留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images

XU Xinliang CAI Hongyan QIAO Zhi WANG Liang JIN Cui GE Yaning WANG Luyao XU Fengjiao

XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. 中国地理科学, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
引用本文: XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. 中国地理科学, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. Chinese Geographical Science, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
Citation: XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. Chinese Geographical Science, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x

Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images

doi: 10.1007/s11769-017-0910-x
基金项目: Under the auspices of the important National Project of high-resolution Earth Observation System (No.00-Y30B15-9001-14/16),National Natural Science Foundation of China (No.41421001)
详细信息
    通讯作者:

    CAI Hongyan,E-mail:caihy@igsnrr.ac.cn

Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images

Funds: Under the auspices of the important National Project of high-resolution Earth Observation System (No.00-Y30B15-9001-14/16),National Natural Science Foundation of China (No.41421001)
More Information
    Corresponding author: CAI Hongyan,E-mail:caihy@igsnrr.ac.cn
  • 摘要: Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park's interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and AI) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.
  • [1] Amiri R, Weng Q H, Alimohammadi A et al., 2009. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12):2606–2617. doi:  10.1016/j.rse.2009.07.021
    [2] Armson D, Stringer P, Ennos A R, 2012. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban Forestry & Urban Greening, 11(3): 245–255. doi: 10.1016/j.ufug.2012.05.002
    [3] Bogaert J, Myneni R B, Knyazikhin Y, 2002. A mathematical comment on the formulae for the aggregation index and the shape index. Landscape Ecology, 17(1): 87–90. doi: 10. 1023/A:1015204923187
    [4] Bowler D E, Buyung-Ali L, Knight T M et al., 2010. Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landscape and Urban Planning, 97(3):147–155. doi:  10.1016/j.landurbplan.2010.05.006
    [5] Brown R D, Vanosb J, Kennyc N et al., 2015. Designing urban parks that ameliorate the effects of climate change. Landscape and Urban Planning, 138: 118–131. doi: 10.1016/j.landurbplan. 2015.02.006
    [6] Buyantuyev A, Wu J G, 2010. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25(1): 17–33. doi:  10.1007/s10980-009-9402-4
    [7] Cao X, Onishi A, Chen J et al., 2010. Quantifying the cool island intensity of urban parks using ASTER and IKONOS data. Landscape and Urban Planning, 96(4): 224–231. doi: 10. 1016/j.landurbplan.2010.03.008
    [8] Chang C R, Li M H, Chang S D, 2007. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4): 386–395. doi: 10.1016/j.landurbplan. 2006.09.005
    [9] Chang C R, Li M H, 2014. Effects of urban parks on the local urban thermal environment. Urban Forestry & Urban Greening, 13(4): 672–681. doi:  10.1016/j.ufug.2014.08.001
    [10] Chen A L, Yao X A, Sun R H et al., 2014. Effect of urban green patterns on surface urban cool islands and its seasonal variations. Urban Forestry & Urban Greening, 13(4): 646–654. doi:  10.1016/j.ufug.2014.07.006
    [11] Department of Economic and Social Affairs, Population Division, 2015. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP. 241. New York: United Nations.
    [12] Doick K J, Peace A, Hutchings T R, 2014. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Science of the Total Environment, 493: 662–671. doi: 10.1016/ j.scitotenv.2014.06.048
    [13] Fan F L, Fan W, 2014. Understanding spatial-temporal urban expansion pattern (1990–2009) using impervious surface data and landscape indexes: a case study in Guangzhou (China). Journal of Applied Remote Sensing, 8(1): 083609. doi: 10. 1117/1.JRS.8.083609
    [14] Feyisa G L, Dons K, Meilby H, 2014. Efficiency of parks in mitigating urban heat island effect: an example from Addis Ababa. Landscape and Urban Planning, 123: 87–95. doi: 10. 1016/j.landurbplan.2013.12.008
    [15] Giles Jr R H, Trani M K, 1999. Key elements of landscape pattern measures. Environmental Management, 23(4): 477–481. doi: 10.1007/s002679900202
    [16] Haines-Young R, Chopping M, 1996. Quantifying landscape structure: A review of landscape indices and their application to forested landscapes. Progress in Physical Geography, 20(4): 418–445.
    [17] He H S, DeZonia B E, Mladenoff D J, 2000. An aggregation index (AI) to quantify spatial patterns of landscapes. Landscape Ecology, 15(7): 591–601. doi:  10.1023/A:1008102521322
    [18] Hurtado E, Vidal A, Caselles V, 1996. Comparison of two atmospheric correction methods for Landsat TM thermal band. International Journal of Remote Sensing, 17(2): 237–247. doi: 10.1080/01431169608949002
    [19] Jacob D J, Winner D A, 2009. Effect of climate change on air quality. Atmospheric Environment, 43(1): 51–63. doi: 10. 1016/j.atmosenv.2008.09.051
    [20] Kane K, Connors J P, Galletti C S, 2014. Beyond fragmentation at the fringe: a path-dependent, high-resolution analysis of urban land cover in Phoenix, Arizona. Applied Geography, 52:123–134. doi:  10.1016/j.apgeog.2014.05.002
    [21] Kong F H, Yin H W, James P et al., 2014. Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China. Landscape and Urban Planning, 128:35–47. doi:  10.1016/j.landurbplan.2014.04.018
    [22] Kuang W H, Liu Y, Dou Y Y et al., 2015. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China. Landscape and Ecology, 30(2): 357-373. doi:  10.1007/s10980-014-0128-6
    [23] Li J X, Song C H, Cao L et al., 2011. Impacts of landscape structure on surface urban heat islands: a case study of Shanghai, China. Remote Sensing of Environment, 115(12): 3249–3263. doi:  10.1016/j.rse.2011.07.008
    [24] Li X C, Gong P, Liang L, 2015. A 30-year (1984–2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment, 166: 78–90. doi: 10. 1016/j.rse.2015.06.007
    [25] Li X M, Zhou W Q, Ouyang Z Y et al., 2012. Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China. Landscape Ecology, 27(6): 887–898. doi:  10.1007/s10980-012-9731-6
    [26] Liu H, Weng Q H, 2009. Scaling effect on the relationship between landscape pattern and land surface temperature: a case study of Indianapolis, United States. Photogrammetric Engineering & Remote Sensing, 75(3): 291–304. doi:  10.14358/PERS.75.3.291
    [27] Liu W, Ji C, Zhong J et al., 2007. Temporal characteristics of the Beijing urban heat island. Theoretical and Applied Climatology, 87(1–4): 213–221. doi:  10.1007/s00704-005-0192-6
    [28] Lu J, Li C D, Yang Y C et al., 2012. Quantitative evaluation of urban park cool island factors in mountain city. Journal of Central South University, 19(6): 1657–1662. doi: 10.1007/s 11771-012-1189-9
    [29] Maimaitiyiming M, Ghulam A, Tiyip T et al., 2014. Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 59–66. doi:  10.1016/j.isprsjprs.2013.12.010
    [30] O'Neill R V, Krummel J R, Gardner R H et al., 1988. Indices of landscape pattern. Landscape Ecology, 1(3): 153–162. doi: 10.1007/BF00162741
    [31] Qin Z, Karnieli A, Berliner P, 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18): 3719–3746. doi: 10.1080/01431160010006971
    [32] Roy P S, Tomar S, 2001. Landscape cover dynamics pattern in Meghalaya. International Journal of Remote Sensing, 22(18):3813–3825. doi:  10.1080/01431160010014008
    [33] Shashua-Bar L, Hoffman M E, 2000. Vegetation as a climatic component in the design of an urban street: an empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings, 31(3): 221–235. doi: 10.1016/S0378-7788(99)00018-3
    [34] Sobrino J A, Jiménez-Muñoz J C, Paolini L, 2004. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4): 434–440. doi: 10.1016/j.rse.2004.02. 003
    [35] Tang J M, Bu K, Yang J C et al., 2012. Multitemporal analysis of forest fragmentation in the upstream region of the Nenjiang River Basin, Northeast China. Ecological Indicators, 23:597–607. doi:  10.1016/j.ecolind.2012.05.012
    [36] Weng Q H, Lu D S, Schubring J, 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4): 467– 483. doi:  10.1016/j.rse.2003.11.005
    [37] Weng Q H, Yang S H, 2006. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS. Environmental Monitoring and Assessment, 117(1–3):463–489. doi:  10.1007/s10661-006-0888-9
    [38] Yu C, Hien W N, 2006. Thermal benefits of city parks. Energy and Buildings, 38(2): 105–120. doi: 10.1016/j.enbuild.2005. 04.003
    [39] Zhang H, Qi Z F, Ye X Y et al., 2013. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Applied Geography, 44: 121–133. doi: 10. 1016/j. apgeog.2013.07.021
    [40] Zhang Wentong, 2004. Senior Course for SPSS Statistical Analysis. Beijing: Higher Education Press, 113–115. (in Chinese)
    [41] Zhou W Q, Huang G L, Cadenasso M L, 2011. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1): 54–63. doi: 10. 1016/j.landurbplan.2011.03.009
  • [1] WU Xiangli, LI Binxia, LI Miao, GUO Meixin, ZANG Shuying, ZHANG Shouzhi.  Examining the Relationship Between Spatial Configurations of Urban Impervious Surfaces and Land Surface Temperature . Chinese Geographical Science, 2019, 20(4): 568-578. doi: 10.1007/s11769-019-1055-x
    [2] GUO Peipei, SU Yuebo, WAN Wuxing, LIU Weiwei, ZHANG Hongxing, SUN Xu, OUYANG Zhiyun, WANG Xiaoke.  Urban Plant Diversity in Relation to Land Use Types in Built-up Areas of Beijing . Chinese Geographical Science, 2018, 28(1): 100-110. doi: 10.1007/s11769-018-0934-x
    [3] LI Jiaming, ZHANG Wenzhong, YU Jianhui, CHEN Hongxia.  Industrial Spatial Agglomeration Using Distance-based Approach in Beijing, China . Chinese Geographical Science, 2015, 25(6): 698-712. doi: 10.1007/s11769-015-0770-1
    [4] LIU Yaolin, WANG Huimin, JIAO Limin, LIU Yanfang, HE Jianhua, AI Tinghua.  Road Centrality and Landscape Spatial Patterns in Wuhan Metropolitan Area, China . Chinese Geographical Science, 2015, 25(4): 511-522. doi: 10.1007/s11769-015-0749-y
    [5] YANG Zhenshan, LIANG Jinshe, CAI Jianming.  Urban Economic Cluster Template and Its Dynamics of Beijing, China . Chinese Geographical Science, 2014, 0(6): 740-750. doi: 10.1007/s11769-014-0686-1
    [6] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [7] ZHAO Ying, CHAI Yanwei.  Residents’ Activity-travel Behavior Variation by Communities in Beijing, China . Chinese Geographical Science, 2013, 23(4): 492-505. doi: 10.1007/s11769-013-0616-7
    [8] CHANG Qing1, LI Shuangcheng2, WANG Yanglin2, WU Jiansheng3, XIE Miaomiao4.  Spatial Process of Green Infrastructure Changes Associated with Rapid Urbanization in Shenzhen, China . Chinese Geographical Science, 2013, 23(1): 113-128.
    [9] CAO Guangzhong, LIU Tao, LIU Hui, MIAO Yangbing.  Changing Spatial and Structural Patterns of Non-agricultural Activities in Outward-moving Beijing Urban Fringe . Chinese Geographical Science, 2012, 22(6): 718-729.
    [10] KUANG Wenhui.  Spatio-temporal Patterns of Intra-urban Land Use Change in Beijing, China Between 1984 and 2008 . Chinese Geographical Science, 2012, 22(2): 210-220.
    [11] ZHU Lin, CHEN Yun, GONG Huili, et al..  Economic Value Evaluation of Wetland Service in Yeyahu Wetland Nature Reserve, Beijing . Chinese Geographical Science, 2011, 21(6): 744-752.
    [12] SU Changhong, FU Bojie, LU Yihe, et al..  Land Use Change and Anthropogenic Driving Forces: A Case Study in Yanhe River Basin . Chinese Geographical Science, 2011, 21(5): 587-.
    [13] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [14] HE Yan, CHEN Tian, ZHANG Meng.  Utilization Pattern of Olympic Parks and Its Application in Beijing . Chinese Geographical Science, 2010, 20(5): 414-422. doi: 10.1007/s11769-010-0415-3
    [15] XIE Gaodi, LI Wenhua, XIAO Yu, ZHANG Biao, LU Chunxia, AN Kai, WANG Jixing, XU Kang, WANG Jinzeng.  Forest Ecosystem Services and Their Values in Beijing . Chinese Geographical Science, 2010, 20(1): 51-58. doi: 10.1007/s11769-010-0051-y
    [16] CHAI Yanwei, SHEN Jie, LONG Tao.  Downtown Retailing Development Under Suburbanization——A Case Study of Beijing . Chinese Geographical Science, 2007, 17(1): 1-9. doi: 10.1007/s11769-007-0001-5
    [17] KONG Fan-hua, Nobukazu NAKAGOSHI, YIN Hai-wei, Akira KIKUCHI.  SPATIAL GRADIENT ANALYSIS OF URBAN GREEN SPACES COMBINED WITH LANDSCAPE METRICS IN JINAN CITY OF CHINA . Chinese Geographical Science, 2005, 15(3): 254-261.
    [18] WONG Koon-kwai, Manfred DOMROES.  USERS′ PERCEPTION OF KOWLOON PARK, HONG KONG:VISITING PATTERNS AND SCENIC ASPECTS . Chinese Geographical Science, 2004, 14(3): 269-275.
    [19] 张佳华, 孔昭宸.  STUDY ON VEGETATION AND CLIMATE CHANGES IN BEIJING REGION SINCE LATE PLEISTOCENE . Chinese Geographical Science, 1999, 9(3): 243-249.
    [20] 杨开忠.  BASIC FEATURES AND TRENDS OF THE ECONOMIC BASE OF BEIJING . Chinese Geographical Science, 1999, 9(1): 12-19.
  • 加载中
计量
  • 文章访问数:  333
  • HTML全文浏览量:  21
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16
  • 修回日期:  2017-03-10
  • 刊出日期:  2017-10-27

Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images

doi: 10.1007/s11769-017-0910-x
    基金项目:  Under the auspices of the important National Project of high-resolution Earth Observation System (No.00-Y30B15-9001-14/16),National Natural Science Foundation of China (No.41421001)
    通讯作者: CAI Hongyan,E-mail:caihy@igsnrr.ac.cn

摘要: Urban parks composed mostly of vegetation and water bodies can effectively mitigate the urban heat island effect. Many studies have investigated the cooling effects of urban parks; however, little attention has been given to park landscape structure. Based on landscape metrics, this study has explored the influences of the park landscape structure on its inner thermal environment, taking heavily urbanized Beijing Municipality in China as the study area. Three indices, including the percentage of landscape (PLAND), landscape shape index (LSI) and aggregation index (AI), were used to measure the composition and configuration characteristics of the landscape components inside the parks. The indices were calculated for five landscape types being interpreted from Quickbird images. Urban thermal conditions were measured using the land surface temperature (LST) derived from Landsat TM images. The results showed that the park LST had a negative relationship with the park size, but no significant relationship was found with park shape. For the park's interior landscape, however, the configuration and composition characteristics of the landscape components inside the park explained 70% of the park LST variance. The area percentage of water bodies and the aggregation index of woodland were identified as the key influencing characteristics. In addition, when the composition and configuration characteristics of the park landscape components were separately considered, the configuration characteristics (LSI and AI) explained approximately 54% of the variance in park LST, which was comparable with that explained by the composition characteristics (PLAND). Thus, this study suggested that an effective and practical way for urban cooling park design is the optimization of spatial configuration of landscape components inside the park.

English Abstract

XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. 中国地理科学, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
引用本文: XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. 中国地理科学, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. Chinese Geographical Science, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
Citation: XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao. Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images[J]. Chinese Geographical Science, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
参考文献 (41)

目录

    /

    返回文章
    返回