留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China

MOU Xiaojie LIU Xingtu TONG Chuan SUN Zhigao

MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. 中国地理科学, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
引用本文: MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. 中国地理科学, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. Chinese Geographical Science, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
Citation: MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. Chinese Geographical Science, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3

Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China

doi: 10.1007/s11769-014-0692-3
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41301085), National Basic Research Program of China (No. 2012CB956100)
详细信息
    通讯作者:

    LIU Xingtu

Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41301085), National Basic Research Program of China (No. 2012CB956100)
More Information
    Corresponding author: LIU Xingtu
  • 摘要: The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (N0), 21 (N1) and 42 (N2) g N/(m2·yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CH4/(m2·h) and 7.79 mg CH4/(m2·h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of N1 and N2 treatments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of N0 treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and negatively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.
  • [1] Aselmann I, Crutzen P J, 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 8(4): 307-358. doi:  10.1007/BF00052709
    [2] Blagodatskaya E V, Blagodatsky S A, Anderson T H et al., 2007. Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Applied Soil Ecology, 37(1-2): 95-105. doi:  10.1016/j.apsoil.2007.05.002
    [3] Blagodatskaya E, Yuyukina T, Blagodatsky S et al., 2011. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects. Soil Biology and Biochemistry, 43(4): 778-786. doi: 10.1016/ j.soilbio.2010.12.011
    [4] Bradford M A, Wookey P A, Ineson P et al., 2001. Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil. Soil Biology & Biochemistry, 33(1): 93-102. doi:  S0038-0717(00)00118-8
    [5] Carter M S, Ambus P, Albert K R et al., 2011. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland. Soil Biology and Biochemistry, 43(8): 1660-1670. doi: 10.1016/ j.soilbio.2011.04.003
    [6] Cheng X L, Peng R H, Chen J Q et al., 2007. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere, 68(3): 420-427. doi:  10.1016/j.chemosphere.2007.01.004
    [7] Christensen T R, Panikov N, Mastepanov M et al., 2003. Biotic controls on CO2 and CH4 exchange in wetlands-a closed environment study. Biogeochemistry, 64(3): 337-354. doi:  10.1023/A:1024913730848
    [8] Chung C H, 1993. Thirty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 2(3): 261-289. doi:  10.1016/0925-8574(93)90019-C
    [9] Dalal R C, Allen D E, 2008. Greenhouse gas fluxes from natural ecosystems. Australian Journal of Botany, 56(5): 369-407. doi:  10.1071/BT07128
    [10] Danevcic T, Mandic-Mulec I, Stres B et al., 2010. Emissions of CO2, CH4 and N2O from southern European peatlands. Soil Biology and Biochemistry, 42(9): 1437-1446. doi: 10.1016/ j.soilbio.2010.05.004
    [11] Datta A, Yeluripati J B, Nayak D R et al., 2013. Seasonal variation of methane flux from coastal saline rice field with the application of different organic manures. Atmospheric Environment, 66: 114-122. doi:  10.1016/j.atmosenv.2012.06.008
    [12] Deegan L A, Johnson D S, Warren R S et al., 2012. Coastal eutrophication as a driver of salt marsh loss. Nature, 490(7420): 388-392. doi:  10.1038/nature11533
    [13] Ding W X, Cai Z C, Tsurutab H R, 2005. Plant species effects on methane emissions from freshwater marshes. Atmospheric Environment, 39(18): 3199-3207. doi: 10.1016/j.atmosenv.2005. 02.022
    [14] Ding W, Zhang Y, Cai Z, 2010. Impact of permanent inundation on methane emissions from a Spartina alterniflora coastal salt marsh. Atmospheric Environment, 44(32): 3894-3900. doi:  10.1016/j.atmosenv.2010.07.025
    [15] Duan Yong, Zhang Yuzhen, Li Yanfeng et al., 2007. Pollution load and environmental risk assessment of livestock manure in Minjiang River valley. Journal of Ecology and Rural Environment, 23(3): 55-59. (in Chinese)
    [16] Fang H J, Cheng S L, Yu G R et al., 2012. Responses of CO2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition. Plant and Soil, 351(1-2): 177-190. doi:  10.1007/s11104-011-0942-4
    [17] Gorham E, 1991. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1(2): 182-195. doi:  10.2307/1941811
    [18] Huang Jiafang, 2010. Methane Transport of Spartina alterniflora and Native Cyperus malaccensis Lam.var Brevifolius Bockr. Fuzhou: Fujian Normal University. (in Chinese)
    [19] Huang Shuhui, Jiang Wenwei, Lu Jun et al., 2005. Influence of nitrogen and phosphorus fertilizers on N2O emissions in rice fields. China Environmental Science, 25(5): 540-543. (in Chinese)
    [20] Inselsbacher E, Wanek W G, Ripka K et al., 2011. Greenhouse gas fluxes respond to different N fertilizer types due to altered plant-soil-microbe interactions. Plant and Soil, 343(1-2): 17-35. doi:  10.1007/s11104-010-0597-6
    [21] IPCC (Intergovernmental Panel on Climate Change), 2007. Changes in atmospheric constituents and in radioactive forcing. In: Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press.
    [22] Jiang C C, Yu G R, Fang H J et al., 2010. Short-term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau, China. Atmospheric Environment, 44(24): 2920-2926. doi: 10.1016/ j.atmosenv.2010.03.030
    [23] Jiang L F, Luo Y Q, Chen J K et al., 2009. Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine, Coastal and Shelf Science, 81(1): 74-82. doi:  10.1016/j.ecss.2008.09.018
    [24] Kao-kniffin J, Freyre D S, Balser T C, 2010. Methane dynamics across wetland plant species. Aquatic Botany, 93(2): 107-113. doi:  10.1016/j.aquabot.2010.03.009
    [25] Kato T, Hirota M, Tang Y et al., 2011. Spatial variability of CH4 and N2O fluxes in alpine ecosystems on the Qinghai-Tibetan Plateau. Atmospheric Environment, 45(31): 5632-5639. doi:  10.1016/j.atmosenv.2011.03.010
    [26] Koelbener A, Ström L, Edwards P J et al., 2010. Plant species from mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil, 326(1-2): 147-158. doi:  10.1007/s11104-009-9989-x
    [27] Liu L, Greaver T L, 2009. A review of nitrogen enrichment effects on three biogenic GHGs: The CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12(10): 1103-1117. doi:  10.1111/j.1461-0248.2009.01351.x
    [28] Liu X J, Zhang Y, Han W X et al., 2013. Enhanced nitrogen deposition over China. Nature, 494(7438): 459-462. doi:  10.1038/nature11917
    [29] Matson P, Lohse K A, Hall S J, 2002. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio, 31(2): 113-119. doi: 10.1639/0044-7447(2002)031[0113: TGONDC]2.0.CO;2
    [30] Matthews E, Fung I, 1987. Methane emission from natural wetlands: Global distribution, area, and environmental charac­teristics of sources. Global Biogeochemical Cycles, 1(1): 61-86. doi:  10.1029/GB001i001p00061
    [31] Min K, Kang H, Lee D, 2011. Effects of ammonium and nitrate additions on carbon mineralization in wetland soils. Soil Biology and Biochemistry, 43(12): 2461-2469. doi: 10.1016/ j.soilbio.2011.08.019
    [32] Moseman-Valtierra S, Gonzalez R, Kroeger K D et al., 2011. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmospheric Environment, 45(26): 4390-4397. doi:  10.1016/j.atmosenv.2011.05.046
    [33] Mou X J, Sun Z G, wang L L et al., 2011. Nitrogen cycle of a typical Suaeda salsa marsh ecosystem in the Yellow River estuary. Journal of Environmental Science, 23(6): 958-967. doi:  10.1016/S1001-0742(10)60530-X
    [34] Singh S N, 2001. Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux. Environment International, 27(4): 265-274. doi:  10.1016/S0160-4120(01)00055-1
    [35] Singh S N, Kulshreshtha K, Agnihotri S, 2000. Seasonal dynamics of methane emission from wetlands. Chemosphere-Global Change Science, 2(1): 39-46. doi:  S1465-9972(99)00046-X
    [36] Saari A, Rinnan R, Martikainen P J, 2004. Methane oxidation in boreal forest soils: Kinetics and sensitivity to pH and ammonium. Soil Biology and Biochemistry, 36(7): 1037-1046. doi:  10.1016/j.soilbio.2004.01.018
    [37] Saarnio S, Wittenmayer L, Merbach W, 2004. Rhizospheric exudation of Eriophorum vaginatum L.—Potential link to methano­genesis. Plant and Soil, 267(1-2): 343-355. doi:  10.1007/s11104-005-0140-3
    [38] Song C C, Zhang J B, Wang Y Y et al., 2008. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. Journal of Environmental Management, 88(3): 428-436. doi:  10.1016/j.jenvman.2007.03.030
    [39] Tong Chuan, Wang Weiqi, Lei Bo et al., 2010. Characteristics of temperature sensitivity of methane flux from the Shanyutan tidal wetlands in Min River estuary. Wetland Science, 8(3): 240-248. (in Chinese)
    [40] Watanabe A, Yamada H, Kimura M, 2005. Analysis of temperature effects on seasonal and interannual variation in CH4 emission from rice-planted pots. Agriculture, Ecosystems & Environment, 105(1-2): 439-443. doi:  10.1016/j.agee.2004.02.009
    [41] Whiting G J, Chanton J P, 1993. Primary production control of methane emission from wetlands. Nature, 364(6440): 794- 795. doi:  10.1038/364794a0
    [42] Ye R, Jin Q, Bohannan B et al., 2012. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic- minerotrophic gradient. Soil Biology and Biochemistry, 54: 36-47. doi:  10.1016/j.soilbio.2012.05.015
    [43] Zhang J, Li Z, Ning T et al., 2011. Methane uptake in salt-affected soils shows low sensitivity to salt addition. Soil Biology and Biochemistry, 43(7): 1434-1439. doi: 10.1016/j.soilbio. 2011.03.010
    [44] Zhang L H, Song C C, Wang D X et al., 2007. The variation of methane emission from freshwater marshes and response to the exogenous N in Sanjiang Plain Northeast China. Atmospheric Environment, 41(19): 4063-4072. doi: 10.1016/j.atmos­- env.2007.01. 013
    [45] Zhang W L, Zeng C S, Tong C et al., 2011. Analysis of the expanding process of the Spartina Alterniflora salt marsh in Shanyutan Wetland, Minjiang River Estuary by remote sensing. Procedia Environmental Sciences, 10: 2472-2477. doi: 10.1016/j.proenv.2011. 09.385
    [46] Zhang Y H, Ding W X, Cai Z C et al., 2010. Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmospheric Environment, 44(36): 4588-4594. doi: 10.1016/j.atmosenv.2010. 08.012 Zheng Caihong, Zeng Congsheng, Chen Zhiqiang, 2006. A study on the changes of landscape pattern of estuary wetlands of the Minjiang River. Wetland Science, 4(1): 29-34. (in Chinese)
  • [1] ZHANG Danhua, HU Yuanman, LIU Miao, CHANG Yu, SUN Lishuang.  Geographical Variation and Influencing Factors of Spartina alterniflora Expansion Rate in Coastal China . Chinese Geographical Science, 2020, 30(1): 127-141. doi: 10.1007/s11769-020-1100-9
    [2] Pompa-García MARÍN, Camarero J. JULIO, Rodríguez-Trejo DANTE ARTURO, Vega-Nieva DANIEL JOSE.  Drought and Spatiotemporal Variability of Forest Fires Across Mexico . Chinese Geographical Science, 2018, 28(1): 25-37. doi: 10.1007/s11769-017-0928-0
    [3] ZHANG Guangliang, BAI Junhong, JIA Jia, WANG Xin, WANG Wei, ZHAO Qingqing, ZHANG Shuai.  Soil Organic Carbon Contents and Stocks in Coastal Salt Marshes with Spartina alterniflora Following an Invasion Chronosequence in the Yellow River Delta, China . Chinese Geographical Science, 2018, 28(3): 374-385. doi: 10.1007/s11769-018-0955-5
    [4] QIU Fangdao, YUAN He, BAI Liangyu, LI Fei.  Spatial-temporal Heterogeneity of Industrial Structure Transformation and Carbon Emission Effects in Xuzhou Metropolitan Area . Chinese Geographical Science, 2017, 27(6): 904-917. doi: 10.1007/s11769-017-0920-8
    [5] SUN Guojun, LI Weihong, ZHU Chenggang, CHEN Yaning.  Spatial Variability of Soil Carbon to Nitrogen Ratio and Its Driving Factors in Ili River Valley, Xinjiang, Northwest China . Chinese Geographical Science, 2017, 27(4): 529-538. doi: 10.1007/s11769-017-0885-7
    [6] JIN Yinghua, XU Jiawei, WANG Yeqiao, WANG Shaoxian, CHEN Zhaoshuang, HUANG Xiangtong, NIU Lijun.  Effects of Nitrogen Deposition on Tundra Vegetation Undergoing Invasion by Deyeuxia angustifolia in Changbai Mountains . Chinese Geographical Science, 2016, 26(1): 99-108. doi: 10.1007/s11769-015-0746-1
    [7] ZUO Xiuling, SU Fenzhen, WU Wenzhou, CHEN Zhike, SHI Wei.  Spatial and Temporal Variability of Thermal Stress to China's Coral Reefs in South China Sea . Chinese Geographical Science, 2015, 25(2): 159-173. doi: 10.1007/s11769-015-0741-6
    [8] ZHANG Yiran, ZHOU Demin, NIU Zhenguo, XU Fengjiao.  Valuation of Lake and Marsh Wetlands Ecosystem Services in China . Chinese Geographical Science, 2014, 0(3): 269-278. doi: 10.1007/s11769-013-0648-z
    [9] Sven Grashey-Jansen, Martin Kuba, Bernd Cyffka, Ümüt Halik, Tayierjiang Aishan.  Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin, Northwest China . Chinese Geographical Science, 2014, 0(6): 647-657. doi: 10.1007/s11769-014-0717-y
    [10] MAO Rong, ZHANG Xinhou, SONG Changchun.  Effects of Nitrogen Addition on Plant Functional Traits in Freshwater Wetland of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2014, 0(6): 674-681. doi: 10.1007/s11769-014-0691-4
    [11] TAN Minghong, Guy M ROBINSON, LI Xiubin, XIN Liangjie.  Spatial and Temporal Variability of Farm Size in China in Context of Rapid Urbanization . Chinese Geographical Science, 2013, 23(5): 607-619. doi: 10.1007/s11769-013-0610-0
    [12] WANG Aijun.  Impact of Human Activities on Depositional Process of Tidal Flat in Quanzhou Bay of China . Chinese Geographical Science, 2007, 17(3): 265-269. doi: 10.1007/s11769-007-0265-9
    [13] YANG Ji-song, LIU Jing-shuang, YU Jun-bao, WANG Jin-da, QIN Sheng-jin, LI Xin-hua.  EFFECTS OF WATER TABLE AND NITROGEN ADDITION ON CO2 EMISSION FROM WETLAND SOIL . Chinese Geographical Science, 2005, 15(3): 262-268.
    [14] LI Heng-peng, YANG Gui-shan.  A STUDY ON EQUILIBRIUM COASTAL PROFILES OF THE CLOSE TIDAL FLAT—A Case Study of Fengxian Tidal Flat . Chinese Geographical Science, 2002, 12(1): 55-60.
    [15] ZHANG Yun, LU Xian-guo.  THE EFFECT OF DRAINAGE ON CHEMICAL ELEMENTS CONTENT OF MARSH . Chinese Geographical Science, 2001, 11(1): 76-79.
    [16] YAN Min-hua, MA Xue-hui, WANG De-xuan.  STUDY ON FLUXES OF CH4 EMISSION FROM PADDY FIELDS IN CHANGCHUN AREA . Chinese Geographical Science, 2000, 10(3): 282-287.
    [17] 黄巧华, 陈方, 朱大奎.  SUSTAINABLE DEVELOPMENT AND COASTAL MANAGEMENT OF TIDAL FLAT IN JIANGSU PROVINCE, CHINA ① . Chinese Geographical Science, 1998, 8(1): 33-43.
    [18] 马学慧, 吕宪国.  CARBON CYCLE OF MARSH IN THE SANJIANG PLAIN . Chinese Geographical Science, 1997, 7(2): 175-179.
    [19] 陈刚起, 吕宪国.  A STUDY ON MARSH EVAPOTRANSPIRATION IN THE SANJIANG PLAIN . Chinese Geographical Science, 1994, 4(2): 159-167.
    [20] 刘兴土.  RADIATION BALANCE AND MICROCLIMATIC FEATURES OF MARSH IN THE SANJIANG PLAIN . Chinese Geographical Science, 1991, 1(4): 347-358.
  • 加载中
计量
  • 文章访问数:  435
  • HTML全文浏览量:  25
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-03
  • 修回日期:  2013-09-05
  • 刊出日期:  2014-07-27

Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China

doi: 10.1007/s11769-014-0692-3
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41301085), National Basic Research Program of China (No. 2012CB956100)
    通讯作者: LIU Xingtu

摘要: The nitrogen (N) input and Spartina alterniflora invasion in the tidal marsh of the southeast of China are increasingly serious. To evaluate CH4 emissions in the tidal marsh as affected by the N inputs and S. alterniflora invasion, we measured CH4 emissions from plots with vegetated S. alterniflora and native Cyperus malaccensis, and fertilized with exogenous N at the rate of 0 (N0), 21 (N1) and 42 (N2) g N/(m2·yr), respectively, in the Shanyutan marsh in the Minjiang River estuary, the southeast of China. The average CH4 fluxes during the experiment in the C. malaccensis and S. alterniflora plots without N addition were 3.67 mg CH4/(m2·h) and 7.79 mg CH4/(m2·h), respectively, suggesting that the invasion of S. alterniflora into the Minjiang River estuary stimulated CH4 emission. Exogenous N had positive effects on CH4 fluxes both in native and in invaded tidal marsh. The mean CH4 fluxes of N1 and N2 treatments increased by 31.05% and 123.50% in the C. malaccensis marsh, and 63.88% and 7.55% in the S. alterniflora marsh, respectively, compared to that of N0 treatment. The CH4 fluxes in the two marshes were positively correlated with temperature and pH, and negatively correlated with electrical conductivity and redox potential (Eh) at different N addition treatments. While the relationships between CH4 fluxes and environmental variables (especially soil temperature, pH and Eh at different depths) tended to decrease with N additions. Significant temporal variability in CH4 fluxes were observed as the N was gradually added to the native and invaded marshes. In order to better assess the global climatic role of tidal marshes as affected by N addition, much more attention should be paid to the short-term temporal variability in CH4 emission.

English Abstract

MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. 中国地理科学, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
引用本文: MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. 中国地理科学, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. Chinese Geographical Science, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
Citation: MOU Xiaojie, LIU Xingtu, TONG Chuan, SUN Zhigao. Responses of CH4 Emissions to Nitrogen Addition and Spartina alterniflora Invasion in Minjiang River Estuary, Southeast of China[J]. Chinese Geographical Science, 2014, (5): 562-574. doi: 10.1007/s11769-014-0692-3
参考文献 (46)

目录

    /

    返回文章
    返回