hua, GAO Shu, CHENG Yan, DONG Li-xian, ZHANG Jing.  SEDIMENT TRANSPORT IN YALU RIVER ESTUARY . Chinese Geographical Science, 2003, 13(2): 157-163.
    [17] XU Peng-zhu, JIANG Tong, KING Lorenz.  HYDROLOGIC/HYDRAULIC MODELLING AND FLOOD RISK ANALYSIS FOR THE WEST TIAOXI CATCHMENT, TAIHU LAKE REGION, CHINA . Chinese Geographical Science, 2000, 10(4): 309-318.
    [18] 钱步东.  PRECIPITATION PATTERNS IN FLOOD SEASON OVER CHINA ASSOCIATED WITH THE EL NI?O/SOUTHERN OSCILlATION . Chinese Geographical Science, 1997, 7(3): 220-228.
    [19] 陈家其.  THE APPLICABILITY OF RESEARCH ON FLOOD-DROUGHT TENDENCY-AN ANALYSIS ON DISASTROUS FLOOD OF TAIHU LAKE BASIN IN JUNE-JULY, 1991 . Chinese Geographical Science, 1994, 4(2): 129-133.
    [20] 沈小英, 陈家其.  GRAIN PRODUCTION AND CLIMATIC VARIATION IN TAIHU LAKE BASIN . Chinese Geographical Science, 1993, 3(2): 173-178.
  • 加载中
计量
  • 文章访问数:  343
  • HTML全文浏览量:  16
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-12
  • 修回日期:  2017-09-05
  • 刊出日期:  2018-10-27

Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China

doi: 10.1007/s11769-018-0968-0
    基金项目:  Under the auspices of National Key Research and Development Program of China (No. 2017YFA0603400), National Science Foundation of China (No. 41671200, U1603242)
    通讯作者: WU Jinglu. E-mail:w.jinglu@niglas.ac.cn

摘要: Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, long-term records of paleofloods in arid regions are scarce, thus preventing a thorough understanding of such events. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Results showed that grain parameters and frequency distributions can be used to infer possible abrupt environmental events within the lake sedimentary sequence, and two extreme flood events corresponding to ca. 1736-1765 AD and ca. 1890 AD were further identified based on canonical discriminant analysis (CDA) and coarse percentile versus median grain size (C-M) pattern analysis, both of which occurred during warmer and wetter climate conditions by referring to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan mountains. Furthermore, through a comparison with other records, the flood event from ca. 1736-1765 AD in the study region seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation (NAO) index.

English Abstract

ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. 中国地理科学, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
引用本文: ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. 中国地理科学, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. Chinese Geographical Science, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
Citation: ZHOU Jianchao, WU Jinglu, ZENG Haiao. Extreme Flood Events over the Past 300 Years Inferred from Lake Sedimentary Grain Sizes in the Altay Mountains, Northwestern China[J]. Chinese Geographical Science, 2018, 28(5): 773-783. doi: 10.1007/s11769-018-0968-0
参考文献 (47)

目录

    /

    返回文章
    返回