留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China

QI Guang CHEN Hua ZHOU Li WANG Xinchuang ZHOU Wangming QI Lin YANG Yuhua YANG Fengling WANG Qingli DAI Limin

QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. 中国地理科学, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
引用本文: QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. 中国地理科学, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. Chinese Geographical Science, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
Citation: QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. Chinese Geographical Science, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z

Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China

doi: 10.1007/s11769-015-0772-z
基金项目: Under the auspices of National Key Technologies Research and Development Program of China (No. 2012BAD22B04), National Science Foundation Grant (No. DBI-0821649), Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q1-0501), Research Foundation of Science and Technology Department of Henan Province (No. 142106000090), High Level Talent Project of Pingdingshan University (No. 2011009/G)
详细信息
    通讯作者:

    DAI Limin. E-mail:lmdai@iae.ac.cn

Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China

Funds: Under the auspices of National Key Technologies Research and Development Program of China (No. 2012BAD22B04), National Science Foundation Grant (No. DBI-0821649), Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q1-0501), Research Foundation of Science and Technology Department of Henan Province (No. 142106000090), High Level Talent Project of Pingdingshan University (No. 2011009/G)
More Information
    Corresponding author: DAI Limin. E-mail:lmdai@iae.ac.cn
  • 摘要: The overall goal of this study was to understand carbon (C) stock dynamics in four different-aged Japanese larch (Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass (tree, shrub and herb), litterfall (LF), and soil organic carbon (SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly (P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock (TCS) of larch plantations stable from stand ages of 10-35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the?conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.
  • [1] Augustin L, Barbante C, Barnes P et al., 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429(6992):623-628. doi: 10.1038/nature02599
    [2] Chang S J, 2013. Solving the problem of carbon dioxide emis-sions. Forest Policy and Economics, 35(5):92-97. doi: 10.1016/j.forpol.2013.06.013
    [3] Chen Chuanguo, Zhu Junfeng, 1989. Manual of the Main Forest Biomass of Northeast China. Beijing:China Forestry Publishing House, 1-14. (in Chinese)
    [4] Chen F S, Zeng D H, Fahey T J et al., 2010. Organic carbon in soil physical fractions under different-aged plantations of Mongolian pine in semi-arid region of Northeast China. Applied Soil Ecology, 44(1):42-48. doi:10.1016/j.apsoil.2009. 09.003
    [5] Chen G S, Yang Y S, Xie J S et al., 2005. Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area:effects on carbon storage. Annals of Forest Science, 62(7):659-668. doi: 10.1051/forest:2005073
    [6] Chen Lixin, Xiao Yang, 2006. Evolution and evaluation of soil fertility in forest land in Larix gmelinii plantations at different development stages in Daxinganling forest region. Science of Soil and Water Conservation, 4(5):50-55. (in Chinese)
    [7] Chen X W, Li B L, 2003. Change in soil carbon and nutrient storage after human disturbance of a primary Korean pine forest in Northeast China. Forest Ecology and Management, 186(1-3):197-206. doi: 10.1016/S0378-1127(03)00258-5
    [8] Dai L M, Shao G F, Chen G et al., 2003. Forest cutting and regeneration methodology on Changbai Mountain. Journal of Forestry Research, 14(1):56-60. doi: 10.1007/BF02856763
    [9] Dai L M, Wu G, Zhao J Z et al., 2002. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra. Science in China Series D:Earth Sciences, 45(10):903-910. doi: 10.1360/02yd9089
    [10] Dixon R K, Solomon A M, Brown S et al., 1994. Carbon pools and flux of global forest ecosystems. Science, 263(5144):185-190. doi: 10.1126/science.263.5144.185
    [11] Fahey T J, Woodbury P B, Battles J J et al., 2009. Forest carbon storage:ecology, management, and policy. Frontiers in Ecology and the Environment, 8(5):245-252. doi: 10.1890/080169
    [12] Finér L, Mannerkoski H, Piirainen S et al., 2003. Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management, 174(1-3):51-63. doi: 10.1016/S0378-1127(02)00019-1
    [13] Gren I M, Carlsson M, 2013. Economic value of carbon seques-tration in forests under multiple sources of uncertainty. Journal of Forest Economics, 19(2):174-189. doi:10.1016/j. jfe.2013.01.002
    [14] Gu H Y, Dai L M, Wu G et al., 2006. Estimation of forest volumes by integrating Landsat TM imagery and forest inventory data. Science in China Series E:Technological Sciences, 49(supp.1):54-62. doi: 10.1007/s11431-006-8107-z
    [15] Hao Z Q, Yu D Y, Li F et al., 2004. Forest resources variation along with the main rivers in typical forest region of Changbai Mountain. Journal of Forestry Research, 15(2):101-106. doi: 10.1007/BF02856742
    [16] Harmon M E, Chen H, 1991. Coarse woody debris dynamics in two old growth ecosystems:comparing a deciduous forest in China and conifer forest in Oregon. BioScience, 41(9):604-610. doi: 10.2307/1311697
    [17] Harmon M E, Ferrell W K, Franklin J F, 1990. Effects of C storage of conversion of old-growth forests to young forests. Science, 247(4943):699-702. doi:10.1126/science.247.4943. 699
    [18] Hilli S, Stark S, Derome J, 2008. Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11(2):270-282. doi: 10.1007/s10021-007-9121-0
    [19] Hirano T, Hirata R, Fujinuma Y et al., 2003. CO2 and water vapor exchange of a larch forest in northern Japan. Tellus B, 55(2):244-257. doi:10.1034/j.1600-0889.2003.00063. x
    [20] Hollinger D, Kelliher F, Byers J et al., 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology, 75(1):134-150. doi: 10.2307/1939390
    [21] Houghton R A, 2005. Aboveground forest biomass and the global carbon balance. Global Change Biology, 11(6):945-958. doi: 10.1111/j.1365-2486.2005.00955.x
    [22] Hu H F, Wang G G, 2008. Changes in forest biomass carbon storage in the South Carolina Piedmont between 1936 and 2005. Forest Ecology and Management, 255(5-6):1400-1408. doi: 10.1016/j.foreco.2007.10.064
    [23] Humphreys E, Black T, Morgenstern K et al., 2006. Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting. Agricultural and Forest Meteorology, 140(1-4):6-22. doi:10.1016/j.agrformet. 2006.03.018
    [24] IPCC(Intergovernmental Panel of Climate Change), 2000. Land Use, Land-Use Change and Forestry, Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 1-364.
    [25] IPCC(Intergovernmental Panel of Climate Change), 2007. Summary for Policymaker, in:Climate Change 2007:The Physical Science Basis. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 339-378.
    [26] Janisch J E, Harmon M E, 2002. Successional changes in live and dead wood carbon stores:implications for net ecosystem productivity. Tree Physiology, 22(2-3):77-89. doi: 10.1093/treephys/22.2-3.77
    [27] Jiang Yanling, Zhou Guangsheng, 2002. Carbon balance of Larix Gmelinii forest and impacts of management practices. Acta Phytoecologica Sinica, 26(3):317-322. (in Chinese)
    [28] Jomura M, Wang W J, Masyagina O V et al., 2010. Carbon dynamics of larch plantations in northeastern China and Japan. Permafrost Ecosystems Ecological Studies, 209(1):385-411. doi: 10.1007/978-1-4020-9693-8_20
    [29] Lamlom S, Savidge R, 2003. A reassessment of carbon content in wood:variation within and between 41 North American species. Biomass and Bioenergy, 25(4):381-388. doi:10. 1016/S0961-9534(03)00033-3
    [30] Li S, Asanuma J, Kotani A et al., 2005. Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. Journal of Geophysical Research, 110(D9):D09303. doi: 10.1029/2004JD005453
    [31] Lichter J, Billings S A, Ziegler S E et al., 2008. Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment. Global Change Biology, 14(12):2910-2922. doi: 10.1111/j.1365-2486.2008.01701.x
    [32] Liu Shirong, Li Chunyang, 1993. Nutrient cycling and stability of soil fertility in larch plantation in the eastern part of northern China. Journal of Northeast Forestry University, 21(2):19-24. (in Chinese)
    [33] Luyssaert S, Schulze E D, Börner A et al., 2008. Old-growth forests as global carbon sinks. Nature, 455(7210):213-215. doi: 10.1038/nature07276
    [34] Moore I I I B, Braswell J B, 1994. Planetary metabolism:understanding the carbon cycle. AMBIO, 23(1):4-12.
    [35] Nunery J S, Keeton W S, 2010. Forest carbon storage in the northeastern United States:net effects of harvesting frequency, post-harvest retention, and wood products. Forest Ecology and Management, 259(8):1363-1375. doi:10.1016/j.foreco.2009. 12.029
    [36] Pan Jianping, Wang Huazhang, Yang Xiuqin, 1997. Research state and advance on soil degradation under larch plantations. Journal of Northeast Forestry University (Natural Science Edition), 25(2):59-63. (in Chinese)
    [37] Piirainen S, Finer L, Mannerkoski H et al., 2002. Effects of forest clear-cutting on the carbon and nitrogen fluxes through podzolic soil horizons. Plant and Soil, 239(2):301-311. doi: 10.1023/A:1015031718162
    [38] Qi Guang, Wang Qingli, Wang Xinchuang et al., 2011. Vegetation carbon storage in Larix gmelinii plantations in Great Xing'an Mountains. Chinese Journal of Applied Ecology, 22(2):273-279. (in Chinese)
    [39] Qi Guang, Wang Qingli, Wang Xinchuang et al., 2013. Soil or-ganic carbon storage in different aged Larix gmelinii plantations in Great Xing'an Mountains of Northeast China. Chinese Journal of Applied Ecology, 24(1):10-16. (in Chinese)
    [40] Ren H, Chen H, Li Z A et al., 2010. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in southern China. Plant and Soil, 327(1-2):279-291. doi: 10.1007/s11104-009-0053-7
    [41] Schaich H, Plieninger T, 2013. Land ownership drives stand structure and carbon storage of deciduous temperate forests. Forest Ecology and Management, 305(19):146-157. doi: 10.1016/j.foreco.2013.05.013
    [42] Shanin V, Komarov A, Khoraskina Y et al., 2013. Carbon turnover in mixed stands:modelling possible shifts under climate change. Ecological Modelling, 251(4):232-245. doi: 10.1016/j.ecolmodel.2012.12.015
    [43] Sharrow S, Ismail S, 2004. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60(2):123-130. doi: 10.1023/B:AGFO.0000013267.87896.41
    [44] Simon N, Montes F, Diaz P E et al., 2013. Spatial distribution of the soil organic carbon pool in a Holm oak dehesa in Spain. Plant and Soil, 366(1-2):537-549. doi: 10.1007/s11104-012-1443-9
    [45] Smolander A, Priha O, Paavolainen L et al., 1998. Nitrogen and carbon transformations before and after clear-cutting in repeatedlyN-fertilized and limed forest soil. Soil Biology and Biochemistry, 30(4):477-490. doi:10.1016/S0038-0717(97) 00141-7
    [46] Sommers W T, Loehman R A, Hardy C C, 2014. Wild land fire emissions, carbon, and climate:science overview and knowledge needs. Forest Ecology and Management, 317(SI):1-8. doi: 10.1016/j.foreco.2013.12.014
    [47] State Forestry Administration, 1986. Fast Growing and High Yield Plantation of Olga Bay Larch (Larix olgensis) and Dahurian Larch (Larix gmelini). Beijing:State Forestry Administration. (in Chinese)
    [48] Sun Yujun, Zhang Jun, Han Aihui et al., 2007. Biomass and car-bon pool of Larix gmelini young and middle age forest in Xing'an Mountains Inner Mongolia. Acta Ecologica Sinica, 27(5):1756-1762. (in Chinese)
    [49] Wang C M, Hua O Y, Shao B et al., 2006. Soil carbon changes following afforestation with Olga Bay larch (Larix olgensis Henry) in northeastern China. Journal of Integrative Plant Biology, 48(5):503-512. doi:10.1111/j.1744-7909.2006. 00264.x
    [50] Wang H, Liu S R, Wang J X et al., 2013. Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300:4-13. doi:10.1016/j.foreco.2012.04. 005
    [51] Wang H, Saigusa N, Yamamoto S et al., 2004. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan. Atmospheric Environment, 38(40):7021-7032. doi: 10.1016/j.atmosenv.2004.02.071
    [52] Wang Xiaoke, Feng Zongwei, Ouyang Zhiyun, 2001. Vegetation carbon storage and density of forest ecosystems in China. Chinese Journal of Applied Ecology, 12(1):13-16. (in Chinese)
    [53] Wang Xuejun, Huang Guosheng, Sun Yujun et al., 2008. Forest carbon storage and dynamics in Liaoning Province from 1984 to 2000. Acta Ecologica Sinica, 28(10):4757-4764. (in Chi-nese)
    [54] Wang Y F, Fu B J, Lu Y H et al., 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quatenary Research, 73(1):70-76. doi: 10.1016/j.yqres.2008.11.006
    [55] Wei X, Kimmins J P, Zhou G, 2003. Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia-an ecosystem modeling approach. Ecological Modelling, 164(2-3):239-256. doi: 10.1016/S0304-3800(03)00062-0
    [56] Xie J, Chen J Q, Sun G et al., 2014. Long-term variability and environmental control of the carbon cycle in an oak-dominated temperate forest. Forest Ecology and Management, 313(3):319-328. doi: 10.1016/j.foreco.2013.10.032
    [57] Yang X, Xu M, 2003. Biodiversity conservation in Changbai Mountain Biosphere Reserve, northeastern China:status, problem, and strategy. Biodiversity and Conservation, 12(5):883-903. doi: 10.1023/A:1022841107685
    [58] Yang Y, Mohammat A, Feng J et al., 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84(2):131-141. doi: 10.1007/s10533-007-9109-z
    [59] Yin Mingfang, Zhao Lin, Chen Xiaofei et al., 2008. Carbon storage maturity age of Larix olgenisis and L. kaempferi. Chinese Journal of Applied Ecology, 19(12):2567-2571. (in Chinese)
    [60] Yin Xiuqin, Zhong Weiyan, Wang Haixia et al., 2002. Decompo-sition of forest defoliation and role of soil animals in Xiao Hinggan Mountains. Geographical Research, 21(6):689-699. (in Chinese)
    [61] You W Z, Wei W J, Zhang H D et al., 2013. Temporal patterns of soil CO2 efflux in a temperate Korean Larch (Larix olgensis Herry.) plantation, Northeast China. Trees, 27(5):1417-1428. doi: 10.1007/s00468-013-0889-6
    [62] Yuan Weiyang, Li Xianwei, Zhang Jian et al., 2009. Preliminary studies on carbon reserves of litterfall and fine root in an age series of Eucalyptus grandis plantation. Forest Research, 22(3):385-389. (in Chinese)
    [63] Zhong Lei, 2009. The Response of Ecosystem Carbon Density to Harvesting Disturbance in Broadleaved-Korean Pine Mixed Forest in Changbai Mountain. Beijing:Chinese Academy of Sciences, 37-125. (in Chinese)
    [64] Zhou G Y, Guan L L, Wei X H et al., 2008. Factors influencing leaf litter decomposition:an intersite decomposition experi-ment across China. Plant and Soil, 311(1-2):61-72. doi: 10.1007/s11104-008-9658-5
    [65] Zhou Yurong, Yu Zhenliang, Zhao Shidong, 2000. Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 24(5):518-522. (in Chinese)
  • [1] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [2] HUO Lili, ZOU Yuanchun, LYU Xianguo, ZHANG Zhongsheng, WANG Xuehong, AN Yi.  Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China . Chinese Geographical Science, 2018, 28(2): 325-336. doi: 10.1007/s11769-018-0939-5
    [3] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [4] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [5] SONG Xiaodong, LIU Feng, JU Bing, ZHI Junjun, LI Decheng, ZHAO Yuguo, ZHANG Ganlin.  Mapping Soil Organic Carbon Stocks of Northeastern China Using Expert Knowledge and GIS-based Methods . Chinese Geographical Science, 2017, 27(4): 516-528. doi: 10.1007/s11769-017-0869-7
    [6] WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang.  Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils . Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
    [7] QIN Falyu, SHI Xuezheng, XU Shengxiang, YU Dongsheng, WANG Dandan.  Zonal Differences in Correlation Patterns Between Soil Organic Carbon and Climate Factors at Multi-extent . Chinese Geographical Science, 2016, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
    [8] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [9] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [10] ZHOU Wangming, Bernard Joseph LEWIS, WU Shengnan, YU Dapao, ZHOU Li, WEI Yawei.  Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China . Chinese Geographical Science, 2014, 0(4): 406-413. doi: 10.1007/s11769-014-0702-5
    [11] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [12] ZHANG Yubin, CAO Ning, XU Xiaohong, ZHANG Feng, YAN Fei, ZHANG Xinsheng, TANG Xinlong.  Relationship Between Soil and Water Conservation Practices and Soil Conditions in Low Mountain and Hilly Region of Northeast China . Chinese Geographical Science, 2014, 0(2): 147-162. doi: 10.1007/s11769-013-0620-y
    [13] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [14] ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen.  Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration . Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
    [15] GONG Yanming, HU Yukun, FANG Fei, et al..  Carbon Storage and Vertical Distribution in Three Shrubland Communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China . Chinese Geographical Science, 2012, 22(5): 541-549.
    [16] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [17] ZHANG Guilan.  Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province . Chinese Geographical Science, 2010, 20(2): 139-143. doi: 10.1007/s11769-010-0139-4
    [18] XU Xinliang, LI Kerang.  Biomass Carbon Sequestration by Planted Forests in China . Chinese Geographical Science, 2010, 20(4): 289-297. doi: 10.1007/s11769-010-0401-9
    [19] FU Yao, LIN Changcun, MA Jianjun, ZHU Tingcheng.  Effects of Plant Types on Physico-chemical Properties of Reclaimed Mining Soil in Inner Mongolia, China . Chinese Geographical Science, 2010, 20(4): 309-317. doi: 10.1007/s11769-010-0403-7
    [20] CHENG Shu-lan, OUYANG Hua, NIU Hai-shan, WANG Lin, ZHANG Feng, GAO Jun-qin, TIAN Yu-qiang.  SPATIAL AND TEMPORAL DYNAMICS OF SOIL ORGANIC CARBON IN RESERVED DESERTIFICATION AREA——A Case Study in Yulin City, Shaanxi Province, China . Chinese Geographical Science, 2004, 14(3): 245-250.
  • 加载中
计量
  • 文章访问数:  297
  • HTML全文浏览量:  21
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-25
  • 修回日期:  2014-10-23
  • 刊出日期:  2016-01-27

Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China

doi: 10.1007/s11769-015-0772-z
    基金项目:  Under the auspices of National Key Technologies Research and Development Program of China (No. 2012BAD22B04), National Science Foundation Grant (No. DBI-0821649), Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-Q1-0501), Research Foundation of Science and Technology Department of Henan Province (No. 142106000090), High Level Talent Project of Pingdingshan University (No. 2011009/G)
    通讯作者: DAI Limin. E-mail:lmdai@iae.ac.cn

摘要: The overall goal of this study was to understand carbon (C) stock dynamics in four different-aged Japanese larch (Larix kaempferi) plantations in Northeast China that were established after clear-cutting old-growth Korean pine deciduous forests. Four Japanese larch plantations which were at 10, 15, 21, and 35 years old and an old-growth Korean pine deciduous forest which was 300 years old in Northeast China were selected and sampled. We compared the C pools of biomass (tree, shrub and herb), litterfall (LF), and soil organic carbon (SOC) among them. The biomass C stock of larch plantation at 10, 15, 21, and 35 years old was 26.8, 37.9, 63.6, and 83.2 Mg/ha, respectively, while the biomass C stock of the old-growth Korean pine deciduous forest was 175.1 Mg/ha. The SOC stock of these larch plantations was 172.1, 169.7, 140.3, and 136.2 Mg/ha respectively, and SOC stock of 170.4 Mg/ha in the control of old-growth forest. The biomass C stock increased with stand age of larch plantations, whereas SOC stock decreased with age, and C stock of LF did not change significantly (P > 0.05). The increase of biomass C offset the decline of SOC stock with age, making total carbon stock (TCS) of larch plantations stable from stand ages of 10-35 years. The TCS in larch plantations was much smaller than that in the old-growth forest, suggesting that the?conversion of old-growth forests to young larch plantations releases substantial C into the atmosphere.

English Abstract

QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. 中国地理科学, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
引用本文: QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. 中国地理科学, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. Chinese Geographical Science, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
Citation: QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin. Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China[J]. Chinese Geographical Science, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
参考文献 (65)

目录

    /

    返回文章
    返回