留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China

HU Deyong CHEN Shanshan QIAO Kun CAO Shisong

HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. 中国地理科学, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
引用本文: HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. 中国地理科学, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
Citation: HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x

Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China

doi: 10.1007/s11769-017-0882-x
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41671339)
详细信息
    通讯作者:

    CHEN Shanshan.E-mail:amchenshanshan@163.com

Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41671339)
More Information
    Corresponding author: CHEN Shanshan.E-mail:amchenshanshan@163.com
  • 摘要: The sub-pixel impervious surface percentage (SPIS) is the fraction of impervious surface area in one pixel, and it is an important indicator of urbanization. Using remote sensing data, the spatial distribution of SPIS values over large areas can be extracted, and these data are significant for studies of urban climate, environment and hydrology. To develop a stabilized, multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons, an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree (CART) algorithm. First, models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data. The optimal model was selected through the analysis and comparison of the assessed accuracy of these models. Subsequently, multi-temporal SPIS mapping was carried out based on the optimal model. The results are as follows: 1) multi-seasonal images and nighttime light (NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality, where the intra-annual variability in vegetation is distinct. The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively. NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces. After testing, the SPIS modeling correlation coefficient (r) is approximately 0.86, the average error (AE) is approximately 12.8%, and the relative error (RE) is approximately 0.39. 2) The SPIS results have been divided into areas with high-density impervious cover (70%-100%), medium-density impervious cover (40%-70%), low-density impervious cover (10%-40%) and natural cover (0%-10%). The SPIS model performed better in estimating values for high-density urban areas than other categories. 3) Multi-temporal SPIS mapping (1991-2016) was conducted based on the optimized SPIS results for 2005. After testing, AE ranges from 12.7% to 15.2%, RE ranges from 0.39 to 0.46, and r ranges from 0.81 to 0.86. It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.
  • [1] Arnold Jr C L, Gibbons C J, 1996. Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American Planning Association, 62(2): 243-258. doi: 10.1080/01944369608975688
    [2] Breiman L, Friedman J, Olshen R, 1984. Classification and Regression Tree. New York: Chapman and Hall.
    [3] Cao Liqin, Li Pingxiang, Zhang Liangpei et al., 2012. Estimating impervious surfaces using the fuzzy ARTMAP. Geomatics and Information Science of Wuhan University, 37(10): 1236-1239. (in Chinese)
    [4] Friedl M A, Brodley C E, Strahler A H, 1999. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans on Geoscience and Remote Sensing, 37(2): 969-977. doi: 10.1109/36.752215
    [5] Gao Zhihong, Zhang Lu, Li Xinyan et al., 2010. Detection and analysis of urban land use changes through multi-temporal impervious surface mapping. Journal of Remote Sensing, 14(3): 593-606. (in Chinese)
    [6] Homer C, Dewitz J, Yang L et al., 2015. Completion of the 2011 national land cover database for the conterminous United States representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, 81(5): 346-354. doi: 10.14358/PERS.81.5.345
    [7] Huang C, Townshend J R G, 2003. A stepwise regression tree for nonlinear approximation: applications to estimating subpixel land cover. International Journal of Remote Sensing, 24(1): 75-90. doi: 10.1080/01431160110115032
    [8] Imhoff M L, Zhang Ping, Wolfe R E et al., 2010. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment, 114(3): 504-513. doi: 10.1016/j.rse.2009.10.008
    [9] Jiang Liming, Liao Mingsheng, Lin Hui et al., 2008. Estimating urban impervious surface percentage with ERS-1/2 InSAR data. Journal of Remote Sensing, 12(1): 176-185. (in Chinese)
    [10] Jin H, Mountrakis G, 2013. Integration of urban growth modelling products with image-based urban change analysis. International Journal of Remote Sensing, 34(15): 5468-5486. doi: 10.1080/01431161.2013.791760
    [11] Lawrence R, Bunn A, Powell S, 2004. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3): 331-336. doi: 10.1016/j.rse.2004.01.007
    [12] Li J X, Song C H, Cao L et al., 2011. Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sensing of Environment, 115(12): 3249-3263. doi: 10.1016/j.rse.2011.07.008
    [13] Li Qian, Li Caili, Rui Hanyi et al., 2010. Estimate of impervious surface percent based on different brightness of cart method with remote sensing images. Water Resources and Power, (12): 45-48. (in Chinese)
    [14] Li Xiaoning, Zhang Youjing, She Yuanjian et al., 2013. Estimation of impervious surface percentage of river network regions using an ensemble leaning of CART analysis. Remote Sensing for Land and Resources, 25(4): 174-179. (in Chinese)
    [15] Liu Y H, Niu Z, Wang C Y, 2005. Research and application of the decision tree classification using MODIS data. Journal of Remote Sensing, 9(4): 405-411. doi: 10.11834/jrs.20050459
    [16] Ma Q, He C, Wu J et al., 2014. Quantifying spatiotemporal patterns of urban impervious surfaces in China: an improved assessment using nighttime light data. Landscape and Urban Planning, 130(4): 36-49. doi:10.1016/j.landurbplan.2014. 06.009
    [17] Michie D, Spiegelhalter D J, Taylor C C, 1994. Machine Learning, Neural and Statistical Classification. New York: Ellis Horwood.
    [18] Patel N, Mukherjee R, 2014. Extraction of impervious features from spectral indices using artificial neural network. Arabian Journal of Geosciences, 8(6): 3729-3741. doi:10.1007/s 12517-014-1492-x
    [19] Sanbum L, Lathrop R G, 2006. Subpixel analysis of Landsat ETM/sup+using self-organizing map (SOM) neural networks for urban land cover characterization. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1642-1654. doi: 10.1109/TGRS.2006.869984
    [20] Su Y, Chen X, Wang C, et al., 2015. A new method for extracting built-up urban areas using DMSP-OLS nighttime stable lights: a case study in the Pearl River Delta, southern China. Giscience and Remote Sensing, 52(2): 218-238. doi: 10.1080/15481603.2015.1007778
    [21] Wang H, Wu B F, Li X S, 2011. Extraction of impervious surface in Hai Basin using remote sensing. Journal of Remote Sensing, 15(2): 388-400. doi: 10.11834/jrs.20110288
    [22] Weng Q, 2012. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sensing of Environment, 117(2): 34-49. doi: 10.1016/j.rse.2011.02.030
    [23] Wu C, Murray A T, 2003. Estimating impervious surface distribution by spectral mixture analysis. Remote Sensing of Environment, 84(23): 493-505. doi:10.1016/S0034-4257 (02)00136-0
    [24] Xian G, Crane M, 2005. Assessments of urban growth in the Tampa Bay watershed using remote sensing data. Remote Sensing of Environment, 97(22): 203-215. doi:10.1016/j.rse. 2005.04.017
    [25] Xiao Rongbo, Ouyang Zhiyun, Cai Yunnan, 2007. Urban landscape pattern study based on sub-pixel estimation of impervious surface. Acta Ecologica Sinica, 27(8): 3189-3197. (in Chinese)
    [26] Yang L M, Jiang L M, Lin H et al., 2009. Quantifying sub-pixel urban impervious surface through fusion of optical and InSAR imagery. Giscience and Remote Sensing, 46(2): 161-171. doi: 10.2747/1548-1603.46.2.161
    [27] Yang L, Huang C, Homer C G et al., 2003. An approach for mapping large-area impervious surfaces: synergistic use of Landsat-7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing, 29(2): 230-240. doi: 10.5589/m02-098
    [28] Yang X, 2006. Estimating landscape imperviousness index from satellite imagery. IEEE Geosience and Remote Sensing Letters, 3(1): 6-9. doi: 10.1109/LGRS.2005.853929
    [29] Zhang L, Weng Q, 2016. Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery. Isprs Journal of Photogrammetry and Remote Sensing, 113(3): 86-96. doi:10.1016/j.isprsjprs.2016. 01.003
    [30] Zhang Lu, Gao Zhihong, Liao Mingsheng et al., 2010. Estimating urban impervious surface percentage with multi-source remote sensing data. Geomatics and Information Science of Wuhan University, 35(10): 1212-1216. (in Chinese)
    [31] Zhou J, Chen Y H, Zhang X et al., 2013. Modelling the diurnal variations of urban heat islands with multi-source satellite data. International Journal of Remote Sensing, 34(21): 7568-7588. doi: 10.1080/01431161.2013.821576
    [32] Zhou Ji, Chen Yunhao, Zhang Jinshui et al., 2007. Urban impervious surface abundance estimation in Beijing based on remote sensing. Remote Sensing for Land and Resources, 19(3): 13-17. (in Chinese)
  • [1] Kai LIU, Dapeng ZHANG, Tan CHEN, Peipei CUI, Chenyu FAN, Chunqiao SONG.  Monitoring Surface Water Change in Northeast China in 1999–2020: Evidence from Satellite Observation and Refined Classification . Chinese Geographical Science, 2024, 34(1): 106-117. doi: 10.1007/s11769-024-1411-3
    [2] Liping ZHANG, Liang ZHOU, Bo YUAN, Fengning HU, Qian ZHANG, Wei WEI, Dongqi SUN.  Spatiotemporal Evolution Characteristics of Urban Land Surface Temperature Based on Local Climate Zones in Xi’an Metropolitan, China . Chinese Geographical Science, 2023, 33(6): 1001-1016. doi: 10.1007/s11769-023-1387-4
    [3] WU Xiangli, LI Binxia, LI Miao, GUO Meixin, ZANG Shuying, ZHANG Shouzhi.  Examining the Relationship Between Spatial Configurations of Urban Impervious Surfaces and Land Surface Temperature . Chinese Geographical Science, 2019, 20(4): 568-578. doi: 10.1007/s11769-019-1055-x
    [4] ZHAO Yi, ZHONG Kaiwen, XU Jianhui, SUN Caige, WANG Yunpeng.  Directional Analysis of Urban Expansion Based on Sub-pixel and Regional Scale: A Case Study of Main Districts in Guangzhou, China . Chinese Geographical Science, 2019, 20(4): 652-666. doi: 10.1007/s11769-019-1048-9
    [5] Juliana USEYA, CHEN Shengbo.  Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data . Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
    [6] ZHAN Chao, YU Junbao, WANG Qing, LI Yunzhao, ZHOU Di, XING Qinghui, CHU Xiaojing.  Remote Sensing Retrieval of Surface Suspended Sediment Concentration in the Yellow River Estuary . Chinese Geographical Science, 2017, 27(6): 934-947. doi: 10.1007/s11769-017-0921-7
    [7] PENG Jian, LIU Yanxu, SHEN Hong, XIE Pan, HU Xiaoxu, WANG Yanglin.  Using Impervious Surfaces to Detect Urban Expansion in Beijing of China in 2000s . Chinese Geographical Science, 2016, 26(2): 229-243. doi: 10.1007/s11769-016-0802-5
    [8] YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping.  A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area . Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
    [9] ZHANG Jing, Mark A ROSS, Jeffery GEURINK.  Discretization Approach in Integrated Hydrologic Model for Surface and Groundwater Interaction . Chinese Geographical Science, 2012, 22(6): 659-672.
    [10] HUANG Fang, WANG Ping.  Vegetation Change of Ecotone in West of Northeast China Plain Using Time-series Remote Sensing Data . Chinese Geographical Science, 2010, 20(2): 167-175. doi: 10.1007/s11769-010-0167-0
    [11] ZHENG Xingming, ZHAO Kai.  A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing . Chinese Geographical Science, 2010, 20(4): 345-352. doi: 10.1007/s11769-010-0407-3
    [12] YUE Wenze.  Improvement of Urban Impervious Surface Estimation in Shanghai Using Landsat7 ETM+ Data . Chinese Geographical Science, 2009, 19(3): 283-290. doi: 10.1007/s11769-009-0283-x
    [13] PENG Guangxiong, LI Jing, CHEN Yunhao, Abdul Patah NORIZAN, Liphong TAY.  High-resolution Surface Relative Humidity Computation Using MODIS Image in Peninsular Malaysia . Chinese Geographical Science, 2006, 16(3): 260-264.
    [14] REN Xin-rong, WANG Li-xin, WANG Hui-xiang, MIAO Guo-fang.  CONVERSION RATES OF SURFACE HOX RADICALS IN BEIJING CITY . Chinese Geographical Science, 2004, 14(1): 34-38.
    [15] WANG Xie-kang, HUANG Er, CUI Peng.  SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK . Chinese Geographical Science, 2003, 13(3): 262-266.
    [16] BO Li-qun, XU Xin-liang, HUA Ren-kui, ZHANG Xue-xia.  RESEARCH ON DISTURBED MECHANISM OF THERMAL NOISES OF THE SURFACE IN ABRUPT GEOTHERMAL ANOMALY . Chinese Geographical Science, 2001, 11(3): 270-277.
    [17] HAN Mei, LI Dao-gao, ZHAO Ming-hua, JIANG Ai-xia.  A STUDY OF THE SURFACE EMERGING PALAEOCHANNELS ON THE SOUTH COAST PLAIN OF LAIZHOU BAY . Chinese Geographical Science, 2000, 10(3): 245-253.
    [18] 李国平, 陈仲林.  SOME IMPORTANT CHARACTERISTICS OF SURFACE ALBEDO OF CHINA IN RECENT YEARS . Chinese Geographical Science, 1997, 7(2): 124-129.
    [19] 许有鹏, 杨戊.  47||HYDROLOGIC SERIES CHARACTERISTICS ANALYSIS OF THE MAJOR RIVERS AROUND THE TAKLIMAKAN DESERT . Chinese Geographical Science, 1997, 7(1): 47-52.
    [20] 蒋忠信.  TREND SURFACE ANALYSIS OF THE EXISTENT SNOWLINE IN WEST CHINA . Chinese Geographical Science, 1991, 1(1): 62-69.
  • 加载中
计量
  • 文章访问数:  375
  • HTML全文浏览量:  12
  • PDF下载量:  848
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-02
  • 修回日期:  2016-09-01
  • 刊出日期:  2017-08-27

Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China

doi: 10.1007/s11769-017-0882-x
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41671339)
    通讯作者: CHEN Shanshan.E-mail:amchenshanshan@163.com

摘要: The sub-pixel impervious surface percentage (SPIS) is the fraction of impervious surface area in one pixel, and it is an important indicator of urbanization. Using remote sensing data, the spatial distribution of SPIS values over large areas can be extracted, and these data are significant for studies of urban climate, environment and hydrology. To develop a stabilized, multi-temporal SPIS estimation method suitable for typical temperate semi-arid climate zones with distinct seasons, an optimal model for estimating SPIS values within Beijing Municipality was built that is based on the classification and regression tree (CART) algorithm. First, models with different input variables for SPIS estimation were built by integrating multi-source remote sensing data with other auxiliary data. The optimal model was selected through the analysis and comparison of the assessed accuracy of these models. Subsequently, multi-temporal SPIS mapping was carried out based on the optimal model. The results are as follows: 1) multi-seasonal images and nighttime light (NTL) data are the optimal input variables for SPIS estimation within Beijing Municipality, where the intra-annual variability in vegetation is distinct. The different spectral characteristics in the cultivated land caused by the different farming characteristics and vegetation phenology can be detected by the multi-seasonal images effectively. NLT data can effectively reduce the misestimation caused by the spectral similarity between bare land and impervious surfaces. After testing, the SPIS modeling correlation coefficient (r) is approximately 0.86, the average error (AE) is approximately 12.8%, and the relative error (RE) is approximately 0.39. 2) The SPIS results have been divided into areas with high-density impervious cover (70%-100%), medium-density impervious cover (40%-70%), low-density impervious cover (10%-40%) and natural cover (0%-10%). The SPIS model performed better in estimating values for high-density urban areas than other categories. 3) Multi-temporal SPIS mapping (1991-2016) was conducted based on the optimized SPIS results for 2005. After testing, AE ranges from 12.7% to 15.2%, RE ranges from 0.39 to 0.46, and r ranges from 0.81 to 0.86. It is demonstrated that the proposed approach for estimating sub-pixel level impervious surface by integrating the CART algorithm and multi-source remote sensing data is feasible and suitable for multi-temporal SPIS mapping of areas with distinct intra-annual variability in vegetation.

English Abstract

HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. 中国地理科学, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
引用本文: HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. 中国地理科学, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
Citation: HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong. Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China[J]. Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
参考文献 (32)

目录

    /

    返回文章
    返回