留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China

WU Yalin HUANG Tao HUANG Changchun SHEN Yinyin LUO Yang YANG Hao YU Yanhong LI Ruixiao GAO Yan ZHANG Mingli

WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. 中国地理科学, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
引用本文: WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. 中国地理科学, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. Chinese Geographical Science, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
Citation: WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. Chinese Geographical Science, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y

Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China

doi: 10.1007/s11769-018-0994-y
基金项目: National Natural Science Foundation of China (No. 41503075, 41673108, and 41571324), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the State Key Laboratory of Lake Science and Environment (No. 2016SKL005), China Postdoctoral Science Foundation Funded Project (No. 2015M581826)
详细信息
    通讯作者:

    HUANG Changchun. E-mail:huangchangchun@njnu.edu.cn;ZHANG Mingli. E-mail:zhangmingli@njnu.edu.cn

Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China

Funds: National Natural Science Foundation of China (No. 41503075, 41673108, and 41571324), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the State Key Laboratory of Lake Science and Environment (No. 2016SKL005), China Postdoctoral Science Foundation Funded Project (No. 2015M581826)
More Information
    Corresponding author: HUANG Changchun. E-mail:huangchangchun@njnu.edu.cn;ZHANG Mingli. E-mail:zhangmingli@njnu.edu.cn
  • 摘要: Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus (TP) and total nitrogen (TN) were both at high concentrations, ranging from 697.5-3210.0 mg/kg and 1263.7-7155.2 mg/kg, respectively. Inorganic phosphorus (IP) and total organic nitrogen (TON) were the main constituents, at percentages of 59%-78% and 74%-95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm2·yr) in 2014. As the most reactive forms, nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71 597.6 t and a TN pool of 81 191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44 468.0 t and 5429.7 t, respectively, for the last century.
  • [1] Aigars J, Carman R, 2001. Seasonal and spatial variations of carbon and nitrogen distribution in the surface sediments of the Gulf of Riga, Baltic Sea. Chemosphere, 43(3):313-320. doi: 10.1016/S0045-6535(00)00150-8
    [2] Appleby P, Oldfield F, 1992. Application of lead-210 to sedimentation studies. In:Ivanovich M and Harmon R S (eds). Uranium-series Disequlibrium:Applications to Earth, Marine, and Environmental Sciences. 2nd ed. Oxford:Clarendon Press.
    [3] Bai Xiaohui, Yang Wandong, Chen Hualin et al., 2002. Influence of sediment in city river on water pollution restoration. Acta Scientiae Circumstantiae, 22(5):562-565. (in Chinese)
    [4] Broecker W S, Peng T H, 1982. Tracers in the sea:palisades. https://www.researchgate.net/publication/248141600_Tracers_in_the_Sea_Palisades.
    [5] Cao X, Wang Y Q, He J et al., 2016. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi. Environmental Pollution, 219:580-587. doi: 10.1016/j.envpol.2016.06.017
    [6] Chmiel H E, Niggemann J, Kokic J et al., 2015. Uncoupled organic matter burial and quality in boreal lake sediments over the Holocene. Journal of Geophysical Research:Biogeosciences, 120(9):1751-1763. doi: 10.1002/2015JG002987
    [7] Cong M, Jiang T, Qi Y Z et al., 2014. Phosphorus forms and distribution in Zhejiang coastal sediment in the East China Sea. International Journal of Sediment Research, 29(2):278-284. doi: 10.1016/S1001-6279(14)60043-3
    [8] Fytianos K, Kotzakioti A, 2005. Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environ-mental Monitoring and Assessment, 100(1-3):191-200. doi: 10.1007/s10661-005-4770-y
    [9] Gao L, Zhou J M, Yang H et al., 2005. Phosphorus fractions in sediment profiles and their potential contributions to eutrophication in Dianchi Lake. Environmental Geology, 48(7):835-844. doi: 10.1007/s00254-005-0005-3
    [10] Gao W, Howarth R W, Swaney D P et al., 2015. Enhanced N input to Lake Dianchi Basin from 1980 to 2010:drivers and consequences. Science of the Total Environment, 505:376-384. doi: 10.1016/j.scitotenv.2014.10.016
    [11] Gao Y X, Zhu G W, Qin B Q et al., 2009. Effect of ecological engineering on the nutrient content of surface sediments in Lake Taihu, China. Ecological Engineering, 35(11):1624-1630. doi: 10.1016/j.ecoleng.2008.07.002
    [12] Graca B, Bolalek J, 1998. Forms of phosphorus in sediments from the Gulf of Gdańsk. Applied Geochemistry, 13(3):319- 327. doi: 10.1016/S0883-2927(97)00101-7
    [13] Gudasz C, Bastviken D, Premke K et al., 2012. Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnology and Oceanography, 57(1):163-175. doi: 10.4319/lo.2012.57.1.0163
    [14] Hu Xiaoling, Wu Peng, 2005. Method of salicylate-hypochlorous acid ameliorated for determining ammonia nitrogen. Arid Environmental Monitoring, 19(3):184-185. (in Chinese)
    [15] Jiang S Y, Yuan Z W, 2015. Phosphorus flow patterns in the chaohu watershed from 1978 to 2012. Environmental Science & Technology, 49(24):13973-13982. doi:10.1021/acs.est. 5b03202
    [16] Jin X C, Wang S R, Yan P et al., 2006. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, China. Environmental Pollution, 139(2):288-295. doi:10.1016/j. envpol.2005.05.010
    [17] Li H, Song C L, Cao X Y et al., 2016. The phosphorus release pathways and their mechanisms driven by organic carbon and nitrogen in sediments of eutrophic shallow lakes. Science of the Total Environment, 572:280-288. doi:10.1016/j.scitotenv. 2016.07.221
    [18] Li Hui, 2012. Nitrogen Forms and Distribution in the Sediment Cores of Dianchi Lake. Kunming:Kunming University of Science and Technology. (in Chinese)
    [19] Li Q M, Zhang W, Wang X X et al., 2007. Phosphorus in interstitial water induced by redox potential in sediment of Dianchi Lake, China. Pedosphere, 17(6):739-746. doi:10. 1016/S1002-0160(07)60089-7
    [20] Li Yuexun, Xu Xiaomei, He Jia et al., 2010. Point source pollution control and problem in Lake Dianchi basin. Journal of Lake Sciences, 22(5):633-639. (in Chinese)
    [21] Liu J L, Wang R M, Huang B et al., 2011. Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environmental Pollution, 159(10):2815-2822. doi: 10.1016/j.envpol.2011.05.013
    [22] Liu M, Xu S Y, Hou L J et al., 2001. Phosphorous forms in sediments and their distribution in the Yangtze Estuary and coastal areas. Marine Science Bulletin, 3(2):55-62. doi:10. 3969/j.issn.1000-9620.2001.02.008
    [23] Liu X J, Li Z B, Li P et al., 2015. Changes in carbon and nitrogen with particle size in bottom sediments in the Dan River, China. Quaternary International, 380-381:305-313. doi:10.1016/j. quaint.2015.02.024
    [24] Lu D, Guo P Y, Ji J F et al., 2016. Evaluation of phosphorus distribution and bioavailability in sediments of a subtropical wetland reserve in southeast China. Ecological Indicators, 66:556-563. doi: 10.1016/j.ecolind.2016.02.015
    [25] Lu Shaoyong, Cai Minmin, Jin Xiangcan et al., 2009. Spatial distribution of nitrogen species in sediment of lakeside zone of Lake Dianchi. Ecology and Environmental Sciences, 18(4):1351-1357. (in Chinese)
    [26] Matisoff G, Watson S B, Guo J et al., 2017. Sediment and nutrient distribution and resuspension in Lake Winnipeg. Science of the Total Environment, 575:173-186. doi:10.1016/j.scitotenv. 2016.09.227
    [27] Mattila J, Kankaanpää H, Ilus E, 2006. Estimation of recent sediment accumulation rates in the Baltic Sea using artificial radionuclides 137Cs and 239, 240Pu as time markers. Boreal Environmental Research, 11(2):95-107.
    [28] Mcdowell W H, Asbury C E, 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnology and Oceanography, 39(1):111-125. doi: 10.4319/lo.1994.39.1.0111
    [29] Mehner T, Diekmann M, Gonsiorczyk T et al., 2008. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load. Ecosystems, 11(7):1142-1156. doi: 10.1007/s10021-008-9185-5
    [30] Meybeck M, 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282(4):401-450. doi: 10.2475/ajs.282.4.401
    [31] Mlynarczyk N, Bartoszek M, Polak J et al., 2013. Forms of phosphorus in sediments from the Goczalkowice Reservoir. Applied Geochemistry, 37:87-93. doi:10.1016/j.apgeochem. 2013.07.008
    [32] Ni Z K, Wang S R, Wang Y M, 2016. Characteristics of bioavailable organic phosphorus in sediment and its contribution to lake eutrophication in China. Environmental Pollution, 219:537-544. doi: 10.1016/j.envpol.2016.05.087
    [33] Puttonen I, Mattila J, Jonsson P et al., 2014. Distribution and estimated release of sediment phosphorus in the northern Baltic Sea archipelagos. Estuarine, Coastal and Shelf Science, 145:9-21. doi: 10.1016/j.ecss.2014.04.010
    [34] Puttonen I, Kohonen T, Mattila J, 2016. Factors controlling phosphorus release from sediments in coastal archipelago areas. Marine Pollution Bulletin, 108(1-2):77-86. doi: 10.1016/j.marpolbul.2016.04.059
    [35] Putyrskaya V, Klemt E, Röllin S et al., 2015. Dating of sediments from four swiss prealpine lakes with 210Pb determined by gamma-spectrometry:progress and problems. Journal of Environmental Radioactivity, 145:78-94. doi:10.1016/j. jenvrad.2015.03.028
    [36] Ruban V, Brigault S, Demare D et al., 1999. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France. Journal of Environmental Monitoring, 1(4):403-407. doi:10.1039/A 902269D
    [37] Ruban V, López-Sánchez J F, Pardo P et al., 2001. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-a synthesis of recent works. Analytical and Bioanalytical Chemistry, 370(2-3):224-228. doi: 10.1007/s002160100753
    [38] Rydin E, 2000. Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34(7):2037-2042. doi: 10.1016/S0043-1354(99)00375-9
    [39] Rydin E, Malmaeus J M, Karlsson O M et al., 2011. Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles. Estuarine, Coastal and Shelf Science, 92(1):111-117. doi: 10.1016/j.ecss.2010.12.020
    [40] Shang J G, Zhang L, Shi C J et al., 2013. Influence of chironomid larvae on oxygen and nitrogen fluxes across the sediment-water interface (Lake Taihu, China). Journal of Environmental Sciences, 25(5):978-985. doi:10.1016/S1001-0742(12) 60116-8
    [41] Shi Jing, Zu Xiaojing, Zhang Naiming et al., 2013. Sediment phosphorus form, space distribution characteristic and influencing factor of Cao Hai in Dian Lake, Yunnan, China. China Environmental Science, 33(10):1808-1813. (in Chinese)
    [42] Søndergaard M, Bjerring R, Jeppesen E, 2013. Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia, 710(1):95-107. doi: 10.1007/s10750-012-1091-3
    [43] Song J M, Ma H B, Lü X X, 2002. Nitrogen forms and decomposition of organic carbon in the southern Bohai Sea core sediments. Acta Oceanologica Sinica, 21(1):125-133.
    [44] U.S. Environmental Protection Agency, 2002. A Guildance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems. EPA 905-B02-001-A.
    [45] Wang Miao, Wang Shengrui, Jian Lixin et al., 2016. The risk and control division of endogenous nitrogen release in Dianchi Lake sediment. China Environmental Science, 36(3):798-807. (in Chinese)
    [46] Wang Y H, Yang H, Zhang J X et al., 2015. Characterization of n-alkanes and their carbon isotopic composition in sediments from a small catchment of the Dianchi watershed. Chemosphere, 119:1346-1352. doi:10.1016/j.chemosphere. 2014.01.085
    [47] Watanabe K, Kuwae T, 2015. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system? Global Change Biology, 21(7):2612-2623. doi: 10.1111/gcb.12924
    [48] Wu P B, Gao C, Chen F R et al., 2016. Response of organic carbon burial to trophic level changes in a shallow eutrophic lake in SE China. Journal of Environmental Sciences, 46:220-228. doi: 10.1016/j.jes.2016.05.003
    [49] Wu Y L, Li L, Gan N Q et al., 2014. Seasonal dynamics of water bloom-forming Microcystis morphospecies and the associated extracellular microcystin concentrations in large, shallow, eutrophic Dianchi Lake. Journal of Environmental Sciences, 26(9):1921-1929. doi: 10.1016/j.jes.2014.06.031
    [50] Wu Yalin, Li Shuaidong, Jiang Junwu et al., 2017. Distribution and burial characteristics of nitrogen forms in sediment of Dianchi Lake during last century. Environmetal Science, 38(2):517-526. (in Chinese)
    [51] Xiang S L, Zhou W B, 2011. Phosphorus forms and distribution in the sediments of Poyang Lake, China. International Journal of Sediment Research, 26(2):230-238. doi: 10.1016/S1001-6279(11)60089-9
    [52] Xiong Qiang, Jiao Lixin, Wang Shengrui et al., 2014. Characteristics and bioavailability of organic phosphorus from different sources of sediments in Dianchi Lake. Environmental Science, 35(11):4118-4126. (in Chinese)
    [53] Yunnan Provincial Bureau of Statistics, 1970-2010. Yunnan Sta-tistical Yearbook. Beijing:China Statistics Press. Available at:http://www.stats.yn.gov.cn/tjsj/tjnj/
    [54] Zhang L, Wang S R, Wu Z H, 2014. Coupling effect of pH and dissolved oxygen in water column on nitrogen release at water sediment interface of Erhai Lake, China. Estuarine, Coastal and Shelf Science, 149:178-186. doi:10.1016/j.ecss. 2014.08.009
    [55] Zhao Haichao, Wang Shengrui, Jiao Lixin et al., 2013a. Characteristics of temporal and spatial distribution of the nitrogen forms in the sediments of Erhai Lake. Research of Environmental Sciences, 26(3):235-242. (in Chinese)
    [56] Zhao Haichao, Wang Shengrui, Jiao Lixin et al., 2013b. Characteristics of temporal and spatial distribution of different forms of phosphorus in the sediments of Erhai Lake. Research of Environmental Sciences, 26(3):227-234. (in Chinese)
    [57] Zhong J C, You B S, Fan C X et al., 2008. Influence of sediment dredging on chemical forms and release of phosphorus. Pedosphere, 18(1):34-44. doi: 10.1016/S1002-0160(07)60100-3
    [58] Zhu M Y, Zhu G W, Li W et al., 2013. Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environmental Pollution, 173:216-223. doi: 10.1016/j.envpol.2012.10.016
  • [1] Yan LU, Lyuyi LIU, Fen QIN, Jiayao WANG, Jianzhong LIU, Yingjie LI, Luwen WAN.  Total Nitrogen and Total Phosphorus Pollution Reshaped the Relationship Between Water Supply and Demand in the Huaihe River Watershed, China . Chinese Geographical Science, 2023, 33(3): 512-530. doi: 10.1007/s11769-023-1350-4
    [2] YANG Yanli, MOU Xiaojie, WEN Bolong, LIU Xingtu.  Soil Carbon, Nitrogen and Phosphorus Concentrations and Stoichi-ometries Across a Chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China . Chinese Geographical Science, 2020, 30(5): 934-946. doi: 10.1007/s11769-020-1155-7
    [3] CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri.  Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis . Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
    [4] ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming.  Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China . Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
    [5] WANG Jinhua, LI Zhanbin, YAO Wenyi, DONG Guotao.  Influence of Vegetation on Runoff and Sediment in Wind-water Erosion Crisscross Region in the Upper Yellow River of China . Chinese Geographical Science, 2017, 27(4): 569-576. doi: 10.1007/s11769-016-0829-7
    [6] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [7] WANG Yan, LIU Ruhai, FAN Dejiang et al..  Distribution and Accumulation Characteristics of Heavy Metals in Sediments in Southern Sea Area of Huludao City, China . Chinese Geographical Science, 2013, 23(2): 194-202.
    [8] WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng.  Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China . Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
    [9] LIU Feng, CHEN Shenliang, PENG Jun, CHEN Guangquan.  Temporal Variations of Water Discharge and Sediment Load of Huanghe River, China . Chinese Geographical Science, 2012, 22(5): 507-521.
    [10] SUN Zhigao, MOU Xiaojie, LI Xinhua, et al.  Application of Stable Isotope Techniques in Studies of Carbon and Nitrogen Biogeochemical Cycles of Ecosystem . Chinese Geographical Science, 2011, 21(2): 129-148.
    [11] GUO Lei, MA Keming.  Seasonal Dynamics of Nitrogen and Phosphorus in Water and Sediment of A Multi-level Ditch System in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2011, 21(4): 437-445.
    [12] GUO Yue, JIANG Ming, LU Xianguo.  Simulation Study on Purification Efficiency for Nitrogen in Different Types of Wetlands in Sanjiang Plain, China . Chinese Geographical Science, 2010, 20(3): 252-257. doi: 10.1007/s11769-010-0252-4
    [13] LI Ruzhong, SHU Kun, LUO Yueying, SHI Yong.  Assessment of Heavy Metal Pollution in Estuarine Surface Sediments of Tangxi River in Chaohu Lake Basin . Chinese Geographical Science, 2010, 20(1): 9-17. doi: 10.1007/s11769-010-0009-0
    [14] YAO Shuchun, XUE Bin, KONG Deyang.  Chronology and Nutrients Change in Recent Sediment of Taihu Lake, Lower Changjiang River Basin, East China . Chinese Geographical Science, 2010, 20(3): 202-208. doi: 10.1007/s11769-010-0202-1
    [15] WEN Yanmao, WEI Xiange, SHU Tingfei, ZHOU Jingfeng, YU Guanghui, LI Feng, HUANG Yanyun.  Forms and Balance of Nitrogen and Phosphorus in Cage Culture Waters in Guangdong Province, China . Chinese Geographical Science, 2007, 17(4): 370-375. doi: 10.1007/s11769-007-0370-9
    [16] XU Zhiguo, YAN Baixing, HE Yan, ZHAI Jinliang, SONG Changchun.  Effect of Nitrogen and Phosphorus on Tissue Nutrition and Biomass of Freshwater Wetland Plant in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2006, 16(3): 270-275.
    [17] GAO Jian-hua, GAO Shu, CHENG Yan, DONG Li-xian, ZHANG Jing.  SEDIMENT TRANSPORT IN YALU RIVER ESTUARY . Chinese Geographical Science, 2003, 13(2): 157-163.
    [18] ZHANG Xue-song, HAO Fang-hua, CHENG Hong-guang, LI Dao-feng.  APPLICATION OF SWAT MODEL IN THE UPSTREAM WATERSHED OF THE LUOHE RIVER . Chinese Geographical Science, 2003, 13(4): 334-339.
    [19] 刘景双, 于君宝.  DYNAMIC VARIATION OF NITROGEN CONTENT IN THE SECOND SONGHUA RIVER . Chinese Geographical Science, 1999, 9(4): 368-372.
    [20] 业渝光, 和杰, 刁少波, 高钧成.  ESR DATING OF FLUVIAL SEDIMENTS USING GE CENTER IN QUARTZ . Chinese Geographical Science, 1993, 3(3): 284-288.
  • 加载中
计量
  • 文章访问数:  271
  • HTML全文浏览量:  22
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2018-01-11
  • 刊出日期:  2018-10-27

Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China

doi: 10.1007/s11769-018-0994-y
    基金项目:  National Natural Science Foundation of China (No. 41503075, 41673108, and 41571324), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the State Key Laboratory of Lake Science and Environment (No. 2016SKL005), China Postdoctoral Science Foundation Funded Project (No. 2015M581826)
    通讯作者: HUANG Changchun. E-mail:huangchangchun@njnu.edu.cn;ZHANG Mingli. E-mail:zhangmingli@njnu.edu.cn

摘要: Sediments have a significant influence on the cycling of nutrient elements in lake environments. In order to assess the distribution characteristics and estimate the bioavailability of phosphorus and nitrogen in Dianchi Lake, organic and inorganic phosphorus and nitrogen forms were analysed. The 210Pb radiometric dating method was employed to study temporal changes in the phosphorus and nitrogen pools in Dianchi Lake. The result show that the total phosphorus (TP) and total nitrogen (TN) were both at high concentrations, ranging from 697.5-3210.0 mg/kg and 1263.7-7155.2 mg/kg, respectively. Inorganic phosphorus (IP) and total organic nitrogen (TON) were the main constituents, at percentages of 59%-78% and 74%-95%, respectively, in the sediments. Spatially, there was a decreasing trend in phosphorus and nitrogen contents from the south and north to the lake centre, which is related to the distribution pattern of local economic production. The burial rates of the various phosphorus and nitrogen forms increased in same spatially and over time. Particularly in the past two decades, the burial rates doubled, with that TN reached to 1.287 mg/(cm2·yr) in 2014. As the most reactive forms, nitrate nitrogen (NO3-N) and ammonia nitrogen (NH4-N) were buried more rapidly in the south region, implying that the potential for releasing sedimentary nitrogen increased from north to south. Based on their concentrations and burial rates, the internal loads of phosphorus and nitrogen were analysed for the last century. A TP pool of 71 597.6 t and a TN pool of 81 191.7 t were estimated for Dianchi Lake. Bioavailable phosphorus and nitrogen pools were also estimated at 44 468.0 t and 5429.7 t, respectively, for the last century.

English Abstract

WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. 中国地理科学, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
引用本文: WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. 中国地理科学, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. Chinese Geographical Science, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
Citation: WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli. Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China[J]. Chinese Geographical Science, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
参考文献 (58)

目录

    /

    返回文章
    返回