留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration

ZHOU Lei WANG Shaoqiang Georg KINDERMANN YU Guirui HUANG Mei Robert MICKLER Florian KRAXNER SHI Hao GONG Yazhen

ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. 中国地理科学, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
引用本文: ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. 中国地理科学, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
Citation: ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9

Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration

doi: 10.1007/s11769-013-0622-9
基金项目: Foundation item: Under the auspices of International Science and Technology Cooperation Project (No. 2010DFA22480), Major State Basic Research Development Program of China (No. 2010CB833503)
详细信息
    通讯作者:

    WANG Shaoqiang,E-mail: sqwang@igsnrr.ac.cn

Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration

Funds: Foundation item: Under the auspices of International Science and Technology Cooperation Project (No. 2010DFA22480), Major State Basic Research Development Program of China (No. 2010CB833503)
More Information
    Corresponding author: WANG Shaoqiang,E-mail: sqwang@igsnrr.ac.cn
  • 摘要: It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influenced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under different scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in climate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001-2100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001-2100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.
  • [1] Ainsworth E A, Long S P, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2): 351-372. doi:  10.1111/j.1469-8137.2004.01224.x
    [2] Berthelot M, Friedlingstein P, Ciais P et al., 2002. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeo­-
    [3] ch­emical Cycles, 16(4): 1084. doi:  10.1029/2001GB001827
    [4] Bu R C, He H S, Hu Y M et al., 2008. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in northeastern China. Forest Ecology and Management, 254(3): 407-419. doi: 10.1016/j.foreco. 2007.09.080
    [5] Caldwell I M, Maclaren V W, Chen J M et al., 2007. An integrated assessment model of carbon sequestration benefits: A case study of Liping County, China. Journal of Environ­mental Management, 85(3): 757-773. doi: 10.1016/j.jenvman. 2006.08.020
    [6] Cao M, Woodward F I, 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682): 249-252. doi:  10.1038/30460
    [7] Chen J M, Chen W J, Liu J et al., 2000. Annual carbon balance of Canada's forests during 1895-1996. Global Biogeochemical Cycles, 14(3): 839-849. doi:  10.1029/1999GB001207
    [8] Chen J M, Ju W M, Cihlar J et al., 2003. Spatial distribution of carbon sources and sinks in Canada's forests. Tellus B, 55(2): 622-641. doi:  10.1034/j.1600-0889.2003.00036.x
    [9] Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529-533. doi:  10.1038/nature03972
    [10] Coomes D A, Holdaway R J, Kobe R K et al., 2012. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100(1): 42-64. doi:  10.1111/j.1365-2745.2011.01920.x
    [11] Cooper C F, 1983. Carbon storage in managed forests. Canadian Journal of Forest Research, 13(1): 155-166. doi:  10.1139/x83-022
    [12] Cramer W, Bondeau A, Woodward F I et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373. doi: 10.1046/j.1365-2486.2001.00383.x
    [13] Eggers J, Lindner M, Zudin S et al., 2008. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14(10): 2288-2303. doi: 10.1111/j.1365-2486. 2008.01653.x
    [14] Fang J Y, Chen A P, Peng C H et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320-2322. doi:  10.1126/science.1058629
    [15] Fang J Y, Piao S L, Field C B et al., 2003. Increasing net primary production in China from 1982-1999. Frontiers in Ecology and the Environment, 1(6): 293-297. doi: 10.1890/1540-9295 (2003)001
    [16] [0294:INPPIC]2.0.CO;2
    [17] Farquhar G D, von Caemmerer S, Berry J A, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78-90. doi:  10.1007/BF00386231
    [18] Feng X, Liu G, Chen J M et al., 2007. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85(3): 563-573. doi:  10.1016/j.jenvman.2006.09.021
    [19] FAO (Food and Agriculture Organization of the United Nations), 2005. FAOSTAT Database. Available at: http://faostat.fao.org
    [20] Giorgi F, Mearns L O, 2002. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the ‘Reliability Ensemble Averaging (REA)' method. Journal of Climate, 15(10): 1141-1158. doi:  10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
    [21] Giorgi F, Mearns L O, 2003. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical research letters, 30(12): 1629-1632. doi:  10.1029/2003GL017130
    [22] Govinda A, Chen, J M, Bernierc P et al., 2011. Spatially distri­buted modeling of the long-term carbon balance of a boreal landscape. Ecological Modelling, 222(15): 2780-2795. doi:  10.1016/j.ecolmodel.2011.04.007
    [23] Gusti M, 2010. An Algorithm for Simulation of Forest Management Decisions in the Global Forest Model. Artificial Intelligence, 4: 45-49.
    [24] Gusti M, Kindermann G, 2011. An Approach to Modeling Land Use Change and Forest Management on a Global Scale. Austria: International Institute for Applied Systems Analysis.
    [25] He H S, Larsen D R, Mladenoff D J, 2002. Exploring component based approaches in forest landscape modeling. Environmental Modelling and Software, 17(6): 519-529. doi:  10.1016/S1364-8152(02)00014-2
    [26] Hutchinson M F, 2002. ANUSPLIN Version 4.2 User Guide. Canberra: Australian National University, 1-48.
    [27] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
    [28] Jarvis P G, 1998. European Forests and Global Change: The Likely Impacts of Rising CO2 and Temperature. Cambridge: Cambridge University Press, 1-398.
    [29] Joyce L A, Birdsey R, 2000. The Impacts of Climate Change on America's Forests: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment. Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
    [30] Ju W M, Chen J M, 2005. Distribution of soil carbon stocks in Canada's forests and wetlands simulated based on drainage class, topography and remotely sensed vegetation parameters. Hydrological Processes, 19(1): 77-94. doi:  10.1002/hyp.5775
    [31] Ju W M, Chen J M, Black T A et al., 2006. Modeling coupled water and carbon fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140(1-4): 136-151. doi: 10.1016/j. agrformet.2006.08.008
    [32] Ju W M, Chen J M, Harvey D et al., 2007. Future carbon balance of China's forests under climate change and increasing CO2. Journal of Environmental Management, 85(3): 538-562. doi:  10.1016/j.jenvman.2006.04.028
    [33] Ju W M, Chen J M, 2008. Simulating the effects of past changes in climate, atmospheric composition, and fire disturbance on soil carbon in Canada's forests and wetlands. Global Biogeochemical Cycles, 22(3): GB3010. doi:  10.1029/2007GB002935
    [34] Ju W M, Chen J M, Black T A et al., 2010. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada's forests and wetlands. Tellus, 62(3): 140-159. doi:  10.1111/j.1600-0889.2010.00459.x
    [35] Kaipainen T, Liski J, Pussinen A et al., 2004. Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy, 7(3): 205-219. doi: 10.1016/j. envsci.2004.03.001
    [36] Karjalainen T, Pussinen A, Liski J et al., 2003. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy and Economics, 5(2): 141-155. doi: 10.1016/S1389-9341(03) 00021-2
    [37] Kindermann G, Obersteiner M, Rametsteiner E et al., 2006. Predicting the Deforestation-Trend under Different Carbon-Prices. Carbon Balance and Management, 1(15): 1-17. doi: 10.1186/ 1750-0680-1-15
    [38] Kindermann G, Obersteiner M, Sohngen B et al., 2008. Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10302-10307. doi:  10.1073/pnas.0710616105
    [39] Kindermann G, Schörghuber S, Linkosalo T et al., 2011. Potential Woody Biomass and Increments in the European Union until 2100. Austria: International Institute for Applied Systems Analysis.
    [40] Liski J, Pussinen A, Pingoud K et al., 2001. Which rotationlength is favourable for carbon sequestration. Canadian Journal of Forest Research, 31(11): 2004-2013. doi:  10.1139/x01-140
    [41] Liu Z L, Fang S Z, Liu D et al., 2011. Influence of thinning time and density on sprout development, biomass production and energy stocks of sawtooth oak stumps. Forest Ecology and Management, 262(2): 299-306. doi: 10.1016/j.foreco.2011.03. 035
    [42] Long S P, Ainsworth E A, Rogers A et al., 2004. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55: 591-628. doi: 10.1146/annurev.arplant.55. 031903.141610
    [43] Luo T X, Li W H, Zhu H Z, 2002. Estimated biomass and productivity of natural vegetation on the Tibetan plateau. Ecological Applications, 12(4): 980-997. doi:  10.2307/3061031
    [44] Luo Tianxiang, 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Its Mathematical Models. Beijing: Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences. (in Chinese)
    [45] Mäkipää R, Karjalainen T, Pussinen A et al., 1999. Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Canadian Journal of Forest Research, 29(10): 1490-1501. doi: 10.1139/ cjfr-29-10-1490
    [46] McGuire A D, Sitch S, Clein J S et al., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate, and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15(1): 183-206. doi:  10.1029/2000GB001298
    [47] Melillo J M, Mcguire A D, Kicklighter D W et al., 1993. Global climate-change and terrestrial net primary production. Nature, 363(6426): 234-240. doi:  10.1038/363234a0
    [48] Norby R J, DeLucia E H, Gielen B et al., 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102(50): 18052-18056. doi: 10.1073/ pnas.0509478102
    [49] Pacala S W, Socolow R, 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current techno­logies. Science, 305(5686): 968-972. doi: 10.1126/science. 1100103
    [50] Parton W J, Scurlock J M O, Ojima D S et al., 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4): 785-809. doi:  10.1029/93GB02042
    [51] Pussinen A, Karjalainen T, Mäkipää R et al., 2002. Forest carbon sequestration and harvest in Scots pine stand under different climate and nitrogen deposition scenarios. Forest Ecology and Management, 158(1-3): 103-115. doi:  10.1029/93GB02042
    [52] Ranatunga K, Keenan R J, Wullshchleger S D et al., 2008. Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES. Forest Ecology and Management, 255(7): 2407-2415. doi:  10.1016/j.foreco.2008.01.002
    [53] Rathgeber C, Nicault A, Guiot J et al., 2000. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 26(4): 405-421. doi:  10.1016/S0921-8181(00)00053-9
    [54] Seely B, Welham C, Kimmins H, 2002. Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model. Forest Ecology and Management, 169(1-2): 123-135. doi:  10.1016/S0378-1127(02)00303-1
    [55] Shang Z B, He H S, Xi W M et al., 2012. Integrating LANDIS model and a multi-criteria decision-making approach to eva­luate cumulative effects of forest management in the Missouri Ozarks, USA. Ecological Modelling, 229: 50-63. doi: 10. 1016/j.ecolmodel.2011.08.014
    [56] Shanin V N, Komarov A S, Mikhailov A V et al., 2011. Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes. Ecological Modelling, 222(14): 2262-2275. doi:  10.1016/j.ecolmodel.2010.11.009
    [57] Shao Y, Pan J, Yang L et al., 2007. Tests of soil organic carbon density modeled by InTEC model in China's forest ecosystems. Journal of Environmental Management, 85(3): 696-701. doi:  10.1016/j.jenvman.2006.09.006
    [58] Simioni G, Ritson P, Kirschbaum M U F et al., 2009. The carbon budget of pinus radiata plantations in south-western Australia under four climate change scenarios. Tree Physiology, 29(9): 1081-1093. doi:  10.1093/treephys/tpp049.
    [59] State Forestry Administration, 1999. China Forestry Yearbook: 1998-2003. Beijing: China Forestry Publishing House, 1-783. (in Chinese)
    [60] Thomas S C, Malczewski G, Saprunoff M, 2007. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. Journal of Environmental Management, 85(3): 663-671. doi:  10.1016/j.jenvman.2006.04.027
    [61] Thornton P E, Lamarque J F, Rosenbloom N A et al., 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21(4): GB4018. doi:10.1029/2006GB00 2868
    [62] Wang S Q, Chen J M, Ju W M et al., 2007. Carbon sinks and sources in China's forests during 1901-2001. Journal of Environmental Management, 85(3): 524-537. doi: 10.1016/j. jenvman.2006.09.019
    [63] Wang S Q, Zhou L, Chen J M et al., 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 92(6): 1651-1662. doi: 10.1016/j. jenvman.2011.01.024
    [64] Wang W F, Wei X H, Liao W M et al., 2012. Evaluation of the effects of forest management strategies on carbon sequestration in evergreen broad-leaved (Phoebe bournei) plantation forests using FORECAST ecosystem model. Forest Ecology and Management, in press. doi: 10.1016/j.foreco.2012. 06.044
    [65] White A, Cannell M G R, Friend A D, 2000. The high-latitude terrestrial carbon sink: a model analysis. Global Change Biology, 6(2): 227-245. doi:  10.1046/j.1365-2486.2000.00302.x
    [66] Xu Y, Gao X J, Giorgi F, 2009. Upgrades to the reliability ensemble averaging method for producing probabilistic climate change projections. Climate Research, 41(1): 61-81. doi:  10.3354/cr00835
    [67] Yang L X, Pan J J, Shao Y H et al., 2007. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China. Journal of Environmental Management, 85(3): 690-695. doi:  10.1016/j.jenvman.2006.09.011
    [68] Yao J, He X, Wang A et al., 2012. Influence of Forest Management Regimes on Forest Dynamics in the Upstream Region of the Hun River in Northeastern China. PLoS ONE, 7(6): e39058. doi:  10.1371/journal.pone.0039058
    [69] Yu Guirui, He Honglin, Liu Xinan et al., 2004. Atlas for Spa­tia­liz­ed Information of Terrestrial Ecosystem in China: Volume of Clima­tological Elements. Beijing: China Meteorological Press, 1-317. (in Chinese)
    [70] Zeeman M J, Hiller R, Gilgen A K et al., 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agricultural and Forest Meteorology, 150(4): 519-530. doi:  10.1016/j.agrformet.2010.01.011
    [71] Zeng N, Qian H, Rödenbeck C et al., 2005. Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32(22): L22709. doi:  10.1029/2005GL024607
    [72] Zhang J B, Shangguan T L, Meng Z Q, 2011. Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological research, 26(1): 153-161. doi:  10.1007/s11284-010-0772-5
    [73] Zhao M F, Xiang W H, Deng X W, 2013. Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, southern China. Ecological Modelling, 250: 58-71. doi:  10.1016/j.ecolmodel.2012.10.011
    [74] Zhou L X, Conway T J, White J W C et al., 2005. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991-2002. Global Biogeochemical Cycles, 19(2): GB3021. doi:  10.1029/2004GB002430
  • [1] Ziyue XU, Kai MA, Xu YUAN, Daming HE.  Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6 . Chinese Geographical Science, 2024, 34(2): 294-310. doi: 10.1007/s11769-024-1420-2
    [2] Xuexin WEI, Ronggao LIU, Yang LIU.  Forest Change in China: A Review . Chinese Geographical Science, 2023, 33(3): 489-502. doi: 10.1007/s11769-023-1355-z
    [3] XIANG Hengxing, JIA Mingming, WANG Zongming, LI Lin, MAO Dehua, ZHANG Da, CUI Guishan, ZHU Weihong.  Impacts of Land Cover Changes on Ecosystem Carbon Stocks Over the Transboundary Tumen River Basin in Northeast Asia . Chinese Geographical Science, 2018, 28(6): 973-985. doi: 10.1007/s11769-018-1006-y
    [4] XU Li, WEN Ding, ZHU Jianxing, HE Nianpeng.  Regional Variation in Carbon Sequestration Potential of Forest Ecosystems in China . Chinese Geographical Science, 2017, 27(3): 337-350. doi: 10.1007/s11769-017-0870-1
    [5] HE Xingyuan, XU Sheng, XU Wenduo, CHEN Wei, HUANG Yanqing, WEN Hua.  Effects of Climate Warming on Phenological Characteristics of Urban Forest in Shenyang City, China . Chinese Geographical Science, 2016, 26(1): 1-9. doi: 10.1007/s11769-015-0782-x
    [6] QI Guang, CHEN Hua, ZHOU Li, WANG Xinchuang, ZHOU Wangming, QI Lin, YANG Yuhua, YANG Fengling, WANG Qingli, DAI Limin.  Carbon Stock of Larch Plantations and Its Comparison with an Old-growth Forest in Northeast China . Chinese Geographical Science, 2016, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
    [7] ZHANG Dan, ZHENG Haifeng, REN Zhibin, ZHAI Chang, SHEN Guoqiang, MAO Zhixia, WANG Peijiang, HE Xingyuan.  Effects of Forest Type and Urbanization on Carbon Storage of Urban Forests in Changchun, Northeast China . Chinese Geographical Science, 2015, 25(2): 147-158. doi: 10.1007/s11769-015-0743-4
    [8] WEI Yawei, YU Dapao, Bernard Joseph LEWIS, ZHOU Li, ZHOU Wangming, FANG Xiangmin, ZHAO Wei, WU Shengnan, DAI Limin.  Forest Carbon Storage and Tree Carbon Pool Dynamics under Natural Forest Protection Program in Northeastern China . Chinese Geographical Science, 2014, 0(4): 397-405. doi: 10.1007/s11769-014-0703-4
    [9] TANG Long, DANG Xiaohu, LIU Guobin, SHAO Chuanke, XUE Sha.  Response of Artificial Grassland Carbon Stock to Management in Mountain Region of Southern Ningxia, China . Chinese Geographical Science, 2014, 0(4): 436-443. doi: 10.1007/s11769-014-0705-2
    [10] ZHOU Wangming, Bernard Joseph LEWIS, WU Shengnan, YU Dapao, ZHOU Li, WEI Yawei.  Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China . Chinese Geographical Science, 2014, 0(4): 406-413. doi: 10.1007/s11769-014-0702-5
    [11] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [12] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [13] ZHAO Junfang YAN Xiaodong JIA Gensuo.  Simulating the net carbon budget of forest ecosystems and its response to climate change in Northeast China using the improved forest carbon budget model FORCCHN . Chinese Geographical Science, 2012, 22(1): 29-41.
    [14] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [15] XU Xinliang, LI Kerang.  Biomass Carbon Sequestration by Planted Forests in China . Chinese Geographical Science, 2010, 20(4): 289-297. doi: 10.1007/s11769-010-0401-9
    [16] Diana Avila-Flores, Marin Pompa-Garcia, Xanat Antonio-Nemiga, Dante A Rodriguez-Trejo, Eduardo Vargas-Perez, Javier Santillan-Perez.  Driving Factors for Forest Fire Occurrence in Durango State of Mexico:A Geospatial Perspective . Chinese Geographical Science, 2010, 20(6): 491-497. doi: 10.1007/s11769-010-0437-x
    [17] MO Jiaqi, LIN Wantao, WANG Hui.  Singularly Perturbed Solution of Coupled Model in Atmosphere-ocean for Global Climate . Chinese Geographical Science, 2008, 18(2): 193-196. doi: 10.1007/s11769-008-0193-3
    [18] WU Su-li, LOU Quan-sheng, QUAN Zhi-jie, LI Xiao-jun.  STUDY OF SETTING UP THE FOREST RESOURCES MANAGEMENT INFORMATION SYSTEM BASED ON WEBGIS . Chinese Geographical Science, 2003, 13(1): 56-61.
    [19] HUANG Fang, LIU Xiang-nan, YUAN Jin-guo.  STUDY ON FOREST FIRE DANGER MODEL WITH REMOTE SENSING BASED ON GIS . Chinese Geographical Science, 2000, 10(1): 61-67.
    [20] 蔡运龙.  VULNERABILITY AND ADAPTATION OF CHINESE AGRICULTURE TO GLOBAL CLIMATE CHANGE . Chinese Geographical Science, 1997, 7(4): 289-301.
  • 加载中
计量
  • 文章访问数:  417
  • HTML全文浏览量:  11
  • PDF下载量:  1360
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-09
  • 修回日期:  2013-01-08
  • 刊出日期:  2013-09-10

Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration

doi: 10.1007/s11769-013-0622-9
    基金项目:  Foundation item: Under the auspices of International Science and Technology Cooperation Project (No. 2010DFA22480), Major State Basic Research Development Program of China (No. 2010CB833503)
    通讯作者: WANG Shaoqiang,E-mail: sqwang@igsnrr.ac.cn

摘要: It is critical to study how different forest management practices affect forest carbon sequestration under global climate change regime. Previous researches focused on the stand-level forest carbon sequestration with rare investigation of forest carbon stocks influenced by forest management practices and climate change at regional scale. In this study, a general integrative approach was used to simulate spatial and temporal variations of woody biomass and harvested biomass of forest in China during the 21st century under different scenarios of climate and CO2 concentration changes and management tasks by coupling Integrated Terrestrial Ecosystem Carbon budget (InTEC) model with Global Forest Model (G4M). The results showed that forest management practices have more predominant effects on forest stem stocking biomass than climate and CO2 concentration change. Meanwhile, the concurrent future changes in climate and CO2 concentration will enhance the amounts of stem stocking biomass in forests of China by 12%-23% during 2001-2100 relative to that with climate change only. The task for maximizing stem stocking biomass will dramatically enhance the stem stocking biomass from 2001-2100, while the task for maximum average increment will result in an increment of stem stocking biomass before 2050 then decline. The difference of woody biomass responding to forest management tasks was owing to the current age structure of forests in China. Meanwhile, the sensitivity of long-term woody biomass to management practices for different forest types (coniferous forest, mixed forest and deciduous forest) under changing climate and CO2 concentration was also analyzed. In addition, longer rotation length under future climate change and rising CO2 concentration scenario will dramatically increase the woody biomass of China during 2001-2100. Therefore, our estimation indicated that taking the role of forest management in the carbon cycle into the consideration at regional or national level is very important to project the forest carbon sequestration under future climate change and rising atmospheric CO2 concentration.

English Abstract

ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. 中国地理科学, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
引用本文: ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. 中国地理科学, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
Citation: ZHOU Lei, WANG Shaoqiang, Georg KINDERMANN, YU Guirui, HUANG Mei, Robert MICKLER, Florian KRAXNER, SHI Hao, GONG Yazhen. Carbon Dynamics in Woody Biomass of Forest Ecosystem in China with Forest Management Practices under Future Climate Change and Rising CO2 Concentration[J]. Chinese Geographical Science, 2013, 23(5): 519-536. doi: 10.1007/s11769-013-0622-9
参考文献 (74)

目录

    /

    返回文章
    返回