留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution

LIU Yanfang CUI Jiaxing KONG Xuesong ZENG Chen

LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. 中国地理科学, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
引用本文: LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. 中国地理科学, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. Chinese Geographical Science, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
Citation: LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. Chinese Geographical Science, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2

Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution

doi: 10.1007/s11769-016-0821-2
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41371429, 41401196)
详细信息
    通讯作者:

    CUI Jiaxing.E-mail:cuijiaxing@whu.edu.cn

Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution

Funds: Under the auspices of National Natural Science Foundation of China (No. 41371429, 41401196)
More Information
    Corresponding author: CUI Jiaxing.E-mail:cuijiaxing@whu.edu.cn
  • 摘要: Land suitability assessment is a prerequisite phase in land use planning; it guides toward optimal land use by providing information on the opportunities and constraints involved in the use of a given land area. A geographic information system-based procedure, known as rural settlement suitability evaluation (RSSE) using an improved technique for order preference by similarity to ideal solution (TOPSIS), was adopted to determine the most suitable area for constructing rural settlements in different geographical locations. Given the distribution and independence of rural settlements, a distinctive evaluation criteria system that differed from that of urban suitability was established by considering the level of rural infrastructure services as well as living and working conditions. The unpredictable mutual interference among evaluation factors has been found in practical works. An improved TOPSIS using Mahalanobis distance was applied to solve the unpredictable correlation among the criteria in a suitability evaluation. Uncertainty and sensitivity analyses obtained via Monte Carlo simulation were performed to examine the robustness of the model. Daye, a resource-based city with rapid economic development, unsatisfied rural development, and geological environmental problems caused by mining, was used as a case study. Results indicate the following findings: 1) The RSSE model using the improved TOPSIS can assess the suitability of rural settlements, and the suitability maps generated using the improved TOPSIS have higher information density than those generated using traditional TOPSIS. The robustness of the model is improved, and the uncertainty is reduced in the suitability results. 2) Highly suitable land is mainly distributed in the northeast of the study area, and the majority of which is cultivated land, thereby leading to tremendous pressure on the loss of cultivated land. 3) Lastly, 12.54% of the constructive expansion permitted zone and 8.36% of the constructive expansion conditionally permitted zone are situated in an unsuitable area, which indicates that the general planning of Daye lacks the necessary verification of suitability evaluation. Guidance is provided on the development strategy of rural settlement patches to support decision making in general land use planning.
  • [1] Abdelfattah M A, 2013. Integrated suitability assessment: a way forward for land use planning and sustainable development in Abu Dhabi, United Arab Emirates. Arid Land Research and Management, 27(1): 41-64. doi: 10.1080/15324982.2012. 722579
    [2] Ahlers A L, Schubert G, 2009.‘Building a New Socialist Countryside’-Only a Political Slogan? Journal of Current Chinese Affairs, 38(4): 35-62.
    [3] Ahlers A L, Schubert G, 2013. Strategic modelling: ‘building a New Socialist Countryside’ in Three Chinese Counties. The China Quarterly, 216: 831-849. doi: 10.1017/s030574101300 1045
    [4] Ak?nc? H, Özalp A Y, Turgut B, 2013. Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97: 71-82. doi: 10.1016/j. compag.2013.07.006
    [5] Aloini D, Dulmin R, Mininno V, 2014. A peer IF-TOPSIS based decision support system for packaging machine selection. Expert Systems with Applications, 41(5): 2157-2165. doi:  10.1016/j.eswa.2013.09.014
    [6] Al-Shalabi M A, Mansor S B, Ahmed N B et al., 2006. GIS based multicriteria approaches to housing site suitability assessment. In: XXⅢ FIG Congress, Shaping the Change, Munich, Germany, October, 8-13.
    [7] Al-Yahyai S, Charabi Y, Gastli A et al., 2012. Wind farm land suitability indexing using multi-criteria analysis. Renewable Energy, 44: 80-87. doi:  10.1016/j.renene.2012.01.004
    [8] Antuchevi?iene J, Zavadskas E K, Zakarevi?ius A, 2010. Multiple criteria construction management decisions considering relations between criteria. Technological and Economic Development of Economy, 16(1): 109-125. doi: 10.3846/tede. 2010.07
    [9] Bai X, Shi P, Liu Y, 2014. Realizing China's urban dream. Nature, 509(7499): 158-160.
    [10] Bański J, Weso?owska M, 2010. Transformations in housing construction in rural areas of Poland's Lublin region: influence on the spatial settlement structure and landscape aesthetics. Landscape and Urban Planning, 94(2): 116-126. doi: 10. 1016/j.landurbplan.2009.08.005
    [11] Behzadian M, Khanmohammadi Otaghsara S, Yazdani M et al., 2012. A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17): 13051-13069. doi: 10. 1016/j.eswa.2012.05.056
    [12] Benke K K, Pelizaro C, 2010. A spatial-statistical approach to the visualisation of uncertainty in land suitability analysis. Journal of Spatial Science, 55(2): 257-272. doi: 10.1080/14498596. 2010.521975
    [13] Berry M, BenDor T K, 2015. Integrating sea level rise into development suitability analysis. Computers, Environment and Urban Systems, 51: 13-24. doi: 10.1016/j.compenvurbsys. 2014.12.004
    [14] Bunruamkaew K, Murayam Y, 2011. Site suitability evaluation for ecotourism using GIS & AHP: a case study of Surat Thani Province, Thailand. Procedia-Social and Behavioral Sciences, 21: 269-278. doi:  10.1016/j.sbspro.2011.07.024
    [15] Cai F, Wang D, Du Y, 2002. Regional disparity and economic growth in China: the impact of labor market distortions. China Economic Review, 13(2): 197-212. doi: 10.1016/S1043-951x (02)00072-X
    [16] Ceballos-Silva A, López-Blanco J, 2003. Delineation of suitable areas for crops using a multi-criteria evaluation approach and land use/cover mapping: a case study in Central Mexico. Agricultural Systems, 77(2): 117-136. doi:  10.1016/s0308-521x(02)00103-8
    [17] Cengiz T, Akbulak C, 2009. Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: a case study of Dumrek village (Canakkale, Turkey). International Journal of Sustainable Development and World Ecology, 16(4): 286-294. doi:  10.1080/13504500903106634
    [18] Chen M F, Tzeng G H, 2004. Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Mathematical and Computer Modelling, 40(13): 1473-1490. doi:  10.1016/j.mcm.2005.01.006
    [19] Chen R, Ye C, Cai Y et al., 2014. The impact of rural out-migration on land use transition in China: past, present and trend. Land Use Policy, 40: 101-110. doi: 10.1016/j. landusepol.2013.10.003
    [20] Chen S Y, Lu C C, 2014. Appraising marketing performance for insurance businesses through improved Fuzzy Modified GRA. Journal of Grey System, 26(3): 96-116.
    [21] Chen S Y, Lu C C, 2015. Assessing the competitiveness of insurance corporations using fuzzy correlation analysis and improved fuzzy modified TOPSIS. Expert Systems, 32(3): 392-404. doi:  10.1111/exsy.12099
    [22] Chen Y, Wang J, Liu Y, Li X, 2013. Regional suitability for settling rural migrants in urban China. Journal of Geographical Sciences, 23(6): 1136-1152. doi:  10.1007/s11442-013-1068-9
    [23] Chisholm M, 1972. Rural settlement and land use: Transaction Publishers.
    [24] Dai F C, Lee C F, Zhang X H, 2001. GIS-based geo-environmental evaluation for urban land-use planning: a case study. Engineering Geology, 61(4): 257-271. doi:  10.1016/S0013-7952(01)00028-X
    [25] Delgado M G, Sendra J B, 2004. Sensitivity analysis in multicriteria spatial decision-making: a review. Human and Ecological Risk Assessment: An International Journal, 10(6): 1173-1187. doi:  10.1080/10807030490887221
    [26] Démurger S, 2001. Infrastructure development and economic growth: an explanation for regional disparities in China? Journal of Comparative Economics, 29(1): 95-117. doi:  10.1006/jcec.2000.1693
    [27] Dong J, Zhuang D, Xu X et al., 2008. Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: a case study in Jingjinji Area, China. Sensors, 8(9): 5975-5986. doi:  10.3390/s8095975
    [28] Doygun H, Alphan H, Kusat Gurun D, 2008. Analysing urban expansion and land use suitability for the city of Kahramanmaras, Turkey, and its surrounding region. Environ-mental Monitoring and Assessment, 145(1-3): 387-395. doi:  10.1007/s10661-007-0047-y
    [29] Elsheikh R, Mohamed Shariff A R B, Amiri F et al., 2013. Agriculture land suitability evaluator (ALSE): a decision and planning support tool for tropical and subtropical crops. Computers and Electronics in Agriculture, 93: 98-110. doi:  10.1016/j.compag.2013.02.003
    [30] Emami B, Zarkesh M M K, 2011. Application of spatial analytical hierarchy process in land suitability: case study on urban development of Tabriz Province, Iran. Journal of Food, Agriculture & Environment, 9(2): 561-567.
    [31] Fan C, Shen S, Wang S et al., 2011. Research on Urban Land Ecological Suitability Evaluation Based on Gravity-Resistance Model: a case of Deyang City in China. Procedia Engineering, 21: 676-685. doi: 10.1016/j.proeng.2011.11. 2064
    [32] Gong J, Liu Y, Chen W, 2012. Land suitability evaluation for development using a matter-element model: a case study in Zengcheng, Guangzhou, China. Land Use Policy, 29(2): 464-472. doi:  10.1016/j.landusepol.2011.09.005
    [33] Guo X Y, Yu Z G, Schmit T et al., 2009. Evaluation of new socialist countryside development in China. China Agricultural Economic Review, 1(3): 314-326. doi:  10.1108/17561370910958882
    [34] Hazarika R, Saikia A, 2013. The pachyderm and the pixel: an assessment of elephant habitat suitability in Sonitpur, India. International Journal of Remote Sensing, 34(15): 5317-5330. doi:  10.1080/01431161.2013.787503
    [35] Hwang C L, Yoon K P, 1981. Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.
    [36] Jeong J S, García-Moruno L, Hernández-Blanco J et al., 2014. An operational method to supporting siting decisions for sustainable rural second home planning in ecotourism sites. Land Use Policy, 41: 550-560. doi: 10.1016/j.landusepol. 2014.04.012
    [37] Kennedy S, 2010. The Myth of the Beijing Consensus. Journal of Contemporary China, 19(65): 461-477. doi: 10.1080/10670 561003666087
    [38] Kim G, Park C S, Yoon K P, 1997. Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement. International Journal of Production Economics, 50(1): 23-33. doi: 10. 1016/S0925-5273(97)00014-5
    [39] Li H, Long R, Chen H, 2013. Economic transition policies in Chinese resource-based cities: an overview of government efforts. Energy Policy, 55: 251-260. doi: 10.1016/j.enpol. 2012.12.007
    [40] Ligmann-Zielinska A, Jankowski P, 2014. Spatially-explicit integrated uncertainty and sensitivity analysis of criteria weights in multicriteria land suitability evaluation. Environmental Modelling & Software, 57: 235-247. doi: 10.1016/j. envsoft.2014.03.007
    [41] Liu R, Zhang K, Zhang Z, Borthwick A G, 2014. Land-use suitability analysis for urban development in Beijing. Journal of Environmental Management, 145: 170-179. doi: 10. 1016/j.jenvman.2014.06.020
    [42] Liu W, Spaargaren G, Mol A P J et al., 2014. Low carbon rural housing provision in China: participation and decision making. Journal of Rural Studies, 35: 80-90. doi: 10.1016/j. jrurstud.2014.04.005
    [43] Liu Y, Liu Y, Chen Y et al., 2010. The process and driving forces of rural hollowing in China under rapid urbanization. Journal of Geographical Sciences, 20(6): 876-888. doi: 10.1007/s 11442-010-0817-2
    [44] Long H, Li Y, Liu Y et al., 2012. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy, 29(1): 11-22. doi:  10.1016/j.landusepol.2011.04.003
    [45] Long H, Liu Y, Li X et al., 2010. Building new countryside in China: a geographical perspective. Land Use Policy, 27(2): 457-470. doi:  10.1016/j.landusepol.2009.06.006
    [46] Long H, Liu Y, Wu X et al., 2009. Spatio-temporal dynamic patterns of farmland and rural settlements in Su-Xi-Chang region: implications for building a new countryside in coastal China. Land Use Policy, 26(2): 322-333. doi: 10.1016/j. landusepol.2008.04.001
    [47] Mahalanobis P C, 1936. On the generalized distance in statistics. Proceedings of the National Institute of Sciences (Calcutta), 2: 49-55.
    [48] Malczewski J, 2006. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. International Journal of Applied Earth Observation and Geoinformation, 8(4): 270-277. doi:  10.1016/j.jag.2006.01.003
    [49] Park S, Jeon S, Kim S et al., 2011. Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2): 104-114. doi:  10.1016/j.landurbplan.2010.09.001
    [50] Pourebrahim S, Hadipour M, Bin Mokhtar M, 2011. Integration of spatial suitability analysis for land use planning in coastal areas; case of Kuala Langat District, Selangor, Malaysia. Landscape and Urban Planning, 101(1): 84-97. doi: 10. 1016/j.landurbplan.2011.01.007
    [51] Quinn B, Schiel K, Caruso G, 2014. Mapping uncertainty from multi-criteria analysis of land development suitability, the case of Howth, Dublin. Journal of Maps, 11(3): 487-495. doi:  10.1080/17445647.2014.978907
    [52] Romano G, Dal Sasso P, Trisorio Liuzzi G et al., 2015. Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy, 48: 131-143. doi:  10.1016/j.landusepol.2015.05.013
    [53] Saaty T L, 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3): 234-281. doi:  10.1016/0022-2496(77)90033-5
    [54] Sakthivel G, Ilangkumaran M, Gaikwad A, 2015. A hybrid multi-criteria decision modeling approach for the best biodiesel blend selection based on ANP-TOPSIS analysis. Ain Shams Engineering Journal, 6(1): 239-256. doi: 10.1016/j. asej.2014.08.003
    [55] Saltelli A, Annoni P, Azzini I et al., 2010. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications, 181(2): 259-270. doi:  10.1016/j.cpc.2009.09.018
    [56] Santé-Riveira I, Crecente-Maseda R, Miranda-Barrós D, 2008. GIS-based planning support system for rural land-use allocation. Computers and Electronics in Agriculture, 63(2): 257-273. doi:  10.1016/j.compag.2008.03.007
    [57] Shih H S, Shyur H J, Lee E S, 2007. An extension of TOPSIS for group decision making. Mathematical and Computer Modelling, 45(7): 801-813. doi:  10.1016/j.mcm.2006.03.023
    [58] Steiner F, McSherry L, Cohen J, 2000. Land suitability analysis for the upper Gila River watershed. Landscape and Urban Planning, 50(4): 199-214. doi: 10.1016/S0169-2046(00) 00093-1
    [59] Tan M, Li X, 2013. The changing settlements in rural areas under urban pressure in China: patterns, driving forces and policy implications. Landscape and Urban Planning, 120: 170-177. doi:  10.1016/j.landurbplan.2013.08.016
    [60] Tang Q, Li Y, Xu Y, 2015. Land suitability assessment for post-earthquake reconstruction: a case study of Lushan in Sichuan, China. Journal of Geographical Sciences, 25(7): 865-878. doi:  10.1007/s11442-015-1207-6
    [61] Troy J R, Holmes N D, Veech J A et al., 2014. Habitat suitability modeling for the Newell's Shearwater on Kauai. Journal of Fish and Wildlife Management, 5(2): 315-329. doi:  10.3996/112013-JFWM074
    [62] Villanueva Ponce R, Garcia Alcaraz JL, 2013. Evaluation of technology using TOPSIS in presence of multi-collinearity in attributes: why use the Mahalanobis distance? Revista Facultad De Ingenieria-Universidad De Antioquia, (67): 31-42.
    [63] Wang Y M, Elhag T M S, 2006. Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Systems with Applications, 31(2): 309-319. doi:  10.1016/j.eswa.2005.09.040
    [64] Wang Z X, Wang Y Y, 2014. Evaluation of the provincial competitiveness of the Chinese high-tech industry using an improved TOPSIS method. Expert Systems with Applications, 41(6): 2824-2831. doi:  10.1016/j.eswa.2013.10.015
    [65] Xiang S, Nie F, Zhang C, 2008. Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition, 41(12): 3600-3612. doi: 10.1016/j.patcog.2008. 05.018
    [66] Yager R R, 1988. On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1): 183-190. doi:  10.1109/21.87068
    [67] Fang Y G, Liu J S, 2014. The modification of North China quadrangles in response to rural social and economic changes in agricultural villages: 1970-2010s. Land Use Policy, 39: 266-280. doi:  10.1016/j.landusepol.2014.02.009
    [68] Yeh K C, Tung Y K, 1993. Uncertainty and sensitivity analyses of Pi-Migration Model. Journal of Hydraulic Engineering, 119(2): 262-283. doi: 10.1061/(ASCE)0733-9429(1993)119: 2(262)
    [69] Yu J, Chen Y, Wu J, Khan S, 2011. Cellular automata-based spatial multi-criteria land suitability simulation for irrigated agriculture. International Journal of Geographical Information Science, 25(1): 131-148. doi: 10.1080/13658811003 785571
    [70] Zhang X, Chen G, 2011. Application of improved GIS-based model to evaluate urban construction land suitability, in: Proc. SPIE 7752, PIAGENG 2010: Photonics and Imaging for Ag-ricultural Engineering. doi:  10.1117/12.887712
    [71] Zhu F, Zhang F, Li C, Zhu T, 2014. Functional transition of the rural settlement: analysis of land-use differentiation in a transect of Beijing, China. Habitat International, 41: 262-271. doi:  10.1016/j.habitatint.2013.07.011
  • [1] Wen WU, Yiquan WANG.  Evaluation and Promotion of the Service Capacity of Urban Public Open Spaces Based on Improving Accessibility: A Case Study of Shenyang City, China . Chinese Geographical Science, 2021, 31(6): 1045-1056. doi: 10.1007/s11769-021-1238-0
    [2] Qiaobing YUE, Jianhua HE, Dianfeng LIU.  Identifying Restructuring Types of Rural Settlement Using Social Network Analysis: A Case Study of Ezhou City in Hubei Province of China . Chinese Geographical Science, 2021, 31(6): 1011-1028. doi: 10.1007/s11769-021-1236-2
    [3] YIN Jingbo, LI Hong, WANG Dongyan, LIU Shuhan.  Optimization of Rural Settlement Distributions Based On the Ecological Security Pattern: A Case Study of Da'an City in Jilin Province of China . Chinese Geographical Science, 2020, 30(5): 824-838. doi: 10.1007/s11769-020-1128-x
    [4] ZHOU Chunshan, JIN Wanfu, ZHANG Guojun.  Impact of Shipping Distance on Online Retailers' Sales: A Case Study of Maiyang on Tmall . Chinese Geographical Science, 2018, 28(2): 261-273. doi: 10.1007/s11769-018-0945-7
    [5] QIAO Weifeng, GAO Junbo, LIU Yansui, QIN Yueheng, LU Cheng, JI Qingqing.  Evaluation of Intensive Urban Land Use Based on an Artificial Neural Network Model:A Case Study of Nanjing City, China . Chinese Geographical Science, 2017, 27(5): 735-746. doi: 10.1007/s11769-017-0905-7
    [6] NAN Tian, SHAO Jingli, CAO Xiaoyuan, ZHANG Qiulan, CUI Yali.  Design of an Index System for Deep Groundwater Management Efficiency Evaluation: A Case Study in Tianjin City, China . Chinese Geographical Science, 2016, 26(3): 325-338. doi: 10.1007/s11769-016-0812-3
    [7] ZHU Jishuai, TIAN Shufang, TAN Kun, DU Peijun.  Human Settlement Analysis Based on Multi-temporal Remote Sensing Data: A Case Study of Xuzhou City, China . Chinese Geographical Science, 2016, 26(3): 389-400. doi: 10.1007/s11769-016-0815-0
    [8] LIU Yaolin, YE Qingqing, LI Jiwei, KONG Xuesong, JIAO Limin.  Suitability Evaluation of Rural Settlements Based on Accessibility of Production and Living: A Case Study of Tingzu Town in Hubei Province of China . Chinese Geographical Science, 2016, 26(4): 550-565. doi: 10.1007/s11769-015-0771-0
    [9] QIN Jing, FANG Chuanglin, WANG Yang, LI Guangdong, WANG Shaojian.  Evaluation of Three-dimensional Urban Expansion: A Case Study of Yangzhou City, Jiangsu Province, China . Chinese Geographical Science, 2015, 25(2): 224-236. doi: 10.1007/s11769-014-0728-8
    [10] LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia.  Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China . Chinese Geographical Science, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
    [11] ZHENG Defeng, ZHANG Yu, ZANG Zheng, SUN Caizhi.  Empirical Research on Carrying Capacity of Human Settlement System in Dalian City, Liaoning Province, China . Chinese Geographical Science, 2015, 25(2): 237-249. doi: 10.1007/s11769-014-0732-z
    [12] SONG Wei, CHEN Baiming, ZHANG Ying.  Land-use Change and Socio-economic Driving Forces of Rural Settlement in China from 1996 to 2005 . Chinese Geographical Science, 2014, 0(5): 511-524. doi: 10.1007/s11769-013-0633-6
    [13] YING Lingxiao, SHEN Zehao, CHEN Jiding, FANG Rui, CHEN Xueping, JIANG Rui.  Spatiotemporal Patterns of Road Network and Road Development Priority in Three Parallel Rivers Region in Yunnan, China:An Evaluation Based on Modified Kernel Distance Estimate . Chinese Geographical Science, 2014, 0(1): 39-49. doi: 10.1007/s11769-014-0654-9
    [14] MA Xiaodong, QIU Fangdao, LI Quanlin, SHAN Yongbin, CAO Yong.  Spatial Pattern and Regional Types of Rural Settlements in Xuzhou City, Jiangsu Province, China . Chinese Geographical Science, 2013, 23(4): 482-491. doi: 10.1007/s11769-013-0615-8
    [15] ZHANG Xiaorui, FANG Chuanglin, WANG Zhenbo, MA Haitao.  Urban Construction Land Suitability Evaluation Based on Improved Multi-criteria Evaluation Based on GIS (MCE-GIS): Case of New Hefei City, China . Chinese Geographical Science, 2013, 23(6): 740-753. doi: 10.1007/s11769-013-0609-6
    [16] SUN Hu, LIU Yansui, XU Keshuai.  Hollow Villages and Rural Restructuring in Major Rural Regions of China: A Case Study of Yucheng City, Shandong Province . Chinese Geographical Science, 2011, 21(3): 354-363.
    [17] CHEN Yangfen, LIU Yansui, XU Keshuai.  Characteristics and Mechanism of Agricultural Transformation in Typical Rural Areas of Eastern China:A Case Study of Yucheng City,Shandong Province . Chinese Geographical Science, 2010, 20(6): 545-553. doi: 10.1007/s11769-010-0430-4
    [18] CAI Chunmiao, SHANG Jincheng.  Comprehensive Evaluation on Urban Sustainable Development of Harbin City in Northeast China . Chinese Geographical Science, 2009, 19(2): 144-150. doi: 10.1007/s11769-009-0144-7
    [19] QIAO Jiajun, KONG Yunfeng, LI Xiaojian.  Analysis of Types and Changes of Village-level Economy in Rural Gongyi City, Henan Province Since 1990 . Chinese Geographical Science, 2008, 18(2): 101-108. doi: 10.1007/s11769-008-0101-x
    [20] 廖荣华, 陈湘满.  THE EVOLUTION OF SETTLEMENT LOCATION AND DISTRIBUTION IN URBAN RURAL INTEGRATION . Chinese Geographical Science, 1998, 8(1): 67-73.
  • 加载中
计量
  • 文章访问数:  484
  • HTML全文浏览量:  11
  • PDF下载量:  893
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-29
  • 修回日期:  2015-10-16
  • 刊出日期:  2016-10-27

Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution

doi: 10.1007/s11769-016-0821-2
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41371429, 41401196)
    通讯作者: CUI Jiaxing.E-mail:cuijiaxing@whu.edu.cn

摘要: Land suitability assessment is a prerequisite phase in land use planning; it guides toward optimal land use by providing information on the opportunities and constraints involved in the use of a given land area. A geographic information system-based procedure, known as rural settlement suitability evaluation (RSSE) using an improved technique for order preference by similarity to ideal solution (TOPSIS), was adopted to determine the most suitable area for constructing rural settlements in different geographical locations. Given the distribution and independence of rural settlements, a distinctive evaluation criteria system that differed from that of urban suitability was established by considering the level of rural infrastructure services as well as living and working conditions. The unpredictable mutual interference among evaluation factors has been found in practical works. An improved TOPSIS using Mahalanobis distance was applied to solve the unpredictable correlation among the criteria in a suitability evaluation. Uncertainty and sensitivity analyses obtained via Monte Carlo simulation were performed to examine the robustness of the model. Daye, a resource-based city with rapid economic development, unsatisfied rural development, and geological environmental problems caused by mining, was used as a case study. Results indicate the following findings: 1) The RSSE model using the improved TOPSIS can assess the suitability of rural settlements, and the suitability maps generated using the improved TOPSIS have higher information density than those generated using traditional TOPSIS. The robustness of the model is improved, and the uncertainty is reduced in the suitability results. 2) Highly suitable land is mainly distributed in the northeast of the study area, and the majority of which is cultivated land, thereby leading to tremendous pressure on the loss of cultivated land. 3) Lastly, 12.54% of the constructive expansion permitted zone and 8.36% of the constructive expansion conditionally permitted zone are situated in an unsuitable area, which indicates that the general planning of Daye lacks the necessary verification of suitability evaluation. Guidance is provided on the development strategy of rural settlement patches to support decision making in general land use planning.

English Abstract

LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. 中国地理科学, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
引用本文: LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. 中国地理科学, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. Chinese Geographical Science, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
Citation: LIU Yanfang, CUI Jiaxing, KONG Xuesong, ZENG Chen. Assessing Suitability of Rural Settlements Using an Improved Technique for Order Preference by Similarity to Ideal Solution[J]. Chinese Geographical Science, 2016, 26(5): 638-655. doi: 10.1007/s11769-016-0821-2
参考文献 (71)

目录

    /

    返回文章
    返回