留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data

Juliana USEYA CHEN Shengbo

Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. 中国地理科学, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
引用本文: Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. 中国地理科学, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
Citation: Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0

Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data

doi: 10.1007/s11769-019-1060-0
基金项目: Under the auspices of Fundamental Research Funds for the Central Universities, China (No. 2017TD-26), the Plan for Changbai Mountain Scholars of Jilin Province, China (No. JJLZ[2015]54)
详细信息
    通讯作者:

    Juliana USEYA.E-mail:julieuseya@yahoo.co.uk;CHEN Shengbo.E-mail:chensb@jlu.edu.cn

Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data

Funds: Under the auspices of Fundamental Research Funds for the Central Universities, China (No. 2017TD-26), the Plan for Changbai Mountain Scholars of Jilin Province, China (No. JJLZ[2015]54)
More Information
    Corresponding author: Juliana USEYA.E-mail:julieuseya@yahoo.co.uk;CHEN Shengbo.E-mail:chensb@jlu.edu.cn
  • 摘要: It is of paramount importance to have sustainable agriculture since agriculture is the backbone of many nations' economic development. Majority of agricultural professionals rarely capture the cropping patterns necessary to promote Good Agricultural Practises. Objective of this research is to explore the potential of mapping cropping patterns occurring on different field parcels on small-scale farmlands in Zimbabwe. The first study location under investigation are the International Maize and Wheat Improvement Center (CIMMYT) research station and a few neighboring fields, the second is Middle Sabi Estate. Fourier time series modeling was implemented to determine the trends befalling on the two study sites. Results reveal that Sentinel-1 synthetic aperture radar (SAR) time series allow detection of subtle changes that occur to the crops and fields respectively, hence can be utilized to detect cropping patterns on small-scale farmlands. Discrimination of the main crops (maize and soybean) grown at CIMMYT was possible, and crop rotation was synthesized where sowing starts in November. A single cropping of early and late crops was observed, there were no winter crops planted during the investigation period. At Middle Sabi Estate, single cropping on perennial sugarcane fields and triple cropping of fields growing leafy vegetables, tomatoes and onions were observed. Classification of stacked images was used to derive the crop rotation maps representing what is practised at the farming lands. Random forest classification of the multi-temporal image stacks achieved overall accuracies of 99% and 95% on the respective study sites. In conclusion, Sentinel-1 time series can be implemented effectively to map the cropping patterns and crop rotations occurring on small-scale farming land. We recommend the use of Sentinel-1 SAR multi-temporal data to spatially explicitly map cropping patterns of single-, double- and triple-cropping systems on both small-scale and large-scale farming areas to ensure food security.
  • [1] Ban Y, Howarth P J, 1999. Multitemporal ERS-1 SAR data for crop classification:a sequential-masking approach. Canadian Journal of Remote Sensing, 25(5):438-447. doi: 10.1080/07038992.1999.10874743
    [2] Bargiel D, 2017. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sensing of Environment, 198:369-383. doi: 10.1016/j.rse.2017.06.022
    [3] Bégué A, Arvor D, Bellon B et al., 2018. Remote sensing and cropping practices:a review. Remote Sensing, 10(1):99. doi: 10.3390/rs10010099
    [4] Bharati P, De U K, Pal M, 2015. A modified diversity index and its application to crop diversity in Assam, India. AIP Conference Proceedings, 1643(1):19-29. doi: 10.1063/1.4907421
    [5] Breiman L, 2001. Random forest. Machine Learning, 45(1):5-32. doi: 10.1109/ACCESS.2019.2912807.
    [6] Chamundeeswari V V, Singh D, Singh K, 2007. Unsupervised land cover classification of SAR images by contour tracing. In:Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain:IEEE, 547-550. doi: 10.1109/IGARSS.2007.4422852
    [7] CIMMYT, 2016. Our work. http://www.cimmyt.org/our-work/. Cited 22 March 2018.
    [8] Crawford M M, Ricard M R, 1998. Hierarchical classification of SAR data using a markov random field model. In:Proceedings of 1998 IEEE Southwest Symposium on Image Analysis and Interpretation. Tucson, AZ, USA:IEEE. doi: 10.1109/IAI.1998.666864
    [9] de Oliveira A T C, de Oliveira L T, de Carvalho L M T et al., 2009. Separabilities of forest types in amplitude-phase space of multi-temporal MODIS NDVI. In:Proceedings of the Anais 14th Simpósio Brasileiro de Sensoriamento Remoto. Natal, Brasil:INPE, 7.
    [10] Dimov D, Kuhn J, Conrad C, 2016. Assessment of cropping sys-tem diversity in the fergana valley through image fusion of landsat 8 and sentinel-1. Proceedings of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic:ISPRS, 173-180. doi: 10.5194/isprsannals-Ⅲ-7-173-2016
    [11] Doukkali F, 2017. Clustering using K-means algorithm. Towards Data Science. https://towardsdatascience.com/clustering-using-k-means-algorithm-81da00f156f6?gi=c1eec7743ec0. Cited 20 March 2018
    [12] Dzirutwe M, 2015. Zimbabwe takes tobacco road to agriculture recovery. https://www.yahoo.com/news/zimbabwe-takes-to-bacco-road-agriculture-recovery-082633369-business.html. Cited 21 March 2018
    [13] Foody G M, McCulloch M B, Yates W B, 1994. Crop classifica-tion from c-band polarimetric radar data. International Journal of Remote Sensing, 15(14):2871-2885. doi:10.1080/0143116 9408954289
    [14] Forkuor G, Conrad C, Thiel M et al., 2014. Integration of optical and synthetic aperture radar imagery for improving crop map-ping in Northwestern Benin, West Africa. Remote Sensing, 6(7):6472-6499. doi: 10.3390/rs6076472
    [15] Heller E, Rhemtulla J, Lele S et al., 2012. Mapping crop types, irrigated areas, and cropping intensities in heterogeneous land-scapes of southern india using multi-temporal medium-resolution imagery:implications for assessing water use in agriculture. Photogrammetric Engineering & Remote Sensing, 78(8):815-827. doi: 10.14358/PERS.78.8.815
    [16] Hütt C, Waldhoff G, 2018. Multi-data approach for crop classifi-cation using multitemporal, dual-polarimetric TerraSAR-X data, and official geodata. European Journal of Remote Sensing, 51(1):62-74. doi: 10.1080/22797254.2017.1401909
    [17] Jackson R D, 1984. Remote sensing of vegetation characteristics for farm management. In:Proceedings of SPIE 0475, Remote Sensing:Critical Review of Technology. Arlington:SPIE. doi: 10.1117/12.966243
    [18] Lee J S, Jurkevich I, Dewaele P et al. 1994, Speckle filtering of synthetic aperture aadar images:a review. Remote Sensing Reviews, 8(4):313-40. https://doi.org/10.1080/027572594095 32206
    [19] Le Toan T, Laur H, Mougin E et al., 1989. Multitemporal and dual-polarization observations of agricultural vegetation covers by X-band SAR images. IEEE Transactions on Geoscience and Remote Sensing, 27(6):709-718. doi:10.1109/TGRS. 1989.1398243
    [20] Lin Sen, Liu Ronggao, 2016. A simple method to extract tropical monsoon forests using NDVI based on MODIS data:a case study in South Asia and Peninsula Southeast Asia. Chinese Geographical Science, 26(1):22-34. doi: 10.1007/s11769-015-0789-3
    [21] Lopes A, Nezry E, Touzi R et al., 1993. Structure detection and statistical adaptive speckle filtering in SAR images. Interna-tional Journal of Remote Sensing, 14(9):1735-1758. doi: 10.1080/01431169308953999
    [22] Marongwe L, Kwazira M, Jenrich et al., 2011. An African success:the case of conservation agriculture in Zimbabwe. International Journal of Agricultural Sustainability, 9(1):153-161. doi: 10.3763/ijas.2010.0556
    [23] Martínez-Casasnovas J A, Martín-Montero A, 2003. Application of Landsat TM images to map long term cropping patterns. http://www.macaulay.ac.uk/workshop/remotesensing2004/JAMC_Full_paper.pdf. Cited 24 March 2018
    [24] Mattia F, Satalino G, Balenzano A et al., 2015. Sentinel-1 for wheat mapping and soil moisture retrieval. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium. Milan, Italy:IEEE, 2832-2835. doi: 10.1109/IGARSS.2015.7326404
    [25] McNairn H, Shang J L, 2016. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In:Ban Y F (ed). Multitemporal Remote Sensing:Methods and Applications. Cham:Springer, 317-340. doi: 10.1007/978-3-319-47037-5_15
    [26] Moran S M, Alonso L, Moreno J F et al., 2012. A RADARSAT-2 quad-polarized time series for monitoring crop and soil condi-tions in Barrax, Spain. IEEE Transactions on Geoscience and Remote Sensing, 50(4):1057-1070. doi:10.1109/TGRS.2011. 2166080
    [27] Mukwada G, Manatsa D, 2013. Geospatial and temporal analysis of drought years in Zimbabwe, 1940-1999. Geographia Po-lonica, 86(4):313-326. doi: 10.7163/GPol.2013.26
    [28] Nagraj G M, Karegowda A G, 2016. Crop mapping using SAR imagery:an review. International Journal of Advanced Re-search in Computer Science, 7(7):47-52.
    [29] Nguyen D B, Clauss K, Cao S M et al., 2015. Mapping rice sea-sonality in the mekong delta with multi-year envisat ASAR WSM data. Remote Sensing, 7(12):15868-15893. doi:10. 3390/rs71215808
    [30] Nyoungui E, Tonye E, Akono A, 2002. Evaluation of Speckle Filtering and Texture Analysis Methods for Land Cover Clas-sification from SAR Images. International Journal of Remote Sensing, 23(9):1895-1925. doi: 10.1080/01431160110036157
    [31] Ozdarici A, Akyurek A, 2010. A Comparison of SAR Filtering Techniques on Agricultural Area Identification. In:ASPRS 2010 Annual Conference. San Diego, USA. http://info.asprs.org/publications/proceedings/sandiego2010/sandiego10/Ozdarici.pdf. Cited 17 May 2019
    [32] Portnoi M D, 2017. Methods for Sugarcane Harvest Detection Using Polarimetric SAR. Stellenbosch:Stellenbosch University.
    [33] Satalino G, Mattia F, Le Toan T et al., 2009. Wheat crop mapping by using ASAR AP data. IEEE Transactions on Geoscience and Remote Sensing, 47(2):527-530. doi:10.1109/TGRS. 2008.2008026
    [34] Sharma M P, Yadav M, Prawasi R et al., 2011. Cropping system analysis using remote sensing and GIS:a block level study of kurukshetra district. ARPN Journal of Agricultural and Bio-logical Science, 6(10):45-51.
    [35] Suresh G, Gehrke R, Wiatr T et al., 2016. Synthetic aperture radar (SAR) based classifiers for land applications in germany. Pro-ceedings of International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Prague, Czech Republic:ISPRS, 1187-1193. doi: 10.5194/isprs-archives-XLI-B1-1187-2016
    [36] Toringepi G, 2016. The Contribution of Smallholder Agriculture Production to Food Security in Rural Zimbabwe:A Case Study of Masvingo Province. South Africa:University of Fort Hare
    [37] Veci L, 2016. Sentinel-1 toolbox:TOPS interferometry tutorial. https://step.esa.int/docs/tutorials/S1TBX%20TOPSAR%20Interferometry%20with%20Sentinel-1%20Tutorial.pdf. Cited 20 March 2018
    [38] Wang Dan, Lin Hui, Chen Jinsong et al., 2010. Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the pearl river delta. International Journal of Re-mote Sensing, 31(6):1555-1572. doi:10.1080/01431160903 475258
    [39] Wegmüller U, Werner A, Wiesmann A et al., 2016. Time-series analysis of sentinel-1 interferometric wide swath data:tech-niques and challenges. Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China:IEEE, 3898-3901. doi: 10.1109/IGARSS.2016.7730012
    [40] Yan Huimin, Xiao Xiangming, Huang Heqing et al., 2014. Mul-tiple cropping intensity in China derived from agro-mete-orological observations and MODIS data. Chinese Geographical Science, 24(2):205-219. doi: 10.1007/s11769-013-0637-2
  • [1] Guangxuan YAN, Jieqi WANG, Tingting LUO, Weiwei CHEN, Yun SHAO, Chunxi LI.  A Meta-analysis of No-tillage Effects on Greenhouse Gas Emissions from Wheat-based Rotation Cropping Agroecosystem in China . Chinese Geographical Science, 2023, 33(3): 503-511. doi: 10.1007/s11769-023-1356-y
    [2] Liping ZHANG, Liang ZHOU, Bo YUAN, Fengning HU, Qian ZHANG, Wei WEI, Dongqi SUN.  Spatiotemporal Evolution Characteristics of Urban Land Surface Temperature Based on Local Climate Zones in Xi’an Metropolitan, China . Chinese Geographical Science, 2023, 33(6): 1001-1016. doi: 10.1007/s11769-023-1387-4
    [3] WANG Renjing, LI Xiubin, TAN Minghong, XIN Liangjie, WANG Xue, WANG Yahui, JIANG Min.  Inter-provincial Differences in Rice Multi-cropping Changes in Main Double-cropping Rice Area in China: Evidence from Provinces and Households . Chinese Geographical Science, 2019, 20(1): 127-138. doi: 10.1007/s11769-018-0972-4
    [4] WANG Jiechen, WU Jiayi, NI Jianhua, CHEN Jie, XI Changbai.  Relationship Between Urban Road Traffic Characteristics and Road Grade Based on a Time Series Clustering Model: A Case Study in Nanjing, China . Chinese Geographical Science, 2018, 28(6): 1048-1060. doi: 10.1007/s11769-018-0982-2
    [5] SHEN Wenjuan, LI Mingshi, WEI Anshi.  Spatio-temporal Variations in Plantation Forests' Disturbance and Recovery of Northern Guangdong Province Using Yearly Landsat Time Series Observations (1986-2015) . Chinese Geographical Science, 2017, 27(4): 600-613. doi: 10.1007/s11769-017-0880-z
    [6] HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong.  Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China . Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
    [7] WANG Kaiyong, DENG Yu, SUN Daowei, SONG Tao.  Evolution and Spatial Patterns of Spheres of Urban Influence in China . Chinese Geographical Science, 2014, 0(1): 126-136. doi: 10.1007/s11769-013-0635-4
    [8] YE Xinyue, SHE Bing, WU Ling, ZHU Xinyan, CHENG Yeqing.  An Open Source Toolkit for Identifying Comparative Space-time Research Questions . Chinese Geographical Science, 2014, 0(3): 348-361. doi: 10.1007/s11769-014-0679-0
    [9] YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong.  Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data . Chinese Geographical Science, 2014, 0(2): 205-219. doi: 10.1007/s11769-013-0637-2
    [10] YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping.  A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area . Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
    [11] SUN Yongguang1, 2, LI Xiuzhen, ülo MANDER, HE Yanlong, et al.  Effect of Reclamation Time and Land Use on Soil Properties in Changjiang River Estuary, China . Chinese Geographical Science, 2011, 21(4): 403-416.
    [12] HUANG Fang, WANG Ping.  Vegetation Change of Ecotone in West of Northeast China Plain Using Time-series Remote Sensing Data . Chinese Geographical Science, 2010, 20(2): 167-175. doi: 10.1007/s11769-010-0167-0
    [13] PENG Guangxiong, DENG Lei, CUI Weihong, MING Tao, SHEN Wei.  Remote Sensing Monitoring of Tobacco Field Based on Phenological Characteristics and Time Series Image―A Case Study of Chengjiang County, Yunnan Province, China . Chinese Geographical Science, 2009, 19(2): 186-193. doi: 10.1007/s11769-009-0186-x
    [14] ZHU Xiao-hua, CAI Yun-long.  INFLUENCE OF SERIES OF SQUARE GRIDS ON FRACTAL DIMENSIONS A Case Study of Mountains of China's Mainland . Chinese Geographical Science, 2004, 14(1): 9-14.
    [15] WANG Yan-li, CHEN Zhe.  PERFORMANCE EVALUATION OF SEVERAL FUSION APPROACHES FOR CCD/SAR IMAGES . Chinese Geographical Science, 2003, 13(1): 91-96.
    [16] WANG Xie-kang, HUANG Er, CUI Peng.  SIMULATION AND PREDICTION OF DEBRIS FLOW USING ARTIFICIAL NEURAL NETWORK . Chinese Geographical Science, 2003, 13(3): 262-266.
    [17] HOU Wei-ling, FAN Hong.  ECOLOGICAL SERIES OF SOIL ANIMALS IN DARLIDAI MOUNTAIN . Chinese Geographical Science, 2002, 12(4): 378-382.
    [18] ZHU Zhen-guo, YAO Shi-mou.  NEW PATTERNS OF URBAN DEVELOPMENT IN CHINA . Chinese Geographical Science, 2000, 10(1): 20-29.
    [19] 况明生.  QUATERNARY GLACIATION SERIES AND GLACIAL LANDFORM IN GONGWANG MOUNTAINS IN NORTHEAST PART OF YUNNAN PROVINCE, CHINA . Chinese Geographical Science, 1997, 7(2): 180-190.
    [20] 许有鹏, 杨戊.  47||HYDROLOGIC SERIES CHARACTERISTICS ANALYSIS OF THE MAJOR RIVERS AROUND THE TAKLIMAKAN DESERT . Chinese Geographical Science, 1997, 7(1): 47-52.
  • 加载中
计量
  • 文章访问数:  514
  • HTML全文浏览量:  52
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2018-08-08
  • 刊出日期:  2019-08-01

Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data

doi: 10.1007/s11769-019-1060-0
    基金项目:  Under the auspices of Fundamental Research Funds for the Central Universities, China (No. 2017TD-26), the Plan for Changbai Mountain Scholars of Jilin Province, China (No. JJLZ[2015]54)
    通讯作者: Juliana USEYA.E-mail:julieuseya@yahoo.co.uk;CHEN Shengbo.E-mail:chensb@jlu.edu.cn

摘要: It is of paramount importance to have sustainable agriculture since agriculture is the backbone of many nations' economic development. Majority of agricultural professionals rarely capture the cropping patterns necessary to promote Good Agricultural Practises. Objective of this research is to explore the potential of mapping cropping patterns occurring on different field parcels on small-scale farmlands in Zimbabwe. The first study location under investigation are the International Maize and Wheat Improvement Center (CIMMYT) research station and a few neighboring fields, the second is Middle Sabi Estate. Fourier time series modeling was implemented to determine the trends befalling on the two study sites. Results reveal that Sentinel-1 synthetic aperture radar (SAR) time series allow detection of subtle changes that occur to the crops and fields respectively, hence can be utilized to detect cropping patterns on small-scale farmlands. Discrimination of the main crops (maize and soybean) grown at CIMMYT was possible, and crop rotation was synthesized where sowing starts in November. A single cropping of early and late crops was observed, there were no winter crops planted during the investigation period. At Middle Sabi Estate, single cropping on perennial sugarcane fields and triple cropping of fields growing leafy vegetables, tomatoes and onions were observed. Classification of stacked images was used to derive the crop rotation maps representing what is practised at the farming lands. Random forest classification of the multi-temporal image stacks achieved overall accuracies of 99% and 95% on the respective study sites. In conclusion, Sentinel-1 time series can be implemented effectively to map the cropping patterns and crop rotations occurring on small-scale farming land. We recommend the use of Sentinel-1 SAR multi-temporal data to spatially explicitly map cropping patterns of single-, double- and triple-cropping systems on both small-scale and large-scale farming areas to ensure food security.

English Abstract

Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. 中国地理科学, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
引用本文: Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. 中国地理科学, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
Citation: Juliana USEYA, CHEN Shengbo. Exploring the Potential of Mapping Cropping Patterns on Smallholder Scale Croplands Using Sentinel-1 SAR Data[J]. Chinese Geographical Science, 2019, 20(4): 626-639. doi: 10.1007/s11769-019-1060-0
参考文献 (40)

目录

    /

    返回文章
    返回