留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China

LIN Lin GAO Meixiang LIU Dong ZHANG Xueping WU Haitao WU Donghui

LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. 中国地理科学, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
引用本文: LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. 中国地理科学, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
Citation: LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4

Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China

doi: 10.1007/s11769-014-0683-4
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41101049, 40601047, 41371072, 31101617, 41171047), China Postdoctoral Science Foundation (No. 2012M511361), Excellent Youth Scholars of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. DLSYQ2012004), Fund for Distinguished Young Scholar of Harbin Normal University (No. KGB201204), Scientific Innovation Project for Doctoral Candidate of Harbin Normal University (No. HSDBSCX2012-07)
详细信息
    通讯作者:

    GAO Meixiang. E-mail: gmx102@hotmail.com; WU Donghui. E-mail: wudonghui@neigae.ac.cn

Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41101049, 40601047, 41371072, 31101617, 41171047), China Postdoctoral Science Foundation (No. 2012M511361), Excellent Youth Scholars of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. DLSYQ2012004), Fund for Distinguished Young Scholar of Harbin Normal University (No. KGB201204), Scientific Innovation Project for Doctoral Candidate of Harbin Normal University (No. HSDBSCX2012-07)
More Information
    Corresponding author: GAO Meixiang. E-mail: gmx102@hotmail.com; WU Donghui. E-mail: wudonghui@neigae.ac.cn
  • 摘要: One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The co-occurrence pattern of the above-ground mite community was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite communities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.
  • [1] Adams D C, 2007. Organization of Plethodon salamander communities: Guild-based community assembly. Ecology, 88(5): 1292-1299. doi:  10.1890/06-0697
    [2] Albrecht M, Gotelli N J, 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia, 126(1): 134-141. doi:  10.1007/s004420000494
    [3] Balogh J, Balogh P, 1992. The Oribatid Mites Genera of the World (Vol. 1 and 2). Budapest: The Hungarian National Museum Press, 263, 371.
    [4] Bardgett R D, Wardle D A, 2010. Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change. Oxford: Oxford University Press, 1-287.
    [5] Benjamini Y, Yekutieli D, 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4): 1165-1188. doi:  10.2307/2674075
    [6] Caruso T, Taormina M, Migliorini M, 2012. Relative role of deterministic and stochastic determinants of soil animal community: A spatially explicit analysis of oribatid mites. Journal of Animal Ecology, 81(1): 214-221. doi: 10.1111/j.1365-2656. 2011.01886.x
    [7] Caruso T, Trokhymets V, Bargagli R et al., 2013. Biotic interactions as a structuring force in soil communities: Evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172(2): 495-503. doi:  10.1007/s00442-012-2503-9
    [8] Chave J, 2004. Neutral theory and community ecology. Ecology Letters, 7(3): 241-253. doi:  10.1111/j.1461-0248.2003.00566.x
    [9] Connor E F, Simberloff D, 1979. The assembly of species communities: Chance or competition? Ecology, 60(6): 1132-1140. doi:  10.1016/j.apsoil.2008.01.007
    [10] Decaëns T, Margerie P, Aubert M et al., 2008. Assembly rules within earthworm communities in north-western France—A regional analysis. Applied Soil Ecology, 39(3): 321-335. doi:  10.1016/j.apsoil.2008.01.007
    [11] Deyna G B D, Putten W H V, 2005. Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20(11): 625-633. doi:  10.1016/j.tree.2005.08.009
    [12] Diamond J M, 1975. Assembly of Species Communities. Cambridge: Harvard University Press, 342-444.
    [13] Ehouman N M, Tiho S, Dagnogo M, 2012. Co-occurrence of earthworms in Lamto savanna: A null model analysis of community structure. European Journal of Soil Biology, 53(11-12): 40-47. doi:  10.1016/j.ejsobi.2012.08.007
    [14] Ellwood M D F, Manica A, Foster W A, 2009. Stochastic and deterministic processes jointly structure tropical arthropod communities. Ecology Letters, 12(4): 277-284. doi:  10.1111/j.1461-0248.2009.01284.x
    [15] Escoriza D, Boix D, 2012. Assessing the potential impact of an invasive species on a Mediterranean amphibian assemblage: A morphological and ecological approach. Hydrobiologia, 680(1): 233-245. doi:  10.1007/s10750-011-0936-5
    [16] Ettema C H, Yeates G W, 2003. Nested spatial biodiversity patterns of nematode genera in a New Zealand forest and pasture soil. Soil Biology and Biochemistry, 35(2): 339-342. doi:  10.1016/S0038-0717(02)00276-6
    [17] Fayle T M, Manica A, 2010. Reducing over-reporting of deterministic co-occurrence patterns in biotic communities. Ecological Modelling, 221(19): 2237-2242. doi: 10.1016/j.ecolmodel. 2010.06.013
    [18] Feeley K, 2003. Analysis of avian communities in Lake Guri, Venezuela, using multiple assembly rule models. Oecologia, 137(1): 104-113. doi:  10.1007/s00442-003-1321-5
    [19] Fiera C, Ulrich W, 2012. Spatial patterns in the distribution of European springtails (Hexapoda: Collembola). Biological Journal of the Linnean Society, 105(3): 498-506. doi:  10.1111/j.1095-8312.2011.01816.x
    [20] Fox B J, Brown J H, 1993. Assembly rules for functional groups in north American desert rodent communities. Oikos, 67(2): 358-370.
    [21] Gotelli N J, 2000. Null model analysis of species co-occurrence patterns. Ecology, 81(9): 2606-2621. doi: 10.1890/0012-9658 (2000)081
    [22] Gotelli N J, 2002. Research frontiers in null model analysis. Global Ecology and Biogeography, 10(4): 337-343. doi:  10.1046/j.1466-822X.2001.00249.x
    [23] Gotelli N J, Ellison A M, 2002. Assembly rules for New England ant assemblages. Oikos, 99(3): 591-599. doi:  10.1034/j.1600-0706.2002.11734.x
    [24] Gotelli N J, Entsminger G L, 2009. Ecosim: Null models software for ecology (version 7). Acquired Intelligence Inc. and Kesey-Bear: Jericho, VT, USA. Available at: http:/garyentsminger. com/ecosim.htm.
    [25] Gotelli N J, Graves G R, 1996. Null Models in Ecology. Washington: Smithsonian Institution Press, 1-368.
    [26] Gotelli N J, McCabe D J, 2002. Species co-occurrence: A meta-analysis of J M Diamond's assembly rules model. Ecology, 83(8): 2091-2096. doi:  10.1890/0012-9658(2002)083
    [27] Gotelli N J, Rohde K, 2002. Co-occurrence of ectoparasites of marine fishes: A null model analysis. Ecology Letters, 5(1): 86-94. doi:  10.1046/j.1461-0248.2002.00288.x
    [28] Gotelli N J, Ulrich W, 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162(2): 463-477. doi:  10.1007/s00442-009-1474-y
    [29] Gotelli N J, Ulrich W, 2012. Statistical challenges in null model analysis. Oikos, 121(2): 171-180. doi: 10.1111/j.1600-0706. 2011.20301.x
    [30] Graves G R, Gotelli N J, 1993. Assembly of avian mixed-species flocks in Amazonia. Proceedings of the National Academy of Sciences of the United States of America, 90(4): 1388-1391. doi:  10.1073/pnas.90.4.1388
    [31] Gutiérrez-López M, Jesús J B, Trigo D et al., 2010. Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties. Pedobiologia, 53(6): 381-389. doi:  10.1016/j.pedobi.2010.07.003
    [32] Hanski I, 1982. Communities of bumblebees: Testing the core-satellite species hypothesis. Annales Zoologici Fennici, 19: 65-73.
    [33] Haukisalmi V, Henttonen H, 1998. Analysing interspecific associations in parasites: Alternative methods and effects of sampling heterogeneity. Oecologia, 116(4): 565-574. doi:  10.1007/s004420050622
    [34] Ingimarsdóttir M, Caruso T, Ripa J et al., 2012. Primary assembly of soil communities: Disentangling the effect of dispersal and local environment. Oecologia, 170(3): 745-754. doi:  10.1007/s00442-012-2334-8
    [35] Jiménez J J, Decaëns T, Rossi J P, 2012. Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian 'Llanos'. Oikos, 121(6): 915-926. doi:  10.1111/j.1600-0706.2012.20428.x
    [36] Jiménez J J, Rossi J P, 2006. Spatial dissociation between two endogeic earthworms in the Colombian 'Llanos'. European Journal of Soil Biology, 42(S1): S218-S224. doi:  10.1016/j.ejsobi.2006.07.032
    [37] Jiménez J J, Rossi J P, Lavelle P, 2001. Spatial distribution of earthworms in acid-soil savannas of the eastern plains of Colombia. Applied Soil Ecology, 17(3): 267-278. doi:  10.1016/S0929-1393(01)00133-0
    [38] Krantz G W, 1978. A manual of Acarology. Corvallis: Oregon State University Book Stores Inc., 1-509.
    [39] Krantz G W, Walter D E, 2009. A Manual of Acarology (Third edition). Lubbock: Texas Tech University Press, 1-807.
    [40] Krasnov B R, Shenbrot G I, Khokhlova I S, 2011. Aggregative structure is the rule in communities of fleas: Null model analysis. Ecography, 34(5): 751-761. doi: 10.1111/j.1600-0587. 2010.06597.x
    [41] Leibold M A, Mikkelson G M, 2002. Coherence, species turnover, and boundary clumping: Elements of meta-community structure. Oikos, 97(2): 237-250. doi: 10.1034/j.1600-0706. 2002.970210.x
    [42] Lindo Z, Winchester N N, 2009. Spatial and environmental factors contributing to patterns in arboreal and terrestrial oribatid mite diversity across spatial scales. Oecologia, 160(4): 817-825. doi:  10.1007/s00442-009-1348-3
    [43] Patterson B D, Atmar W, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28(1-2): 65-82. doi:  10.1111/j.1095-8312.1986.tb01749.x
    [44] Pitta E, Giokas S, Sfenthourakis S, 2012. Significant pairwise co-occurrence patterns are not the rule in the majority of biotic communities. Diversity, 4(2): 179-193. doi: 10.3390/d402 0179
    [45] Pitzalis M, Luiselli L, Bologna M A, 2010. Co-occurrence analyses show that non-random community structure is disrupted by fire in two groups of soil arthropods (Isopoda Oniscidea and Collembola). Acta Oecologica, 36(1): 100-106. doi:  10.1016/j.actao.2009.10.009
    [46] Rossi J P, Nuutinen V, 2004. The effect of sampling unit size on the perception of the spatial pattern of earthworm (Lumbricus terrestris L.) middens. Applied Soil Ecology, 27(2): 189-196. doi:  10.1016/j.apsoil.2004.03.001
    [47] Sanders N J, Gotelli N J, Wittman S E et al., 2007. Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scale. Journal of Biogeography, 34(9): 1632-1641. doi:  10.1111/j.1365-2699.2007.01714.x
    [48] Schluter D, 1984. A variance test for detecting species associations, with some example applications. Ecology, 65(3): 998-1005. doi:  10.2307/1938071
    [49] Sfenthourakis S, Tzanatos E, Giokas S et al., 2006. Species co-occurrence: The case of congeneric species and a causal approach to patterns of species association. Global Ecology and Biogeography, 15(1): 39-49. doi: 10.1111/j.1466-822X. 2005.00192.x
    [50] Stone L, Roberts A, 1990. The checkerboard score and species distribution. Oecologia, 85(1): 74-79. doi:  10.1007/BF00317345
    [51] Ulrich W, 2004. Species co-occurrences and neutral models: Reassessing J M Diamond's assembly rules. Oikos, 107(3): 603-609. doi:  10.1111/j.0030-1299.2004.12981.x
    [52] Ulrich W, 2008. Pairs-a FORTRAN program for studying pair-wise species associations in ecological matrices (Version 1.0). Available at: www.uni.torun.pl/~ulrichw.
    [53] Ulrich W, Gotelli N J, 2007. Disentangling community patterns of nestedness and species co-occurrence. Oikos, 116(12): 2053-2061. doi:  10.1111/j.2007.0030-1299.16173.x
    [54] Veech J A, 2006. A probability-based analysis of temporal and spatial co-occurrence in grassland birds. Journal of Biogeography, 33(12): 2145-2153. doi: 10.1111/j.1365-2699.2006. 01571.x
    [55] Walter D E, Proctor H C, 2001. Mites in Soil (CD-ROM). Collingswood: CSIRO Publishing.
    [56] Ward D, Beggs J, 2007. Coexistence, habitat patterns and the assembly of ant communities in the Yasawa islands, Fiji. Acta Oecologica, 32(2): 215-223. doi:  10.1016/j.actao.2007.05.002
    [57] Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677): 1629-1633. doi:  10.1126/science.1094875
    [58] Wilson J B, Whittaker R J, 1995. Assembly rules demonstrated in saltmarsh community. Journal of Ecology, 83(5): 801-807.
    [59] Yin Wenying, Hu Shenghao, Shen Yunfen et al., 1998. Pictorical Keys to Soil Animals of China. Beijing: Science Press, 527-562. (in Chinese)
  • [1] Qian WANG, Shuxia JIA, Aizhen LIANG, Xuewen CHEN, Shixiu ZHANG, Yan ZHANG, B MCLAUGHLIN Neil, Yan GAO, Dandan HUANG.  Residue Return Effects Outweigh Tillage Effects on Soil Microbial Communities and Functional Genes in Black Soil Region of Northeast China . Chinese Geographical Science, 2023, 33(4): 679-692. doi: 10.1007/s11769-023-1335-3
    [2] Weimin RUAN, Baojiang LIU, Huanjun LIU, Hang DONG, Yueyu SUI.  Ground Penetrating Radar (GPR) Identification Method for Agricultural Soil Stratification in a Typical Mollisols Area of Northeast China . Chinese Geographical Science, 2023, 33(4): 664-678. doi: 10.1007/s11769-023-1358-9
    [3] Bo WANG, Yaqin LEI, Desheng XUE, Jixiang LIU, Chunzhu WEI.  Elaborating Spatiotemporal Associations Between the Built Environment and Urban Vibrancy: A Case of Guangzhou City, China . Chinese Geographical Science, 2022, 32(3): 480-492. doi: 10.1007/s11769-022-1272-6
    [4] LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan.  Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China . Chinese Geographical Science, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
    [5] WANG Rui, DONG Zhibao, ZHOU Zhengchao.  Different Responses of Vegetation to Frozen Ground Degradation in the Source Region of the Yellow River from 1980 to 2018 . Chinese Geographical Science, 2020, 30(4): 557-571. doi: 10.1007/s11769-020-1135-y
    [6] WANG Shengting, SHENG Yu, LI Jing, WU Jichun, CAO Wei, MA Shuai.  An Estimation of Ground Ice Volumes in Permafrost Layers in North-eastern Qinghai-Tibet Plateau, China . Chinese Geographical Science, 2018, 28(1): 61-73. doi: 10.1007/s11769-018-0932-z
    [7] LI Xiaofeng, ZHENG Xingming, WU Lili, ZHAO Kai, JIANG Tao, GU Lingjia.  Effects of Snow Cover on Ground Thermal Regime: A Case Study in Heilongjiang Province of China . Chinese Geographical Science, 2016, 26(4): 527-538. doi: 10.1007/s11769-016-0825-y
    [8] TANG Qian, LIANG Guofu, LU Xunling, DING Shengyan.  Effects of Corridor Networks on Plant Species Composition and Diversity in an Intensive Agriculture Landscape . Chinese Geographical Science, 2014, 0(1): 93-103. doi: 10.1007/s11769-014-0659-4
    [9] ZHAO Ying, CHAI Yanwei.  Residents’ Activity-travel Behavior Variation by Communities in Beijing, China . Chinese Geographical Science, 2013, 23(4): 492-505. doi: 10.1007/s11769-013-0616-7
    [10] GONG Yanming, HU Yukun, FANG Fei, et al..  Carbon Storage and Vertical Distribution in Three Shrubland Communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China . Chinese Geographical Science, 2012, 22(5): 541-549.
    [11] LIANG Yu, HE Hong S, LEWIS Bernard L.  Responses of Tree Species to Climate Warming at Different Spatial Scales . Chinese Geographical Science, 2011, 21(4): 427-436.
    [12] LI Shanghua, ZHOU Demin, LUAN Zhaoqing, et al..  Quantitative Simulation on Soil Moisture Contents of Two Typical Vegetation Communities in Sanjiang Plain, China . Chinese Geographical Science, 2011, 21(6): 723-733.
    [13] HE Qingcheng, WU Zhaolu, ZHOU Wai, DONG Rui.  Perception and Attitudes of Local Communities Towards Wild Elephant-related Problems and Conservation in Xishuangbanna, Southwestern China . Chinese Geographical Science, 2011, 21(5): 629-.
    [14] George C S LIN.  Urban China in Transformation: Hybrid Economy, Juxtaposed Space, and New Testing Ground for Geographical Enquiries . Chinese Geographical Science, 2011, 21(1): 1-16.
    [15] HOU Xuekun, HU Ning, ZHANG Xiaoke, LIANG Lei, ZHAI Ruichang.  Vertical Distribution of Soil Nematode Communities under Different Tillage Systems in Lower Reaches of Liaohe River . Chinese Geographical Science, 2010, 20(2): 106-110. doi: 10.1007/s11769-010-0106-0
    [16] ZHOU Demin, Shahbaz KHAN.  Ecohydrology from Concepts to On-ground Actions:Report of Special Side Event on Ecohydrology-An Interdisciplinary Challenge, January 5-7, 2009 in Bangkok, Thailand . Chinese Geographical Science, 2009, 19(2): 194-195.
    [17] ZHANG Bao-lei, SONG Meng-qiang, ZHOU Wan-cun.  EXPLORATION ON METHOD OF AUTO-CLASSIFICATION FOR MAIN GROUND OBJECTS OF THREE GORGES RESERVOIR AREA . Chinese Geographical Science, 2005, 15(2): 157-161.
    [18] 刘福涛, 王春鹤, 宋长春.  GENETIC TYPES AND CHARACTERISTICS OF GROUND ICE IN NORTHEAST CHINA . Chinese Geographical Science, 1999, 9(2): 166-171.
    [19] Jim Pooler.  COMPETITION AMONG DESTINATIONS IN SPATIAL INTERACTION MODELS: A NEW POINT OF VIEW . Chinese Geographical Science, 1998, 8(3): 212-224.
    [20] 闫敏华, 马学慧, 吕宪国.  CO2 CONCENTRATION AND FLUX NEAR GROUND IN MARSH OF THE SANJIANG PLAIN OF NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(1): 79-87.
  • 加载中
计量
  • 文章访问数:  284
  • HTML全文浏览量:  14
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-13
  • 修回日期:  2013-12-16
  • 刊出日期:  2014-03-27

Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China

doi: 10.1007/s11769-014-0683-4
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41101049, 40601047, 41371072, 31101617, 41171047), China Postdoctoral Science Foundation (No. 2012M511361), Excellent Youth Scholars of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (No. DLSYQ2012004), Fund for Distinguished Young Scholar of Harbin Normal University (No. KGB201204), Scientific Innovation Project for Doctoral Candidate of Harbin Normal University (No. HSDBSCX2012-07)
    通讯作者: GAO Meixiang. E-mail: gmx102@hotmail.com; WU Donghui. E-mail: wudonghui@neigae.ac.cn

摘要: One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The co-occurrence pattern of the above-ground mite community was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite communities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.

English Abstract

LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. 中国地理科学, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
引用本文: LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. 中国地理科学, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
Citation: LIN Lin, GAO Meixiang, LIU Dong, ZHANG Xueping, WU Haitao, WU Donghui. Co-occurrence Patterns of Above-ground and Below-ground Mite Communities in Farmland of Sanjiang Plain, Northeast China[J]. Chinese Geographical Science, 2014, (3): 339-347. doi: 10.1007/s11769-014-0683-4
参考文献 (59)

目录

    /

    返回文章
    返回